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Characterization of Plp, a phosphatidylcholine-
specific phospholipase and hemolysin
of Vibrio anguillarum
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Abstract

Background: Vibrio anguillarum is the causative agent of vibriosis in fish. Several extracellular proteins secreted by
V. anguillarum have been shown to contribute to virulence. While two hemolysin gene clusters, vah1-plp and
rtxACHBDE, have been previously identified and described, the activities of the protein encoded by the plp gene were
not known. Here we describe the biochemical activities of the plp-encoded protein and its role in pathogenesis.

Results: The plp gene, one of the components in vah1 cluster, encodes a 416-amino-acid protein (Plp), which has
homology to lipolytic enzymes containing the catalytic site amino acid signature SGNH. Hemolytic activity of the plp
mutant increased 2-3-fold on sheep blood agar indicating that plp represses vah1; however, hemolytic activity of the plp
mutant decreased by 2-3-fold on fish blood agar suggesting that Plp has different effects against erythrocytes from
different species. His6-tagged recombinant Plp protein (rPlp) was over-expressed in E. coli. Purified and re-folded active
rPlp exhibited phospholipase A2 activity against phosphatidylcholine and no activity against phosphatidylserine,
phosphatidylethanolamine, or sphingomyelin. Characterization of rPlp revealed broad optimal activities at pH 5–9 and
at temperatures of 30-64°C. Divalent cations and metal chelators did not affect activity of rPlp. We also demonstrated that
Plp was secreted using thin layer chromatography and immunoblot analysis. Additionally, rPlp had strong hemolytic
activity towards rainbow trout erythrocytes, but not to sheep erythrocytes suggesting that rPlp is optimized for lysis of
phosphatidylcholine-rich fish erythrocytes. Further, only the loss of the plp gene had a significant effect on hemolytic
activity of culture supernatant on fish erythrocytes, while the loss of rtxA and/or vah1 had little effect. However,
V. anguillarum strains with mutations in plp or in plp and vah1 exhibited no significant reduction in virulence compared
to the wild type strain when used to infect rainbow trout.

Conclusion: The plp gene of V. anguillarum encoding a phospholipase with A2 activity is specific for phosphatidylcholine
and, therefore, able to lyse fish erythrocytes, but not sheep erythrocytes. Mutation of plp does not affect the virulence of
V. anguillarum in rainbow trout.
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Background
Vibrio anguillarum, a highly motile marine member of
the γ-Proteobacteria, is one of the causative agents of
vibriosis, a fatal hemorrhagic septicemic disease of both
wild and cultured fish, crustaceans, and bivalves [1]. Fish
infected with V. anguillarum display skin discoloration
and erythema around the mouth, fins, and vent. Necrotic
lesions are also observed in the abdominal muscle [2].
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Mortality rates in infected fish populations range as high
as 30-100% [1,3]. Vibriosis has caused severe economic
losses to aquaculture worldwide [1,3] and affects many
farm-raised fish including Pacific salmon, Atlantic salmon,
sea bass, cod, and eel [3,4]. V. anguillarum enters its fish
host through the gastrointestinal tract (GI) and quickly
colonizes this nutrient rich environment [2,5]. Garcia
et al. [6] have shown that V. anguillarum grows extremely
well in salmon intestinal mucus and that mucus-grown
cells specifically express a number of different proteins, in-
cluding several outer membrane proteins [6] and the
extracellular metalloprotease EmpA [2,5].
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Several genes have been reported to be correlated with
virulence by V. anguillarum, including the vah1 hemoly-
sin cluster [7,8], the rtx hemolysin cluster [9], the sidero-
phore mediated iron transport system [10], the empA
metalloprotease [2,5], and the flaA gene [11]. Hemolytic
activity of V. anguillarum has been considered to be the
virulence factor responsible for hemorrhagic septicemia
during infection [10]. We have identified two hemolysin
gene clusters in V. anguillarum that contribute to the viru-
lence of this pathogen [8,9]. One gene cluster, rtxACHBDE,
encodes a MARTX toxin and its type I secretion system
[9]. The second hemolysin gene cluster in V. anguillarum
strain M93Sm contains the hemolysin gene vah1 flanked
by two putative lipase-related genes (llpA and llpB) imme-
diately downstream and upstream by a divergently tran-
scribed hemolysin-like gene (plp) that appears to function
as a repressor of vah1-dependent hemolytic activity [8].
The plp-encoded protein has very high sequence similarity
to phospholipases found in other pathogenic Vibrio species
[8]. However, the enzymatic characteristics of Plp in V.
anguillarum were not described.
Generally, phospholipases are divided into several sub-

groups depending on their specificity for hydrolysis of
ester bonds at different locations in the phospholipid
molecule. Phospholipases A (PLAs) cleave long chain
fatty acids at sn-1 (PLA1) or sn-2 (PLA2) position from
phospholipid to yield lysophospholipid and free fatty
acid; phospholipases C (PLCs) cleave phospholipid into
diacylglycerol and a phosphate-containing head group;
and phospholipases D (PLDs) cleave phospholipid into
phosphatidic acid and an alcohol. It is known that some
phospholipid products are used as secondary messages,
which play a central role in signal transduction [12].
Figure 1 The phylogenetic tree (A) and amino acid sequence alignme
The phylogenetic tree was analyzed by the Neighbor Joining (NJ) method
labeled above the branch lines of the phylogenetic tree leading to the Plp
matches to Plp are aligned along the five conserved blocks of the SGNH fa
indicate the amount of conservation of amino acid residues. The four resid
In this study, we determined that plp encodes a
phospholipase A2 in V. anguillarum, and then purified
recombinant Plp protein (rPlp) from E. coli to investigate
its biochemical properties. We also described the contri-
bution and specificity of rPlp for hydrolysis of phospho-
lipids, and its ability to lyse fish erythrocytes.

Results
Identification of a putative phospholipase gene plp
Previously, a putative phospholipase gene, plp, was iden-
tified in the vah1 hemolysin cluster of V. anguillarum
strain M93Sm [8]. The 1251-bp plp gene (Genbank ac-
cession EU650390) was predicted to encode a protein of
416 amino acids. A BLASTx [13] search revealed that
the deduced Plp amino acid sequence exhibited hom-
ology with many lipolytic enzymes including the
phospholipase/lecithinase/hemolysin of Vibrio vulnificus
(identity, 69%; similarity, 82%); the lecithin-dependent
hemolysin (LDH)/ thermolabile hemolysin (TLH) of Vib-
rio parahaemolyticus (identity, 64%; similarity, 80%); the
lipolytic enzyme/hemolysin VHH of Vibrio harveyi
(identity, 63%; similarity, 78%); and the thermolabile he-
molysin of Vibrio cholerae (identity, 62%; similarity,
78%). The phylogenetic tree created by the Clustal-W
program from 17 Plp homologous proteins revealed that
while the most closely related Plp proteins were all from
pathogenic members of the genus Vibrio, the Plp of V.
anguillarum was an outlier among the Vibrio species, as
demonstrated by the Neighbor Joining analysis (Figure 1).
According to Flieger’s classification [14,15], the alignment
of Plp with other homologous proteins indicated that Plp
could be classified into subgroup B of this lipolytic family
with its long N-terminal tail (data not shown) prior to the
nt (B) of V. anguillarum Plp with members of the SGNH family.
with 1000 bootstraps, and node support values (as percentages) are
homologues found in the genus Vibrio. Sequences of the 16 closest
mily (Block IV not shown). The rectangle bars above the alignment
ues conserved in all SGNH family members are boxed.
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block I [14]. Additionally, close examination of the amino
acid sequences of these enzymes revealed that the typical
GDSL motif for lypolytic enzymes is not totally conserved
in all of these 17 proteins, in which leucines (L) are re-
placed with isoleucines (I) in Photobacterium, Marinomo-
nas, and Shewanella (Figure 1). In this case,V. anguillarum
Plp should be considered as a member of the SGNH
hydrolase family, based on the Molgaard’s suggestion that
only four amino acids (S, G, N, and H) are completely con-
served among the GDSL proteins [16].

Plp affects hemolysis of fish erythrocytes
The hemolysin gene vah1 is divergently transcribed from
plp [17]. Mutation of plp increased hemolytic activity by
2-3-fold on Trypticase soy agar plus 5% sheep blood
(TSA-sheep blood) plate compared with wild type strain
(M93Sm) (Figure 2A) [8]. Rock and Nelson [8] also dem-
onstrated that the plp mutant had increased vah1 tran-
scription (by 2-4-fold), indicating that Plp is a putative
repressor of vah1. Previously, we demonstrated that a
double mutant in vah1 and rtxA resulted in a hemolysis
negative mutant when plated on TSA-sheep blood agar
[9]. Similar results were observed when using Luria-
Bertani broth plus 2% NaCl plus 5% sheep blood (LB20-
sheep blood) agar (data not shown). However, on LB20
plus 5% rainbow trout blood (LB20-rainbow trout blood)
agar, the plp mutant exhibited a smaller zone of hemolysis
compared to wild type strain M93Sm (diameter: 9.5 ±
0.5 mm vs. 12 ± 0.0 mm, P < 0.05) (Figure 2B); comple-
mentation of plp restored the hemolytic activity of the
mutant strain (Figure 2B). Similar results were observed
when using LB20 plus 5% Atlantic salmon blood agar
(data not shown), suggesting that the ability of Plp to lyse
Figure 2 Hemolytic activity of M93Sm and S262 (plp) on TSA-
sheep blood agar (A) and LB20 + 5% rainbow trout blood agar
(B). A single colony of M93Sm and S262 was transferred onto each
of the blood agars and incubated at 27°C for 24 h. The zones of
hemolysis were measured and the diameters were given in the
figure. This is a representative experiment from 3 replicate trials,
each performed in triplicate.
erythrocytes is dependent upon the source of erythrocytes
and, therefore, their lipid composition.

Plp has phospholipase A2 activity
Thin layer chromatography (TLC) was used to examine
the pattern of phospholipid cleavage by Plp. BODIPY-
labeled phosphatidylcholine (BPC) was incubated with
various enzyme standards, including phospholipase A2
(PLA2), phospholipase C (PLC), or phospholipase D
(PLD). TLC analysis revealed distinct cleavage patterns
(Figure 3A) by these standard enzymes indicating that
BPC was an appropriate substrate to examine Plp activity.
Cell lysate prepared from E. coli strain S299, which con-
tains the shuttle plasmid pSUP202-plp that was able to
complement the plp mutation in V. anguillarum [8],
cleaved BPC to yield BODIPY-lysophosphatidylcholine
(BLPC) (Figure 3B, lane 5) plus unlabeled free fatty acid
(FFA) that is not detectable. The cleavage products were
identical to those generated by PLA2 (Figure 3B) and
demonstrate that Plp has phospholipase A2 activity. Add-
itionally, the culture supernatant from S299 had only ~5%
of the activity of that in cell lysate, indicating that Plp ac-
cumulated in the cell lysate instead of being secreted by
the E. coli strain. No phospholipase activity was detected
in PBS buffer or in E. coli DH5α containing only the
pSUP202 vector (Figure 3B). Further, phospholipase A2
Figure 3 Thin-layer chromatography (TLC) demonstrates
phospholipase A2 activity of Plp. BODIPY-labeled phosphatidylcholine
(BPC) was incubated with various standard enzymes or sample
preparations for 1 h at 37°C. Subsequently, the lipids were extracted
and separated by TLC. (A) The cleavage patterns of BPC by standard
proteins PLA2, PLC, and PLD were able to distinguish the different
phospholipase activities. (B) Cleavage patterns of BPC by supernatants
(lanes 2 and 3) and cell lysates (lanes 4 and 5) from E. coli DH5α
containing cloned plp (lanes 3 and 5) or just the cloning vector
pSUP202 (lanes 2 and 4). Lane 1 contains only BPC incubated in the
presence of PBS buffer. BLPC, BODIPY-labeled lysophosphatidylcholine;
PA, phosphatic alcohol; PBt, phosphaticbutanol; DAG, di-acylglycerol.



Figure 4 Effects of chemical and physical conditions on rPlp
activity. (A) Effect of rPlp concentration on enzymatic activity.
(B) The effect of temperature on rPlp activity. (C) The effect of pH
on rPlp activity. (D) The effect of EGTA rPlp activity.
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activity was examined in various subcellular fractions pre-
pared from E. coli strain S299, including cytoplasm, cyto-
plasmic membrane, and outer membrane fractions. Most
Plp activity was detected in Tween-20 soluble membrane
fraction, indicating that Plp was mainly localized in the
cytoplasmic membrane of E. coli S299 (data not shown).
No BODIPY-labeled free fatty acid (FFA) (at sn-1 position)
was detected in the TLC analysis when an apolar solvent
was used (data not shown), and BODIPY-labeled LPC
was not further degraded by Plp in the reaction, indi-
cating that Plp had no lysophospholipase or phospho-
lipase B activity.

Enzymatic characteristics of rPlp protein
To examine the enzymatic characteristics of Plp, the en-
tire coding sequence of plp was cloned and inserted into
the expression vector pQE60, which adds a His6 (His-
6×) tag to the carboxyl end of Plp. The over-expressed
recombinant Plp (rPlp) formed inclusion bodies in E.
coli. To recover active rPlp, purification of the inclusion
bodies followed by solubilization under mild conditions
and re-folding was performed as described in the Methods.
Purity of refolded rPlp protein was confirmed by SDS-
PAGE and silver staining (data not shown). The final
concentration of purified rPlp protein was 8 μg/ml with a
recovery of <10%.
Subsequently, the enzymatic characteristics of refolded

rPlp were examined under various chemical and physical
conditions. The enzymatic activity of rPlp positively cor-
related to its concentration from 1 μg/ml to 8 μg/ml
(Figure 4A); therefore, 4 μg/ml rPlp protein was rou-
tinely used in other activity assays. The enzymatic activ-
ity unit of refolded rPlp (1 unit = amount of protein that
cleaves 1 μmole of BODIPY-PC per minute) was about
2,500-fold higher than standard PLA2 enzyme extracted
from porcine pancreas, which indicated that Plp had a
high activity against the BPC phospholipid substrate. Plp
enzyme activity exhibited a broad temperature optimum
from 37°C to 64°C (Figure 4B) with 75% activity retained
at 27°C and 50% activity at 20°C. While rPlp activity rap-
idly decreased at temperatures above 70°C, the enzyme
retained full activity at 64°C for at least 1 h. The data
demonstrate that rPlp is a relatively themostable
phospholipase.
The effect of pH on enzyme activity was determined

for pH values ranging from 2 to 12. The data showed
that rPlp had a broad pH optimum from pH 5.3 to
pH 8.7 with activity dropping off rapidly at pH values
above and below the optimum (Figure 4C). rPlp activity
was not affected by treatment with the chelating re-
agents EGTA (Figure 4D) or EDTA (data not shown) at
concentrations up to 100 mM. Additionally, treatment
with divalent metal ions, such as calcium or magnesium
had no effect on activity (data not shown).
Plp is a secreted protein in V. anguillarum
Subcellular fractions from V. anguillarum strains M93Sm
and S262 (plp) were prepared and phospholipase A2 activ-
ity examined using BPC and TLC. Initial studies revealed
that at 37°C phospholipase A2 activity was detected in all
cell fractions, including the culture supernatant, periplasm,
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cytoplasm, cytoplasmic membrane, and outer membrane,
from both M93Sm and S262 (Figure 5A). However, when
the assay was performed at 64°C (to inactivate heat labile
phospholipases), phospholipase A2 activity in S262 was sig-
nificantly decreased in all fractions including the super-
natant (Figure 5B). Additionally, when the assay was
performed at 64°C for M93Sm subcellular fractions, only
the culture supernatant exhibited phospholipase activity
against BPC (about 100-fold higher activity compared to
the phospholipase activity of the S262 supernatant). The
data demonstrated that Plp was secreted into the culture
supernatant of V. anguillarum, which corresponds with in
silico analysis of the deduced Plp amino acid sequence (Ac-
cession number DQ008059) by SignalP that Plp has a signal
peptide [18]. TLC results also revealed that there was at
least one other protein in V. anguillarum M93Sm exhibit-
ing phospholipase A2 activity besides the secreted, heat
stable Plp protein. This was a themolabile PLA2 activity
inactivated at 64°C.
In order to confirm that Plp was localized in the

supernatant of V. anguillarum, protein samples prepared
from various subcellular fractions were separated by
SDS-PAGE and analyzed by western blot analysis using
polyclonal rabbit anti-Plp antiserum. An immuno-
reactive band of ~45 kDa was detected only in the
supernatant of M93Sm, but was absent in the super-
natant of plp mutant (Figure 5C). Taken together with
Figure 5 The phospholipase activity assays detected by TLC of variou
plp mutant strain S262 (plp-) were performed at 37°C (A) and 64°C (B
negative controls. The refolded rPlp protein (PLP +) served as positive cont
the bottom spots are the BLPC reaction product. The proteins from the sam
Western blot analysis (C) as described in the Methods. The refolded rPlp pr
the phospholipase A2 activity data, these data indicate
that Plp is a secreted protein in V. anguillarum.

rPlp has a specific activity against phosphatidylcholine
Various fluorescently-labeled phospholipid substrates (de-
scribed in Methods) were used to determine the specificity
of the rPlp protein. rPlp exhibited high activity against
phosphatidylcholine, cleaving BPC to yield BLPC and free
fatty acid (Figures 3 and 6A). However, rPlp had almost
no activity against both NBD-phosphatidylethanolamine
(NBD-PE) (Figure 6B) and NBD-phosphatidylserine (NBD-
PS) (Figure 6C), showing only 2% and 5%, respectively, of
the activity of the standard PLA2 protein against each of
the substrates. The data indicated that the rPlp protein
does not efficiently cleave either phosphatidylethanol-
amine or phosphatidylserine. Additionally, unlike the stand-
ard sphingomyelinase, rPlp was not able to cleave the
NBD-sphingomyelin into the NBD-ceramide and phospho-
choline (Figure 6D), indicating that rPlp had no sphingo-
myelinase activity. Taken together, the data demonstrated
that Plp is a phosphatidylcholine-specific PLA2 enzyme.

rPlp is able to lyse the fish erythrocytes directly
Membrane phospholipid compositions are quite varied
among the animal species, especially for phosphatidyl-
choline. It is known that phosphatidylcholine makes up
58% of the total phospholipid in fish erythrocytes [19];
s cell fractions prepared from wild type (wt) strain M93sm and
). PBS buffer, LB20, and PBS buffer + 1% sarcosylate were served as
rol. The top spots on each chromatogram are the BPC substrate and
e cell fractionation preparations were analyzed by SDS-PAGE and
otein was served as positive control.



Figure 6 rPlp activity determined by TLC analysis. BPC (A), NBD-PE (B), NBD-PS (C), and NBD-Sm (D) were used as phospholipid substrates to
examine the specificity of rPlp. Phosphate-buffered saline (PBS) was used as a negative control, and PLA2 enzyme from porcine pancreas as a positive
control. BPC: BODIPY-labeled phosphatidylcholine; BLPC: BODIPY-labeled lysophosphatidylcholine; NBD-PE: NBD-labeled phosphatidylethanolamine;
NBD-LPE: NBD-labeled lysophosphatidylethanolamine; NBD-PS: NBD-labeled phosphatidylserine; NBD-FFA: NBD-labeled free fatty acid; NBD-SM:
NBD-labeled sphingomyelin; NBD-CE: NBD-labeled ceramide.

Figure 7 Lysis of Atlantic salmon erythrocytes by recombinant
Plp protein (rPlp). 500 μl 5% fish (triangle) and sheep (square)
erythrocytes were incubated with various concentration rPlp at 27°C
for 20 h. The lysis of erythrocytes was measured at 428 nm.
Erythrocyte resuspension buffer (10 mM Tris–HCl, 0.9% NaCl, pH 7.2)
was used as negative control. All values were calculated from three
independent experiments. Error bars show one standard deviation.
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however, no phosphatidylcholine is found in sheep
erythrocytes [20]. In order to determine whether the dif-
ferential hemolysis observed for plp mutants of V. angu-
illarum (Figure 2) is due to the activity of Plp against
PC, we tested the ability of purified rPlp to lyse Atlantic
salmon erythrocytes. Addition of recombinant Plp re-
sulted in the lysis of Atlantic salmon erythrocytes, with
the amount of lysis directly related to the amount of
rPlp added to the blood suspension (Figure 7). In con-
trast, addition of rPlp to a suspension of sheep erythro-
cytes resulted in no lysis of those cells (Figure 7). These
data show that Plp has phosphatidylcholine-specific
phospholipase A2 activity and can directly lyse fish
erythrocytes.

Plp is one of the hemolysins of V. anguillarum
Previously, we demonstrated that there are two major
hemolysin gene clusters in the M93Sm, the vah1 cluster
[8] and the rtxA cluster [9]. Mutation of both vah1 and
rtxA completely eliminated the hemolytic activity of
M93Sm on TSA-sheep blood agar [9]. Mutation of the
plp gene resulted in 2-3-fold increased hemolytic activity
on TSA-sheep blood agar because vah1 expression in-
creased both transcriptionally and translationally in the
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plp mutant, indicating that Plp is a putative repressor of
vah1 [9]. Plp also has hemolytic activity against fish
erythrocytes due to its phosphatidylcholine-specific ac-
tivity (Figures 6 and 7). To investigate the relationship of
the three hemolysins, culture supernatants obtained
from various V. anguillarum strains (Table 1) were used
to examine the hemolytic activity against the fish blood
(Table 2).
In contrast to the strong hemolytic activity against 5%

rainbow trout blood mixed with culture supernatant
from the wild type strain M93Sm, hemolytic activity of
culture supernatant from strain S262 (plp) declined by
>70% (Table 2). Additionally, all mutants containing a
knockout of plp exhibited significant declines (P < 0.05)
in hemolytic activity. The triple hemolysin mutant,
XM90 (plp vah1 rtxA) had no ability to lyse fish erythro-
cytes (Table 2). However, mutations in either vah1 or
rtxA, but not plp, resulted in little or no decline in
hemolytic activity against fish erythrocytes compared to
supernatants from wild type cells (Table 2). Further,
complementation of plp restored the hemolytic activity
of supernatants from both the plp-complemented strains
(XM31, plp + and XM93, vah1 rtxA plp+) (Table 2).
Taken together, these data clearly demonstrate that Plp
is the major hemolytic enzyme responsible for the lysis
of rainbow trout erythrocytes by culture supernatants of
V. anguillarum.

Plp is not a major virulence factor for V. anguillarum
during fish infection
In order to determine whether the plp gene affects viru-
lence in fish, an infection study was performed by inocu-
lating rainbow trout by IP injection with either the wild
type strain M93Sm or mutant strains S262 (plp) or JR03
(vah1 plp). The results of this experiment (Figure 8)
indicated that there were no statistical differences in
mortality between the three strains. This suggested that
mutation of either plp or vah1 or both genes did not de-
crease the virulence of M93Sm. These results are con-
sistent with our previous observations that rtxA is a
major virulence factor of M93sm and that mutation of
vah1 does not affect virulence [8], and demonstrate that
Plp is not a major virulence factor in the V. anguillarum
M93Sm.

Discussion
In this report, we describe the characteristics of the V.
anguillarum phospholipase protein (Plp) encoded by
plp, and its contribution to the hemolytic activity of V.
anguillarum. Specifically, we show that Plp is a secreted
phospholipase with A2 activity with specificity for phos-
phatidylcholine. The enzyme has a broad temperature
optimum (37 – 64°C) and a broad pH optimum (pH 5.5 –
8.7). Phospholipases are broadly distributed among the
Vibrionaceae and often contribute to the virulence of the
pathogenic members of this family. For example, the TLH
or LDH of V. parahaemolyticus [23-25] was the first well-
studied lecithin-dependent PLA/lysophospholipase [26]. A
lecithinase (encoded by lec) was also identified in V. cho-
lerae [27]. Fiore et al. [27] found that a lec mutant strain
was unable to degrade lecithin and the culture supernatant
exhibited decreased cytotoxicity. However, the mutant did
not exhibit decreased fluid accumulation in a rabbit ileal
loop assay, suggesting that fluid accumulation in animals
is not affected by lecithinase activity. Additionally, the
phospholipase A (PhlA) in V. mimicus was found to ex-
hibit hemolytic activity against trout and tilapia erythro-
cytes and was cytotoxic to the fish cell line CHSE-214
[28]. Recently, the V. harveyi hemolysin (VHH) was
shown to be a virulence factor during flounder infection
and also had phospholipase activity on egg yolk agar [29].
Rock and Nelson [8] reported that the putative phospho-
lipase gene (plp) from V. anguillarum exhibits 69% amino
acid identity with the V. cholerae lec gene. Both plp and
lec are located divergently adjacent to a hemolysin gene
(vah1 and hlyA, respectively) [8,27]. Additionally, Rock
and Nelson [8] demonstrated that functional plp repressed
transcription of its adjacent hemolysin gene, vah1, in V.
anguillarum. However, the enzymatic characteristics of
Plp in V. anguillarum were not described.
Usually, phospholipases are divided into phospholi-

pases A (A1 and A2), C, and D according to the cleavage
position on target phospholipids. Most of lipolytic en-
zymes contain a putative lipid catalytic motif (GDSL)
that was previously demonstrated in other bacterial and
eukaryotic phospholipases [30]. However, Molgaard [16]
demonstrated that four amino acid residues (SGNH)
form a catalytic site, and are conserved in all members
of the phospholipase family; therefore, phospholipases
were re-named as the SGNH subgroup of the GDSL
family [30]. Multiple alignment analysis of 17 phospholip-
ase homologues (Figure 1) demonstrates that V. anguil-
larum Plp belongs to the SGNH hydrolase subgroup,
since the GSDL motif was not fully conserved in these
proteins (Figure 1). Recently, it was reported that mutation
of the serine residue in the SGNH motif resulted in the
complete loss of the phospholipase and hemolytic activ-
ities of VHH in V. harveyi [31] demonstrating the import-
ance of this motif on the activity of phospholipase.
In contrast to the similarities of their catalytic motifs,

the biochemical characteristics of bacterial phospholi-
pases appear to be variable. For example, V. mimicus
PhlA has a phospholipase A activity, which cleaves the
fatty acid at either sn-1or sn-2 position, but no lysopho-
spholipase activity [28]. Two phospholipases identified
from mesophilic Aeromonas sp. serogroup O:34 show
phospholipase A1 and C activity [32]. In addition, TLH
of V. parahaemolyticus has PLA2 and lysophospholipase



Table 1 Bacterial strains and plasmids used in this study

Strain or plasmid Description Reference

V. anguillarum strains

M93sm Spontaneous Smr mutant of M93 (serotype O2a); parental strain isolated
from a diseased ayu (Plecoglossus altivelis) from Lake Biwa, Japan

[2]

JR1 Smr Cmr vah1; insertional vah1 mutant of M93Sm [8]

XM21 Smr Cmr Tcr vah1+; vah1 complement strain of JR1 This study

S262 Smr Cmr plp; insertional plp mutant of M93Sm This study

XM31 Smr Cmr Tcr plp+; plp complement strain of S262 This study

S123 Smr Cmr rtxA; insertional rtxA mutant of M93Sm [9]

JR3 Smr Cmr Kmr vah1 plp; insertional vah1mutant of JL01 [8]

S183 Smr Cmr Kmr vah1 rtxA; insertional rtxA mutant of S171 [9]

XM62 Smr Cmr Kmr Tcr vah1+ rtxA; vah1 complement strain of S183 This study

S187 Smr Cmr Kmr plp rtxA; insertional rtxA mutant of JL01 This study

XM90 Smr Cmr Kmr vah1 plp rtxA; insertional plp mutant of S264 This study

XM93 Smr Cmr Kmr Tcr vah1 plp + rtxA; plp complement strain of XM90 This study

JL01 Smr Kmr plp; mini-Tn10Km insertion into plp [8]

S171 Smr Kmr vah1; allelic exchange vah1 mutant [9]

S264 Smr Kmr vah1 rtxA; allelic exchange vah1 and rtxA mutant This study

E. coli strains

Sm10 thi thr leu tonA lacY supE recA RP4-2-Tc::Mu::Km (λ pir) [21]

S253 Kmr Cmr; Sm10 containing plasmid pNQ705-plp This study

S118 Kmr Cmr; Sm10 containing plasmid pNQ705-rtxA [9]

S250 Kmr Cmr; Sm10 containing plasmid pDM4-rtxA5' This study

S252 Kmr Cmr; Sm10 containing plasmid pDM4-rtxA5'-rtxA3' This study

U21 Kmr Apr Tcr; Sm10 containing plasmid pSUP202-vah1 This study

U31 Kmr Apr Tcr; Sm10 containing plasmid pSUP202-plp This study

M15 NalS StrS RifS thi– lac– ara+ gal+ mtl– F– recA+ uvr+ lon+ (pREP4) QIAGEN, USA

S238 Kmr Apr; M15 containing plasmid pQE30UA-plp This study

S269 Kmr Apr; M15 containing plasmid pQE60-plp This study

Plasmid

PCR2.1 Kmr Apr; Cloning vector Invitrogen, USA

pNQ705-1 Cmr; suicide vector with R6K origin [22]

pNQ705-vah1 Cmr; for insertional vah1mutation [8]

pNQ705-plp Cmr; for insertional plp mutation This study

pNQ705-rtxA Cmr; for insertional rtxA mutation [9]

pDM4 Cmr SacBCr; suicide vector with R6K origin [11]

pDM4-rtxA5'-rtxA3' Cmr SacBCr; for allelic exchange rtxA mutation This study

pSUP202 Cmr Apr Tcr; E. coli – V. anguillarum shuttle vector [21]

pSUP202-vah1 Apr Tcr; for complementation of vah1 This study

pSUP202-plp Apr Tcr; for complementation of plp This study

pQE-30 UA Apr; expression vector with N-terminal His6-tag QIAGEN, USA

pQE30UA-plp Apr; for expression of rPlp that is used to make anti-Plp This study

pQE60 Apr; expression vector with C-terminal His6-tag QIAGEN, USA

pQE-60-plp Apr; for expression of rPlp for enzymatic activity analysis This study
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Table 2 Hemolytic activity of culture supernatant from
V. anguillarum wild-type and various V. anguillarum
mutant strains against rainbow trout blood cells

V. anguillarum strain or treatment Hemolytic activity (Relative to
wild-type control ± SD)a

M93Sm 1.00 (±0.12)

JR1 (vah1) 0.98 (±0.16)

XM21 (vah1+) 1.20 (±0.28)

S262 (plp) 0.28 (±0.09)b

XM31 (plp+) 0.99 (±0.04)

S123 (rtxA) 0.94 (±0.22)

JR03 (plp vah1) 0.14 (±0.09)b

S183 (vah1 rtxA) 1.51 (±0.29)

XM62 (vah1+ rtxA) 0.73 (±0.03)

S187 (plp rtxA) 0.12 (±0.09)b

XM90 (vah1 rtxA plp) −0.04 (±0.09)b

XM93 (vah1 rtxA plp+) 1.33 (±0.01)

Water (positive control) 1.15 (±0.16)
aHemolytic activity assays carried out using the tube assay method as
described in the Methods. Hemolysis by M93Sm was given the value of 1.00.
The data are representative of two independent experiments, each with three
replicates, ± one standard deviation (SD).
bStatistically different from hemolytic activity for M93Sm (P < 0.05).

Figure 8 Survival rate of rainbow trout injected IP with wild
type (M93Sm, solid grey line) and mutant (plp, grey dotted
line; plp vah1, black dashed line) strains of V. anguillarum
strains at doses of A) 3 × 106, B) 3 × 105 or C) 3 × 104 CFU/fish.
No statistically significant difference was observed between the strains.
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activity, and demonstrates a loss of activity at 55°C for
10 min [23]. In this report, we show that V. anguillarum
Plp has PLA2 activity, and is able to maintain activity at
64°C for 1 h (Figures 6 and 7). Therefore, the enzymatic
characteristics of specific phospholipases are distinct
even when they all belong to the SGNH hydrolase family
(Figure 1).
Phospholipases have been implicated in the pathogenic

activities of a number of bacteria [33,34]. It is known
that phospholipase activities often lead to cell destruc-
tion by degrading the phospholipids of cell membranes
[33,35]. However, the relationships between phospho-
lipases and virulence are not always clear. While the
purified rPlp exhibits strong hemolytic activity against
Atlantic salmon erythrocytes (Figure 7), Rock and
Nelson [8] showed that a knock-out mutation of either
the plp gene or the vah1 gene in V. anguillarum did not
affect virulence of V. anguillarum during an infection
study on juvenile Atlantic salmon. In this report, we show
that when groups of rainbow trout are infected with either
a plp mutant or a plp vah1 double mutant there is no sig-
nificant difference in mortalities compared to fish infected
with the wild type strain. Our data suggest that neither plp
nor vah1 are major virulence factors during pathogenesis
of salmonids. It was also reported that the deletion of leci-
thinase (Lec) activity in V. cholerae did not significantly di-
minish fluid accumulation in the rabbit ileal loop assay,
indicating the lecithinase activity does not contribute sig-
nificantly to enterotoxin activity [27]. Lec is a homologue
of Plp [8]. In contrast, the direct IP injection of purified V.
harveyi VHH protein caused the death of flounder with
an LD50 of about 18.4 μg protein/fish [29]. The rPhlA of
V. mimicus also has a direct cytotoxic effect on the fish
cell line CHSE-214 [28] suggesting that this phospholipase
is a virulence factor during fish infection. In addition, the
lecithinase purified from A. hydrophila (serogroup O:34)
has been shown to be an important virulence factor to
rainbow trout and mouse [32]. We note that infection ex-
periments in both Atlantic salmon and rainbow trout
demonstrate that mutation of plp does not attenuate viru-
lence. We propose that V. anguillarum is able to compen-
sate for the loss of Plp-mediated hemolytic activity in vivo
by up-regulating the transcription of vah1, as previously
described by Rock and Nelson [8]. Additionally, transcrip-
tion of rtxA is also increased in a plp mutant (Mou and
Nelson, unpublished data).
Generally, the hemolytic activity of phospholipases is

dependent upon the hydrolysis of the phospholipids that
reside in the erythrocyte membrane. Erythrocytes contain
various phospholipids including phosphatidylcholine (PC),
phosphatidylethanolamine (PE), phosphatidylserine (PS),
phosphatidylinositol (PI), and sphingomyelin (SM). PC
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makes up 58% of the total erythrocyte phospholipids in the
Atlantic salmon [36], but only 34% and 1% in rabbit and
sheep erythrocytes, respectively [20]. Taken together with
the high specificity of rPlp for PC (Figure 6), it was not sur-
prising that rPlp was able to lyse the fish erythrocytes, but
not sheep erythrocytes (Figure 7), and that the plp mutant
had decreased hemolytic activity on LB20-fish blood agar
(Figure 2). Our results are consistent were those reported
for V. mimicus PhlA [28] and V. harveyi VHH [29], in
which PhlA and VVH specifically lyse the fish erythrocytes.
We have previously reported that there are two he-

molysin gene clusters in V. anguillarum M93Sm, the
vah1-plp cluster and rtxACHBDE cluster [9] and have
described their regulation by H-NS and HlyU [17,37].
Mutation of both vah1 and rtxA results in the loss of all
hemolytic activity on TSA-sheep blood agar [9], which is
consistent with the data reported here that Plp has no
activity on sheep erythrocytes. We have also previously
demonstrated that Plp is a putative repressor of Vah1,
since mutation of plp increases vah1 expression by 2–3
fold [8]. In this report, we examined the hemolytic activ-
ity of various hemolysin mutants using freshly collected
Rainbow trout blood (Table 2) to investigate the rela-
tionships among three hemolysins of V. anguillarum.
While culture supernatants from two of the three single
mutants (JR1 and S123) and one of three double mutants
(S183) exhibited ≥94% of the hemolytic activity as super-
natants from the wild type strain M93Sm (Table 2), the
hemolytic activity of one single mutant (S262, plp) and
two double mutants (JR03, plp vah1 and S187, plp rtxA)
were reduced to 28%, 14%, and 12% of that in M93Sm, re-
spectively. Our data indicate that only the loss of the plp
gene has a significant effect on hemolysis of fish erythro-
cytes by V. anguillarum culture supernatant, while the loss
of rtxA and/or vah1 has little effect. Further, supernatant
from the hemolysin triple mutant XM90 (vah1 rtxA plp)
exhibits no hemolytic activity on fish blood compared to
M93Sm (Table 2), indicating that Vah1, RtxA, and Plp are
responsible for all secreted hemolytic activity by V. anguil-
larum. Finally, complementation of any plp mutant with
plp (in trans) restores hemolytic activity to V. anguillarum
culture supernatant (Table 2).

Conclusion
V. anguillarum Plp is a secreted hemolysin with
phosphatidylcholine-specific phospholipase A2 activity.
The ability of Plp to digest the abundant phosphatidyl-
choline found in the membrane of fish erythrocytes
causes their lysis. The three hemolysins, Plp, Vah1 and
RtxA, account for all hemolytic activity in V. anguil-
larum culture supernatant under the experiment condi-
tions described in this study. Finally, infection studies in
rainbow trout demonstrate that the plp and vah1 genes
are not required for virulence.
Methods
Bacterial strains, plasmids, and growth conditions
All bacterial strains and plasmids used in this report are
listed in Table 1. V. anguillarum strains were routinely
grown in Luria-Bertani broth plus 2% NaCl (LB20) [38],
supplemented with the appropriate antibiotic, in a shak-
ing water bath at 27°C. E. coli strains were routinely
grown in Luria-Bertani broth plus 1% NaCl (LB10). An-
tibiotics were used at the following concentrations:
streptomycin, 200 μg/ml; ampicillin, 100 μg/ml (Ap100);
chloramphenicol, 20 μg/ml (Cm20) for E. coli and 5 μg/ml
(Cm5) for V. anguillarum; kanamycin, 50 μg/ml (Km50)
for E. coli and 80 μg/ml (Km80) for V. anguillarum; tetra-
cycline, 15 μg/ml (Tc15) for E. coli, 1 μg/ml (Tc1) for V.
anguillarum grown in liquid medium, and 2 μg/ml (Tc2)
for V. anguillarum grown on agar plates.

Insertional mutagenesis
Insertional mutations were made by using a modification
of the procedure described by Milton et al. [28]. Briefly,
primers (Table 3) were designed based on the target
gene sequence of M93Sm. Then a 200–300 bp DNA
fragment of the target gene was PCR amplified and li-
gated into the suicide vector pNQ705-1 (GenBank ac-
cession no. KC795685) after digestion with SacI and
XbaI. The ligation mixture was introduced into E. coli
Sm10 by electroporation using BioRad Gene Pulser II
(BioRad, Hercules, CA). Transformants were selected on
LB10 Cm20 agar plates. The construction of the recom-
binant pNQ705 was confirmed by both PCR amplifica-
tion and restriction analysis. The mobilizable suicide
vector was transferred from E. coli Sm10 into V. anguil-
larum by conjugation. Transconjugants were selected by
utilizing the chloramphenicol resistance gene located on
the suicide plasmid. The incorporation of the recombin-
ant pNQ705 was confirmed by PCR amplification.

Allelic exchange mutagenesis
The allelic exchange rtxA mutation in V. anguillarum
S264 was made by using a modification of the procedure
described by Milton et al. [28]. The 5′ region of rtxA
was amplified using the primer pair pm256 and pm257
(Table 3), digested with XhoI and XbaI, and then cloned
into the region between the XhoI and XbaI sites on
pDM4 (GenBank accession no. KC795686), deriving
pDM4-rtxA5′. The 3′ region of rtxA was amplified using
the primer pair pm258 and pm259 (Table 3), digested with
XbaI and SacI, and then cloned into the region between the
XbaI and SacI sites on the pDM4-rtxA5′. The resulting
pDM4-rtxA5′-rtxA3′ was transformed into E. coli Sm10 to
produce the transformant strain S252, which was mated
with V. anguillarum S171 (vah1). Single-crossover trans-
conjugants were selected with LB20 Kan80 Sm200 Cm5

plates and, subsequently, double-crossover transconjugants



Table 3 Primers used in this study
Primers Sequence (5' to 3', italicized sequences

are designed restriction sites)
Purpose and description Reference

Pm262 ATCGAGGATCCATGAAACTAATGACGTTATTG For whole Plp protein, forward This study

Pm263 ATCGAAGATCTTTGAAATTGAAATGACGCGAG For whole Plp protein, reverse This study

Pm212 GACACCTCACAATATGAAATAAAA For truncated Plp protein, forward This study

Pm213 TTTGAGCTGCGGGGCTTTGGTTGC For truncated Plp protein, reverse This study

Pm261 ATCGAGAGCTCGCAGAATCGTGACTGACGCCG For insertional plp mutation, forward, with SacI site This study

SD Lip/Heme R1 GCTAGTCTAGAACGGATACCACCTCAGA For insertional plp mutation, reverse, with XbaI site [8]

pr1 GGGGAATTCTTATTCAAATTGAAATGACGCGAG For plp complement, forward, with EcoRI site This study

pr2 GGGACCGGTGAATACCCATTTTTTATTTTTTC For plp complement, reverse, with AgeI site This study

pr3 GTTGAATTCGTATTTTCTGCAATCGCCATG For vah1 complement, forward, with EcoRI site This study

pr4 GGGACCGGTCTATTTTATAATAAATTGAATACCAT For vah1 complement, reverse, with AgeI site This study

Pm256 ATCGACTCGAGCTGGAGAAGATGTACTCTGCG For allelic exchange rtxA mutation, flanking the 5' region, forward, with XhoI site This study

Pm257 ATCGATCTAGACGTATCATCTACAGCTTTTGC For allelic exchange rtxA mutation, flanking the 5' region, reverse, with XbaI site This study

Pm258 ATCGATCTAGATTATATTAATCATGTCTTTTATGGG For allelic exchange rtxAmutation, flanking the 3' region, forward, with XbaI site This study

Pm259 ATCGAGAGCTCCTGATTGCCTAGCAGTAGCCC For allelic exchange rtxA mutation, flanking the 3' region, reverse, with SacI site This study

pr7 CAGGAAACAGCTATGACCATGATTACG For sequencing of the DNA fragment inserted in pCR2.1 TA-ligation site This study

pr8 CTACGGGCTTGAGCGTGACAATC For sequencing of the DNA fragment inserted in pSUP202 AgeI site This study

pr25ex GCTGTCCCTCCTGTTCAGCTACTGACGGGGTGGTGCG For sequencing of the DNA fragment inserted in pNQ705-1 Multi-cloning site This study
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(resulting in a 3345 bp deletion in C-terminal of RtxA)
were selected with LB20 Kan80 Sm200 5% sucrose plates.
The resulting V. anguillarum colonies were transferred to
TSA-sheep blood agar (Northeast Laboratories Service,
Waterville, ME) and screened for none-hemolytic colonies
(vah1 rtxA). The resulting colonies were checked for the
desired allelic exchange using PCR amplification.

Complementation of mutants
The various mutants were complemented by cloning the
appropriate target gene fragment into the shuttle vector
pSUP202 (GenBank accession no. AY428809) as de-
scribed previously by [8]. Briefly, primers (Table 3) were
designed with EcoRI and AgeI sites and then used to
amplify the entire target gene plus ~500 bp of the 5′
and ~200 bp 3′flanking regions from genomic DNA of
V. anguillarum M93Sm. The DNA fragment was then li-
gated into pSUP202 after digestion with EcoRI and AgeI,
and the ligation mixture was introduced into E. coli
Sm10 by electroporation using a BioRad Gene Pulser II.
Transformants were selected on LB10 Tc15 Ap100 agar
plates. The complementing plasmid was transferred from
E. coli Sm10 into the V. anguillarum mutant by conjuga-
tion. Transconjugants were selected by tetracycline resist-
ance (Tc2). The transconjugants were then confirmed by
PCR amplification and restriction digestion.

Bacterial conjugation
Bacterial conjugation were carried out using the proced-
ure modified from Varina et al. [39]. Briefly, 100 μl V.
anguillarum grown overnight was added into 2.5 ml
nine salts solution (NSS) [40]; 100 μl E. coli culture over-
night was added into 2.5 ml 10 mM MgSO4. The result-
ing V. anguillarum and E. coli suspension was mixed,
vacuum filtered onto an autoclaved 0.22-μm-pore-diam-
eter nylon membrane (Millipore, USA), placed on an
LB15 agar plate (LB-plus-1.5% NaCl), and allowed to in-
cubate overnight at 27°C. Following incubation, the cells
were removed from the filter by vigorous vortex mixing
in 1 ml NSS. Cell suspensions (70 μl) were spread on
LB20 plated with appropriate antibiotics and the plates
were incubated at 27°C until V. anguillarum colonies
were observed (usually 24 to 48 h).

Cloning, over-expression, purification, and refolding
of the Plp protein
The whole length of the plp gene (stop codon not in-
cluded) was amplified by PCR with a sense primer intro-
ducing a BamHI site and an antisense primer introducing
BglII site, respectively. Genomic DNA extracted from V.
anguillarum M93Sm was used as template. The amplified
PCR product was digested with BamHI and BglII, and
ligated into a pQE60 (QIAGEN, USA) vector, which was
also cut with BamHI and BglII. The ligation mix was
transformed into E. coli M15 (pREP4) and clones with
pQE60-plp were selected on LB10 agar containing kana-
mycin and ampicillin. A clone harboring plasmid pQE60-
plp was selected and the plasmid DNA sequence isolated
from the clone confirmed by sequencing. The clone was
designated as S269. Subsequently, E. coli strain S269 was
grown at 37°C in 500 ml LB10 broth to OD600 = 0.5, and
isopropyl-β-D-thiogalactopyranoside (IPTG) was added to
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the culture (final concentration, 1 mM) to induce the ex-
pression of Plp. Then, the induced E. coli cells grown for
4 h at 37°C were harvested at 8000 × g for 10 min. The cell
pellet was stored at −20°C overnight to improve lysis. In-
clusion bodies of Plp were crudely purified using Cellytic
B reagent (Sigma, USA). Refolding of Plp protein from the
inclusion body preparation was carried out using a modifi-
cation of the method described by Santa et al. [41]. Briefly,
500 μl of purified inclusion body (2 mg protein/ml) was
completely solubilized in 1 ml of 50 mM Tris buffer
(pH 12) containing 2 M urea. The solubilized Plp was
diluted into 20 ml dilution buffer (50 mM Tris–HCl,
pH 8.0; 0.2 M glycine; 10% glycerol; 2 M urea; 0.5 mM
EDTA, and 0.2 mM DTT) at 4°C. No aggregation was ob-
served during the dilution. The diluted Plp protein was
dialyzed with the addition of 500 ml 50 mM Tris–HCl
(pH8.0) until the total dialysis volume up to 3 L. The dia-
lyzed Plp protein was concentrated with QIAGEN Ni-
NTA Protein Purification Kit (QIAGEN) under native
purification condition according to the instructions of the
manufacturer. The protein concentration was determined
using the BCA protein assay (Pierce).

Hemolytic assays
The hemolytic activity of V. anguillarum strains was
measured by two methods. First, single V. anguillarum
colonies were transferred onto TSA-sheep blood agar,
LB20-sheep blood agar (LB20 agar plus 5% sheep blood
with heparin, obtained from Hemostat Laboratories) or
LB20-fish blood agar (LB20 agar plus 5% rainbow trout
or Atlantic salmon blood with heparin). Hemolytic activ-
ity of each colony was determined by measuring
hemolytic zone surrounding the colonies after 24 h at
27°C. Additionally, the level of hemolytic activity was
also quantitated using a microcentrifuge tube assay. The
tubes contained 500 μl 5% erythrocytes (fish or sheep,
suspended in 10 mM Tris-Cl, pH 7.5 – 0.9% NaCl buf-
fer) were mixed with 500 μl of bacterial supernatant or
rPlp and incubated for 20 h at 27°C. The samples were
centrifuged at 1500 × g for 2 min at 4°C, and the optical
density of the resulting supernatant was read at 428 nm.

Phospholipase assay and thin-layer chromatography (TLC)
analysis
Phospholipase assays were performed in vitro with a
BODIPY-phosphatidylcholine (BPC or 2-decanoyl-1-(O-
(11-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-
3-propionyl)amino)undecyl)-sn-glycero-3-phosphocholine;
Invitrogen), NBD-phosphatidylethanolamine (NBD-PE,
N-(NBD-Aminododecanoyl)L-1,2-dihexanoyl-sn-glycero-
3-phosphoethanolamine; Sigma), NBD-phosphatidylserine
(NBD-PS or 1-Palmitoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-
4-yl)amino]dodecanoyl]-sn-Glycero-3-Phospho-L-Serine;
Avanti Polar Lipid), NBD-sphingomyelin (NBD-SM, N-[12-
[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-
Sphingosine-1-Phosphocholine; Avanti Polar Lipid).
20 μM phospholipid substrates (10 μl) were reacted with
an equal volume (10 μl) of various samples, and incubated
at different conditions, as described for each experiment.
For some experiments, purified standard phospholipases
were used: PLA2 (Sigma) from porcine pancreas, PLC
(Sigma) from Clostridium perfringens, and PLD (Sigma)
from cabbage. The reaction products were analyzed by
thin-layer chromatography (TLC). Briefly, 20 μl of 1-
butanol was added to the above reaction mixes (20 μl),
followed by vigorous vortex mixing for 30 s and centrifu-
gation (10,000 × g, 1 min). The upper lipid extract layer
(5 μl) was loaded onto a plastic-backed silica gel G60 plate
without fluorescent indicator (Sigma) and air-dried for
20 min. TLC was performed either with chloroform-
methanol–water-acetic acid (45/45/10/1 by vol.) when
BODIPY-PC was used as the substrate, or with chloroform-
methanol-acetic acid (60/20/1 by vol.) when NBD-PE, NBD-
PS, or NBD-SM used as the substrates. For some experi-
ments, an apolar solvent (n-hexane (70): diethyl ether (30):
acetic aid (4)) was used. Fluorescence was detected and
quantified using a Typhoon 9410 laser scanner.

Subcellular fractionation
V. anguillarum cells were fractionated as described pre-
viously [6] and the subcellular location of Plp deter-
mined. Briefly, 100 ml NSS-washed overnight grown
bacterial cells were resuspended in 10 ml of ultrapure
water for 20 min to cause osmotic shock and centrifuged
(10,000 × g, 5°C, 10 min) to collect the periplasmic frac-
tion (the supernatant). The remaining pellets were
washed twice with ultrapure water and lysed by sonic-
ation (four cycles at 35% power for 20 s, then allowed to
cool for 1 min). The sonicated cells were centrifuged
(10,000 × g, 5°C, 20 min) to remove cell debris and any
unlysed cells, and the supernatant cell lysate was sepa-
rated by ultracentrifugation (200,000 × g, 1 h, 4°C) to
yield the cytosolic (supernatant) and membrane (pellet)
fractions. The membrane fraction was treated with 1%
Sarkosyl to obtain Sarkosyl-soluble (inner membrane)
and -insoluble (outer membrane) fractions. Protein con-
centration in various fractions was measured using BCA
protein determination kit (Pierce).

Preparation of polyclonal antibody
Truncated Plp protein was over-expressed and purified
to serve as the antigen to create polyclonal antibody
against Plp. Briefly, primer Pm212 and Pm213 (listed in
Table 3) were used to amplify central portion of the plp
gene, which encodes the truncated Plp protein (amino
acid 93 to 293). PCR product was ligated into pQE30UA
vector (QIAGEN), and transformed into E. coli M15 and
transformants were selected on LB10 agar containing
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kanamycin and ampicillin. Plasmid DNA was purified
and the sequence confirmed by DNA sequencing. Pro-
tein purification was performed under denaturing condi-
tions according to the instructions of the manufacturer
(QIAGEN, USA) and protein purity was determined by
SDS-PAGE and Coomassie blue staining. Subsequently,
the purified truncated Plp was used as antigen to pre-
pare polyclonal antibody in two New Zealand White
rabbits (Charles River Lab, MA). Briefly, 1 ml purified
antigen (concentration = 100 μg/ml) was vigorously
mixed with 1 ml TiterMax Gold adjuvant (Sigma) into a
homogeneous suspension. About 10 ml of blood was with-
drawn from the rabbits before immunization as a control.
For the first injection, antigen-adjuvant mix was subcuta-
neously injected at 4 sites (over each shoulder and thigh;
100 μl/site). The rabbits were boosted with single injec-
tions of antigen-adjuvant (100 μl) at day 28, 42, and 56.
Blood was withdrawn 7–10 days after the 2nd and 3rd

boosts to test the titer of antiserum using the western blot
analysis. Antiserum with a high titer (> 1: 10,000) was ali-
quoted and stored at −70°C.

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) and Western blot analysis
Purified proteins or other protein samples were sepa-
rated in 10% SDS-polyacrylamide gels. Prestained pro-
tein standards (Bio-Rad) and Laemmli sample buffer
(Sigma) were used in all gels. Electrophoresis was per-
formed at 100 V for 60–90 min. Gels were stained with
either Coomassie blue G-250 or silver stain (Pierce,
USA) to visualize the protein bands. Alternatively, pro-
teins were transferred to nitrocellulose membranes for
western blot analysis using the mini-Protean II system
(Bio-Rad). Protein transfers were performed as described
by Towbin et al. [42] at 100 V for 1 h. Nitrocellulose
membranes were blocked with the addition of 5% skim
milk. Detection of specific protein bands was accom-
plished by reacting the blot with the 1:5000 diluted anti-
Plp antibody, followed by the addition of the secondary
antibody goat anti-rabbit IgG conjugated with peroxid-
ase, and then developed by TMB Development Liquid
(Sigma, USA).

DNA sequence and analysis
All DNA sequencing was done at the URI Genomics
and Sequencing Center (University of Rhode Island,
Kingston, RI), using an ABI 3170xl Genetic Analyzer
unit (Applied Biosystems). Multiple alignment and
phylogenic tree were analyzed using the Clustal-W
method in DNA-STAR Lasergene7 program.

Fish infection studies
Various V. anguillarum strains were tested for virulence
with rainbow trout (Oncorhynchus mykiss) by intraperitoneal
(IP) injection as described by Mou et al. [32]. Briefly, V.
anguillarum cells grown in LB20 supplemented with appro-
priate antibiotics for 22 h at 27°C were harvested by centri-
fugation (9,000 × g, 5 min, 4°C), washed twice in NSS, and
resuspended in NSS (~2 × 109 cells ml-1). Initial cell density
was estimated by measurement of optical density at 600 nm.
The actual cell density of NSS suspensions was determined
by serial dilution and spot plating. All fish were examined
prior to the start of each experiment to determine that they
were free of disease or injury. Fish were anesthetized with
tricaine methanesulfonate (Western Chemical, Ferndale,
WA), with 100 mg/L for induction and 52.5 mg/L for main-
tenance. V. anguillarum strains were IP-injected into fish in
100 μl NSS vehicle. Fish that were between 15 and 25 cm
long were injected with bacteria diluted with NSS at various
doses or NSS only as negative control. Five fish were used
for each experimental group. Fish inoculated with different
bacterial strains were maintained in separate 10-gallon tanks
with constant water flow (200 ml/min) at 19 ± 1°C.
The tanks were separated to prevent possible cross-
contamination. Death due to vibriosis was determined by
the observation of gross clinical signs and confirmed by the
recovery and isolation of V. anguillarum cells resistant to
the appropriate antibiotics from the head kidney of dead
fish. The presence of the appropriate strains was tested by
PCR analysis. Observations were made for 14 days. All fish
used in this research project were obtained from the URI
East Farm Aquaculture Center. All fish infection protocols
were reviewed and approved by the University of Rhode
Island Institutional Animal Care and Use Committee
(URI IACUC reference number AN06-008-002; protocols
renewed 14 January 2013).
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