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Abstract

Background: For many years gene mapping studies have been performed through linkage analyses
based on pedigree data. Recently, linkage disequilibrium methods based on unrelated individuals
have been advocated as powerful tools to refine estimates of gene location. Many strategies have
been proposed to deal with simply inherited disease traits. However, locating quantitative trait loci
is statistically more challenging and considerable research is needed to provide robust and
computationally efficient methods.

Results: Under a three-locus Wright-Fisher model, we derived approximate expressions for the
expected haplotype frequencies in a population. We considered haplotypes comprising one trait
locus and two flanking markers. Using these theoretical expressions, we built a likelihood-
maximization method, called HAPim, for estimating the location of a quantitative trait locus. For
each postulated position, the method only requires information from the two flanking markers.
Over a wide range of simulation scenarios it was found to be more accurate than a two-marker
composite likelihood method. It also performed as well as identity by descent methods, whilst being
valuable in a wider range of populations.

Conclusion: Our method makes efficient use of marker information, and can be valuable for fine
mapping purposes. Its performance is increased if multiallelic markers are available. Several
improvements can be developed to account for more complex evolution scenarios or provide
robust confidence intervals for the location estimates.

Background plant populations where the structure of such experimen-
The detection and mapping of loci affecting quantitative  tal pedigrees can easily be planned and controlled. How-
traits (QTLs) of interest in human, animal, and plant pop-  ever, it is difficult to attain an accuracy of less than 5

ulations have attracted considerable research interest for  centimorgans (cM) for the gene locations estimated by
several decades. This work has mainly concentrated onthe  such linkage analysis methods because of the small
use of pedigree or family data, especially in animal and

Page 1 of 14

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2164/7/54
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16542433
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Genomics 2006, 7:54

number of meioses occurring in only a few generations
[1,2].

More recently, linkage disequilibrium (LD) methods
based on the study of unrelated individuals from a given
population have emerged as a promising tool for refining
gene location estimates. These methods are based on the
following key hypothesis [3,4]: when a new allele is intro-
duced into a population, either by mutation or migration,
it exists in that population with a unique set of marker
alleles. The length of this characteristic haplotype is then
reduced along generations by recombination events, and
after many generations only the markers in the immediate
vicinity of the new allele locus are likely to remain on the
same strand. If the new allele has a particular influence on
a given trait, a strong correlation between this trait value
and a marker allele might thus indicate that the coding
locus is very close to the marker.

In practice, the earlier successes in mapping genes using
such strategies concerned simply inherited (Mendelian)
disease genes in isolated human populations [3,5-7], and
the many mapping methods that have been subsequently
developed for this kind of problem can be roughly
divided into two classes: (i) forward analyses of allele or
haplotype frequencies in the disease (case) and normal
(control) populations [8-13], and (ii) backward infer-
ences of the case sample genealogy using coalescence [14-
16]. Some of these methods are specifically designed for
populations divided into cases and controls, and take
advantage of the assumption that the allele responsible
for the disease is rare. Consequently, they are difficult to
extend to mapping QTLs or complex disease traits.

The association between a quantitative trait and a marker
allele can be exploited in QTL mapping. This was first pro-
posed in [17] through a simple analysis-of-variance
framework. We [18] and Farnir and colleagues [19] subse-
quently used a maximum-likelihood approach, based on
the same kind of allele frequency model as in [9] but for
the purpose of QTL mapping. Pérez-Encizo [20] provided
a method based on a hidden Markov model for marker
identity by descent (IBD) with the ancestral haplotype
[13]. Meuwissen and Goddard [21,22] integrated the LD
information in a mixed linear model through a matrix of
IBD probabilities for the sample marker haplotypes. They
used the so-called gene-dropping method and approxi-
mate theoretical expressions to compute these probabili-
ties. More recently, Zollner and Pritchard [23] developed
a Bayesian method based on backward simulations of the
sample ancestry using a local approximation of the ances-
tral recombination graph [24]. Encouraging results were
also obtained in practice. For instance, an allele substitu-
tion that has a major effect on milk yield and composition
was identified using LD information [25]. The present
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interest in finding new associations is fuelled by the
increasing number of new polymorphic markers available
on human and livestock genomes. However, QTL map-
ping remains a statistical challenge due to the weak phe-
notype-genotype correlation and the influence of
environmental or multigene factors. Furthermore, the
accuracy and computational efficiency of mapping meth-
ods still need to be increased.

Our method is an interval-mapping method designed for
unrelated individuals with no family information, and is
based on a maximum-likelihood calculation. Computa-
tions of the likelihood function at each postulated loca-
tion of the QTL rely on the expected frequencies of a three-
locus haplotype composed of the QTL and its two flank-
ing markers. We provide an approximate expression of
these expected frequencies at time t, assuming a Wright-
Fisher model for the population and a punctual creation
of LD at time 0, as described above. Due to this approxi-
mation the computation time required by our method is
very low.

In this paper, we first describe the model we use and
explain the differences between our method and existing
ones. We then report the results of a simulation study, in
which we test our method under various evolution scenar-
ios, and compare it with the composite two-marker
method in [18] and the multimarker methods in
[21,26,27]. Finally we discuss the advantages and draw-
backs of our method, as well as the potential improve-
ments that could be implemented.

Results

Maximum likelihood approach

We consider a single quantitative trait whose value is
partly controlled by a biallelic locus with alleles Q and 4.
As usual (and following [28]), the probability density of
phenotype Y conditional on QTL genotype G is modeled
as follows:

b0or(r) fG=Q/Q

o
dP(Y =y|G)=14,,, -(r) fG=dq/q (1)
brao2 (1) £G=Q/q

where ¢ > is the density function of a normal distribu-

tion N (m, o2) a is the additive effect of the QTL, d is the
dominance effect, and u is the mean trait value for
homozygotes.

Our data contain N, unrelated individuals sampled from

the same population. We observe their phenotypic values
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Yo 1 =1,..., N, and their genotypes m,, for a given set of
markers. For the purpose of generality, we do not yet spec-
ify how many of these markers there are. Our aim is to
estimate as accurately as possible the position x of the QTL
on the known marker map, for which we use a multipoint
approach consisting of computing - for a large number of
positions x of the QTL - the likelihood function £ (x |
D), where D = {(y,, m,), n =1,..., N;}. The value of x
that maximizes this likelihood function will be the esti-
mate of the QTL position.

Since individuals are unrelated, the pairs of random vari-
ables (Y,, M,) can be considered as independent. There-
fore, the likelihood function is

NS NS
L(x|D) = HdP(Yn =Y My =my | x) < HdP(Yn =y, M, =my,x)

n=1 n=1

where o means "proportional to", since the multiplicative
constant is independent of x. We exploit the parametric
model (1) by deriving the probabilitiesd P (y,=y,, M, =m
.| %),n=1,.., N, conditional on the random variables G
, that denote the QTL genotype for individual n. We get for
all n that

dP(Y, =y, |M, =m,,x) = ¢,u+a,o‘2 (7)P(G, =Q/Q[M, = m,,)
¢,u—a,o’2 ()’n)lP(Gn = fI/q | Mn = mn,x)

¢,u+d,o—2 (yn )[P(Gn =Q/q | Mn = mn,x)

+

+

Let us now assume that the haplotype phases are known.
Each genotype m, can thus be written as the diplotype

h. /h2, where h}, and h? belong to the set of all haplo-
types that can be found in the population for the L marker
loci. Let ]}l and ],21 be their respective indexes in this set.
For any haplotype h of index j, we denote []; as its fre-
quency in the population and [],; as the frequency of
haplotype (Q, h) in the population. Conditionally on the
vector [] of all haplotype frequencies in the population
and assuming Hardy-Weinberg equilibrium, we can now

express the probabilities of QTL genotypes given the
marker genotypes as follows:

N, Mg T 2 o Wy 2
L x D,H o Y +Jn n [ LEL — L1
(x| ) g qﬁp-ﬁ-acl(}") nil ]‘[’_2 %*araz () ]_[].1 l_[iz
n h b (2)
b by g mh Dei o o
utd,o” M Hjl H}.z Hjl sz
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However, the haplotype frequencies in the population are
random variables evolving stochastically along genera-
tions, and their values at the time that the data are sam-
pled are unknown. Thus the true likelihood is

L(x |D) =E[L(x |D,TT)] (3)

where the expected value is taken over the probability dis-
tribution of haplotype frequencies in the population. This
distribution depends on parameters such as the effective
population size and the recombination rates between loci,
and is specified by mathematical models of population
genetics. The general idea of computing the likelihood
conditionally on haplotype frequencies in the population
and then taking the expected value was first proposed in
[29], and was subsequently used in [10] and [8]. How-
ever, all these papers were dealing with dichotomous dis-
ease traits for which the form of the likelihood was quite
different.

Approximating the likelihood

Under classical models of population genetics, the likeli-
hood function defined by (2) and (3) cannot be easily cal-
culated, and so approximations are necessary. A natural
approach is to estimate (3) using a Monte Carlo method,
simulating a large number of population replicates for
one marker and one disease gene [8]. Unfortunately this
approach is very time consuming. In fact, a huge propor-
tion of replicates have to be dropped because the allele
frequencies at the final generation are not in good agree-
ment with the ones observed in the sample. A more direct
way of computing (3) is to approximate the overall
expected value by a expected values; i.e.,

Bl 3 1B, 2] Bl 1Bl 21

B, | B, | 4002 () B, | BT, |

Nx
£619) = 1| 4,00e0)

n=1
Bl 11 Bl 2] Bl i 1B, 2]
B, | B[] B, | B

¥ By )

As a consequence of Taylor's expansion and convergence
in probability of [], (4) can be proved to converge to the
true likelihood as the effective population size tends to
infinity. Using this formula is equivalent to assuming that
the effective population size is infinite, or that changes in
haplotype frequencies along generations are determinis-
tic. This approximation can be refined by adding the sec-
ond term of the Taylor expansion, which involves second
moments of haplotype frequencies [], ;. This was done in
the context of a single-marker method by Xiong and Guo
[10], who concluded that introducing this second-order
term did not significantly improve the location estimates.
Therefore, in the following sections we focus on methods
using only the first-order approximation in (4).
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Mixture model

Using approximation (4), our model can be described as
follows. Each phenotype value Y, is randomly drawn from

the mixture of three normal distributions: ¢#_a o2

¢

u+a,o

» and ¢/1 The probabilities of being drawn

+d,o? "
from each of these distributions result from the genetic
history of the population. They can be derived under a few
assumptions on the population model, as illustrated in
the following sections. These probabilities depend on the

diplotype hl /h2 . At the first order, our method is thus

equivalent to fitting a linear model Y = X8 + &, where Y is
the vector of phenotype records, 6 is the vector of diplo-
type effects, ¢ is a vector of independent random noises
with variance o2 and X is a design matrix of size N, x D, D
being the number of diplotypes in the population. Each
component of #is a known function of a small number of
population parameters which model the LD creation and
the evolution process of the population. Each component
of @is also supposed to fit the phenotype mean observed
for one particular diplotype, so that each diplotype pro-
vides one equation. Our aim is to identify the population
parameter values that are optimal with respect to the
whole set of equations.

Using marker information

The simultaneous use of more markers should increase
the accuracy of the QTL location because the past recom-
bination events can be identified more precisely. How-
ever, increasing the number of markers makes the
computation of haplotype frequency distribution - and
consequently of the likelihood function in (4) -more
complex. We previously [18] provided two methods for
fine mapping of quantitative traits. The first one was a sin-
gle-marker method: for each position x on the map, only
one marker was considered and the expected haplotype
frequencies E [[1g,] and E [I],;] were expressed for every
allele i of this marker as a function of the allele frequen-
cies, the time t since the initial creation of LD, the recom-
bination rate ¢ between the QTL and the marker locus, the
allele initially associated with the mutation Q, and a het-
erogeneity parameter « that is described in more detail
below. Equation (4) could thus be computed. With only
one marker, parameters t, c and « could not be estimated
independently of each others so they were combined into
a single parameter A4 = (1 - ¢)t. The second method was a
composite likelihood method that used the set of L closest
markers at each position whilst assuming that these mark-
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ers were associated with the QTL independently of each
other:

L
L(xD) = [T £(x D)
I=1

where £ (x| D) denotes the single-marker likelihood
function for the Ith marker.

The above assumption of independence is clearly violated
when markers are linked. To account for a correlation
between close loci, Xiong and Guo [10] determined an
expression for the expected frequency of haplotypes with
one disease gene and two markers. They computed the
likelihood function (4) using - at each postulated posi-
tion of the disease locus - the information from the two
flanking markers. Their method takes into account recur-
rent mutations and population growth since the initial
creation of LD. For several experimental data sets, Xiong
and Guo showed that their method provided better esti-
mations than those in [8] and [9]. However, their method
is based on the assumption that the allele causing the dis-
ease is rare, which allows the haplotype frequencies in the
healthy population to be modeled as a deterministic proc-
ess and thus simplifies the derivations.

The above assumption is not appropriate when dealing
with QTLs. Consequently, we extended the derivations in
[10] to the general case where all haplotype frequencies
are random variables following the three-locus Wright-
Fisher model. The allele frequencies at markers are still
assumed to be deterministic, time invariant, and in equi-
librium in the sense that if i, and i, respectively denote

alleles of the left- and right-side markers, I1; ; =TI, IT; .

We proved that the expected frequency of haplotype (i,

Q, i,) after t generations is given by

[T 0., (0] = (O, T, +(1 - ¢) (I (0) ~ Mg (O)T; I, +(1-¢5) (T, (0) — Mg ()T, )Ty,
+ (1=a) (1-6) (I g, (0)TT; (0) = T;, = Mg, (O)IT;, + Mg (O)IT; TT;, )

where ¢; and ¢, respectively denote the recombination
rates with the left- and right-side markers, and
I i, (0), IT; o (O),HQJ-2 (0), and [1,(0) are the frequen-
cies of haplotypes (i}, Q, i,), (i;, Q), and (Q, i,), and allele
Q at generation 0, respectively. The derivation of this for-

mula is given in the Appendix. At each postulated location
x, ¢; and ¢, are deduced from the marker map and the

expected value (5) can be used to compute the likelihood

(4)
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Initial creation of LD

Our method relies on the assumption that the haplotype
frequencies in the population were in equilibrium until a
genetic or demographic event suddenly created LD
between the QTL and a unique marker haplotype at time
0. Classical examples of such events are the introduction
of a favorable allele Q into an isolated population, by
mutation or migration. After this event, haplotype fre-
quencies evolve along generations as described by (5)
until the present generation denoted as t.

This model allows us to reduce the number of parameters
used to describe haplotype frequencies at time 0. Indeed,
following [9] and [10], we introduce a heterogeneity

parameter « in addition to allele frequencies IT;, II; ,

and [1(0). This parameter represents the proportion of
new copies of allele Q introduced at time 0 into the pop-
ulation. Note that @ = 1 if Q did not exist previously in the
population. Assuming that new alleles Q are associated
with allele 1 of both markers, the initial frequencies of (5)
can be expressed as

IT; o(0) = (1 - a)I; I (0) + o1 (0)6; -
Mg, (0) = (1-a)I1;, Mo (0) + Il (0)5;, -
I1; i, (0) = (1—)IT; I1; T15(0) + a1 (0)6; =167, -1

where 6, _, is the Kronecker delta operator (equal to 1 if x
=y and 0 otherwise).

This model can even be used in a more general context
than the introduction of a new allele into an isolated pop-
ulation. Indeed, we know that many of the current iso-
lated populations in both humans and animals [30,31]
were initially created by a severe bottleneck in a wider
population, implying the underrepresentation of many
haplotypes and the over represent at ion of others. After
such events, it would not be surprising for an allele of
rather low frequency to become associated in the new
population with a very small number of marker haplo-
types. Our model thus applies to that case, provided that
time O refers to the creation of the population (while the
mutation occurred earlier). Parameter « then represents
the excess of the overrepresented haplotype including
allele Q. However, this is only a rough approximation
since the favorable allele may in general be associated
with more than one haplotype. Many animal breeding
populations have also been created by the artificial admix-
ing of two other populations (see [31] for a review), but
the amount of LD created between two loci depends on
the difference of allele frequencies at these loci between
the initial populations. Since this difference is not the
same for all loci, there is no reason why a single unique
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coefficient a should be used to model the initial level of
association of Q with all markers. Consequently, our
method appears to be unsuitable for such cases.

Simulation Results

As outlined above, one fundamental feature of a mapping
method is its ability to simultaneously use the informa-
tion from several markers. We have previously [18] pro-
posed a single-marker method (Tl) and two composite
likelihood methods (T2 and T6) to map QTLs using LD.
Based on simulation results, our conclusions were that (i)
composite likelihood methods provide better location
estimates than single-marker methods such as regression
analysis or T], and (ii) among composite likelihood meth-
ods, the one using two markers (T2) generally performs
the best.

Starting from these conclusions, we first compare our new
method - which we have called HAPim - with T2. While
haplotype methods are generally considered to be more
accurate than composite likelihood ones, we considered it
important to evaluate the exact difference between them,
as well as the influence of parameters such as effective
population size, marker spacing, and time since the initial
creation of LD. We also discuss the behavior of both
methods in the presence of incomplete association or
phenocopies. We then compare the accuracy of our
method with that of the haplotype method in [21]. Both
of the following analyses are based on the simulation
framework described in the Methods section.

Comparison with a composite likelihood method

We first compared HAPim and T2 by reproducing simula-
tion scenarios similar to those in [18]. The QTL was sim-
ulated at position 3.6 cM on a 10-cM marker map. Two
effective population sizes (N = 200 and N = 400), two
marker-spacing values (0.25 and 2 ¢cM), and both single
nucleotide polymorphisms (SNPs) and microsatelites
(MSTs) were tested. The time since the initial LD creation
was t = 100, and no copy of allele Q was present in the
population before that time, which ensured that complete
initial LD was present. The mean square errors (MSEs) of
both mapping methods under these various scenarios are
given in Table 1. Unsurprisingly, they both performed bet-
ter with decreasing marker spacing, increasing effective
population size and multiallelic markers. However, we
were more interested in the influence of parameters on the
difference in precision between the methods than on their
absolute precisions (which has already been widely stud-
ied). Table 1 indicates that the gain from using HAPim is
particularly significant with dense maps, irrespective of
the marker type and effective population size. This was
expected because T2 assumes independence between the
QTL-marker associations, which is increasingly violated as
the marker spacing decreases.
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Table I: General Comparison between T2 and HAPim.

http://www.biomedcentral.com/1471-2164/7/54

Marker type N Marker spacing MSE Difference in MSE P value
T2 HAPim
SNP() 200 2cM 5.10 5.08 0.948
400 2cM 4.69 5.04 0.366
200 0.25cM 2.00 1.24 < 0.001%**
400 0.25cM 1.34 0.92 0.005%*
MST®) 200 2cM 2.93 2.77 0.438
400 2cM 1.81 1.44 0.056
200 0.25cM 0.71 0.46 0.012%*
400 0.25cM 0.49 0.30 0.033*

*:P<0.05 *:P<0.0l
(1) : single nucleotide polymorphism
@ : microsatellite

Mean square errors (MSEs) in cM? of quantitative trait locus (QTL) location estimates obtained by the T2 and HAPim methods for various effective
population sizes, marker spacings and marker types, t = 100 and the initial association was complete.

Table 2 presents the quality of the estimates for all the
model parameters using SNP markers, an effective popu-
lation size of 400, and a marker spacing of 0.25 cM. The
QTL location estimate from HAPim was almost unbiased
and, as evident in Table 1, more precise than the one from
T2. The additive and dominance effects were also very
accurately estimated, again better than T2 for the domi-
nance effect. Both methods slightly underestimated heter-
ogeneity parameter ¢, due to it being constrained to be
less than 1. The time since the initial creation of LD was
very poorly estimated, which is the case with all LD map-
ping methods [16,21]. However, this does not affect the
estimation of other parameters because ¢ has little effect
on the value of the likelihood function. The [(0) esti-
mate is nearly the same for both methods. The large dif-
ference from the true value of [[5(0) is due to the
simulation procedure that rejects the sample paths lead-
ing to the final frequency [1,(t) being smaller than 0.05.
Using the Wright-Fisher model described in the Appendix,
it can be proved that [[,(0) is equal to the expectation of

Table 2: Comparison of model parameter estimates.

Model parameter ~ True value  Empirical mean (standard error)
T2 HAPim
x (in cM) 3.6 3.73 (5.1e-2) 3.62 (4.3e-2)
[14(0) 0.00125 0.13 (3.4e-3) 0.12 (3.0e-3)
a | 1.02 (2.5e-2) 0.98 (2.4e-2)
d | 0.87 (3.2e-2) 0.97 (2.7e-2)
t 100 57.9 (8.5) 53.4 (4.6)
o | 0.92 (6.3e-3) 0.92 (6.0e-3)

Empirical means (and their standard errors) of the model parameter
estimates under the T2 and HAPim methods. The single nucleotide
polymorphism (SNP) marker spacing was 0.25 cM, the effective
population size was N = 400, and the initial association was complete.

[1q(t). Therefore, the empirical mean of [15(0) over the
500 replicates is actually an estimate of the conditional
expected value of [1(t) given that 0.05 <[] (¢) and [15(0)
= 0.00125. Using a diffusion approximation of the
Wright-Fisher process and the corresponding probability
density given in [32], we found that this quantity was
equal to 0.105. The empirical mean of [15(0) is in good
agreement with this theoretical value, and the slight
remaining bias might come from the selective advantage
given to allele Q in the first few generations of our simu-
lations, which is not accounted for in the diffusion
approximation.

Tables 3, 4, and 5 focus on a marker spacing of 0.125 cM,
because the results of Table 1 indicate that the gain from
using HAPim was greater with dense maps. We considered
only biallelic markers, since in practice MSTs are rarely
found with such a density. We investigated the role of (i)
effective population size N (Table 3), and found that as N
increases, the MSEs of both methods decrease but the dif-
ference between the methods becomes less significant; (ii)
sample size (Table 4), and found that for N = 400 and N
= 800, the gain of HAPim over T2 appears to recover since
a sample from the population is used instead of the entire
population; this gain was always significant, particularly
with small samples; and (iii) time since the initial LD cre-
ation (Table 5), and found that when this time is small,
the accuracy of both methods is limited; it is increased
with larger evolution times, in which cases HAPim per-
formed much better than T2; it is well known that short
evolution times result in the high LD area extending to
many markers around the QTL, which limits the accuracy
of LD mapping methods in general.

Elucidating the mechanisms underlying the results of such

simulations is extremely difficult, because parameters
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Table 3: Effect of effective population size.

N MSE Difference in MSE P value
T2 HAPim
200 0.63 0.44 0.001%**
400 0.52 0.44 0.135
800 0.30 0.29 0.782
1600 0.15 0.13 0.414
P <0.01

Mean square errors (MSEs) in cM2 of quantitative trait locus (QTL)
location estimates obtained by the T2 and HAPim methods for
various effective population sizes. The single nucleotide polymorphism
(SNP) marker spacing was 0.125 cM, = 100 and the initial association
was complete.

share complex interactions - increasing a particular
parameter may have either a positive or a negative effect
on the accuracy, depending on the value of the other
parameters. Our model describes the decay in the LD from
an initial event. In this context, we know that the accuracy
of both LD methods mostly depends on the value of the
product ct [3], with ct = 2 being optimal. This may explain
the results of Table 5. However, this explanation is only
applicable to large values of N; for smaller values of N, at
least two phenomena affect this rule. First, the approxima-
tion of the likelihood (3) is worse than with large N (but
we do not know whether T2 or HAPim is affected the
most). Second, the LD created by random drift along gen-
erations is no longer negligible, and its amount depends
on the product Nc [29]. However, Tables 3 and 4 suggest
that unless the sample size is very large (which also
requires a very large effective population size), it is really
worth using HAPim instead of T2. HAPim models the

Table 4: Effect of sample size.

N N, MSE Difference in MSE P Power
value
T2 HAPIm T2 HAPIm
400 50 134 099 < 0.001** 036 0.59
100 1.07 084 0.011* 0.66 0.88
200 0.74 0.56 0.013* 088 0.99
800 100 1.08 0.87 0.033* 044  0.69
200 0.66 0.49 0.008%** 0.83 095
400 042 03I 0.006** 099 1.00

*: P <0.05,%:P<0.0l

Mean square errors (MSEs) in cM2 of quantitative trait locus (QTL)
location estimates and powers to detect the QTL obtained by the T2
and HAPim methods for various population and sample sizes. The
single nucleotide polymorphism (SNP) marker spacing was 0.125 cM,
t = 100, and the initial association was complete. The power was
computed for a type | error of 0.05.
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Table 5: Effect of time since initial creation of linkage
disequilibrium (LD).

t MSE Difference in MSE P value
T2 HAPim
50 0.69 0.64 0.495
100 0.52 0.44 0.135
200 0.41 0.26 < 0.001**
300 0.25 0.17 0.005%*

* P <0.05 *:P<0.0l

Mean square errors (MSEs) in cM? of quantitative trait locus (QTL)
location estimates obtained by the T2 and HAPim methods for various
values of time t since initial LD creation. The single nucleotide
polymorphism (SNP) marker spacing was 0.125 cM, N = 400, and the
initial association was complete.

evolution of haplotype frequencies more precisely, which
balances the lack of information.

Table 4 also includes, for each effective population size
and sample size, the power of HAPim and T2 to detect the
QTL. This power was estimated from the same 500 repli-
cates as the MSEs, using an approximate threshold as
explained in the Methods section. As expected and
observed in [33], the power was greater with greater sam-
ple size and with lower effective population size. The
power results were also consistant with the MSE results:
they revealed an important gain from using HAPim, that
decreased as sample size increased. The number of repli-
cates in which the log-likelihood ratio test was higher with
HAPim than with T2 ranged from 80% to 90% depending
on N and N,. In Tables 3 and 5, this proportion was gen-
erally lower (even 50% with t = 300, Table 5) and the
power obtained with both methods was always around 1.
However the MSEs were still better with HAPim, which
indicates that this method also allows a better discrimina-
tion between positions.

To complete our study, we compared the robustness of
both methods to more complex evolution scenarios. In
the first scenario, LD was initially created in a population
in which allele Q already existed and was in linkage equi-
librium with other markers. Since the degree of the initial
association is strongly related to the number of alleles, we
included both MST and SNP markers. We took a marker
spacing of 0.25 ¢cM and an effective population size N =
400, as previously done in Table 1. The results listed in
Table 6 indicate that the MSEs were smaller than in the
corresponding homogeneity scenario of Table 1, despite
that heterogeneity decreased the strength of association
between the QTL and marker alleles. This is probably due
to the frequency of allele Q being higher in the heteroge-
neity scenario, which increases the percentage of the trait
variance explained by the QTL and hence improves the
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Table 6: Incomplete initial linkage disequilibrium (LD) scenario.

Marker type MSE Difference in MSE P value
T2 HAPim

Initial frequency of Q = 5%

SNP() 0.99 0.68 0.031*

MST®@ 0.42 0.17 < 0.001%*
Initial frequency of Q = 10%

SNP() 0.95 0.64 0.039*

MST@ 0.63 0.20 < 0.00%**

*:P<0.05 *:P<0.0l

(1) : single nucleotide polymorphism

@ : microsatellite

Mean square errors (MSEs) in cM? of quantitative trait locus (QTL)
location estimates obtained by the T2 and HAPim methods for
various heterogeneity parameter values, t = 100, N = 400, and a
marker spacing of 0.25 cM.

mapping precision. HAPim strongly outperformed T2,
particularly for MSTs.

In the second scenario we introduced phenocopies. As in
the heterogeneity scenario, we chose N = 400, a marker
spacing of 0.25 cM, and both SNP and MST markers. The
MSEs with this scenario, given in Table 7, were much
larger than in the corresponding scenario of Table 1, par-
ticularly for SNPs. MSTs are less affected by phenocopies
because the number of possible marker haplotypes that
can be carried by a "false Q" individual is much larger

Table 7: Scenario with phenocopies.

Marker type MSE Difference in MSE P value

T2 HAPIim

Phenocopy rate = 15% b

SNP() 2.65 2.03 0.021*

MST® 0.84 0.35 < 0.001**
Phenocopy rate = 30%

SNP() 4.90 329 < 0.00%*

MST®@ 1.94 0.67 < 0.001%*

*: P <0.05,%:P<0.0l

b: Phenocopy rate refers to the percentage of q alleles in the last
generation that have given the same phenotype as the Q allele

(1) : single nucleotide polymorphism

@ : microsatellite

Mean square errors (MSEs) in cM2 of quantitative trait locus (QTL)
location estimates obtained by the T2 and HAPim methods for
various phenocopy rate values, t = 100, N = 400, and a marker spacing
of 0.25 cM.
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than with SNPs. The risk of the method producing a false-
positive error is thus reduced. Using HAPim instead of T2
also reduces this risk, because the allele frequencies at
flanking markers are modeled jointly. In this scenario,
HAPim clearly outperformed T2.

Comparison with other haplotype methods

Modeling the information from haplotypes consisting of
more than two markers may improve the precision of
location estimates. Therefore, further simulations were
carried out to compare our HAPim method with the IBD
method of Meuwissen and Goddard [21]. Their method is
one of the most classical full-haplotype methods, and the
similarity of their genetic model to ours makes the com-
parison easier than for coalescent-based methods such as
in [20,23]. We duplicated the simulation scenarios
described in Table 2 in [21]: 50 population replicates with
biallelic markers initially at equal frequencies with spac-
ings of 0.25, 0.5, and 1.0 cM, an effective population size
and a sample size of N = N,= 100, and a time ¢ = 100 since
the initial mutation. The QTL was in the middle of the
chromosome region. In order for the results to be perfectly
comparable, the mutant allele was not given a slight selec-
tive advantage after the mutation time (in contrast to pre-
vious simulation scenarios, as explained in the Methods
section). Table 8 presents the distribution of the devia-
tions (in marker intervals) in the QTL location estimates
from the correct bracket. The results can be directly com-
pared with those of Table 3 in [21]. A chi-square test of
equality between the deviation distributions of HAPim
and [21] revealed no significant difference (the smallest p

Table 8: Comparison with the IBD method of Meuwissen and
Goddart.

Marker spacing (cM) Deviation
0 | 2 3 4
frequency of allele Q > 0.1
1.0 16 17 9 5 3
0.5 12 20 10 2 6
0.25 12 I8 8 6 6
frequency of allele Q > 0
1.0 15 14 6 8 7
0.5 10 17 12 7 4
0.25 Il 14 I 5 9

Distribution of the deviations (in marker brackets) of the quantitative
trait locus (QTL) location estimates from the correct bracket for the
HAPim method under the default simulation scenarios (biallelic
markers with N = 100, N, = 100, and t = 100) described in [I]. A
deviation of 0 means the estimated position was in the correct
marker bracket, | means the estimated position was one bracket
away from the correct position, etc.
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value was 0.08), and a t-test on the MSEs of both methods
also did not reveal any significant difference.

We also tested our method under the simulation scenarios
used by Grapes and colleagues [26,27], who compared
single- and two-marker regression analysis with an IBD
method very similar to that in [21]. For the same number
of markers, the least-square mean absolute differences
(LSMDs) between the estimated and the true QTL loca-
tion were clearly smaller with the IBD full-haplotype
method (|26], Table 2), which confirms its superiority. A
subsequent study [27] revealed that mapping precision of
the IBD method could be increased by using a smaller
window of markers (four or six), and that using a window
of only two markers provided the same accuracy as using
the full haplotype (ten markers). We reproduced these
simulation scenarios using the same number of replicates
(1000) as they used. The results we obtained with HAPim
were similar to the ones given by their IBD method using
two-marker haplotypes: LSMDs of 1.36, 0.71, and 0.39 for
marker spacings of 1.0, 0.5, and 0.25 cM, respectively.

Discussion

The present simulation study focused on particular values
of model parameters, and hence the revealed good prop-
erties of HAPim may not hold for other values. However,
we consider that the range of parameter values explored
includes most of the situations where LD information can
be used efficiently for mapping. For instance, the largest
value of t we considered was 300 (Table 5), and whilst
many favorable mutations are much older than 300 gen-
erations, it is very unlikely for a population to satisfy the
strong hypotheses of the assumed Wright-Fisher model
(e.g., random mating and no migrations) over such a long
period. In many cases a strong founder effect occurred
quite recently, and this event then corresponds to time 0
in our method. In other situations, we know that recurrent
mutations or migrations have occurred continuously in
the population and consequently perturbed the LD struc-
ture. It is very likely that no method could exploit the LD
information for mapping in such cases [30,31].

We consider effective population sizes between 100 and
1600 to be realistic for most breeding populations, where
the high level of inbreeding reduces the effective size. The
effective size of the isolated human populations typically
used in LD studies (e.g., Finnish or Caucasian) is generally
around 10,000 [10]. We were not able to study such cases,
but extrapolating the results of Table 3 leads to the suppo-
sition that there is no difference between T2 and HAPim
for such large populations, provided that the marker spac-
ing remains larger than around 0.1 cM. Another specific
feature of such isolated human populations is their expo-
nential growth rate. It would be easy to include this in our
model, but it would have no effect as long as the first-
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order approximation of the likelihood (4) is used [10].
Another case that we did not study is that of very dense
maps (marker spacing smaller than 0.01 cM). In that case
the flanking marker haplotypes probably lose relevant
information contained in full haplotypes, and modeling
the information from more than two markers may
improve the mapping precision. Our method could be
extended by replacing - on each side of the QTL - the
flanking marker by a flanking haplotype, and then per-
forming the computations exactly as before. The exten-
sion is straightforward if we assume linkage equilibrium
between all markers, but an increased precision is not
guaranteed since background LD is not accounted for. As
an alternative to assuming equilibrium, one could model
marker allele frequencies along the chromosome as a first-
order Markov chain with parameters estimated from the
marker data at time t [12,13], but it would be more diffi-
cult to integrate this change in the derivations given in the
Appendix.

The model itself and its hypotheses can be criticized. For
example, we assume that the marginal allele frequencies
are constant and that markers are in linkage equilibrium;

ie, II; ; =II; II; . Actually, the expression we obtained
1 2

1'i2
for E[IT; q;, (t)] would be the same if we only assumed

equilibrium at time 0 between markers. Considering only
the first moment of haplotype frequencies, as we do in
(4), this is the best we can do. Accounting for the LD
between markers would thus require consideration of a
second-order approximation of the likelihood and of the
variances of the haplotype frequencies. This may improve
the performance of the method, whereas no improvement
was observed in [10]. In our simulations the marker fre-
quencies were not constant and the equilibrium imposed
at the first simulated generation was randomly broken by
drift in the few generations until the time of the mutation.
Thus, at time 0 the markers were not in equilibrium. One
other strong approximation of the model is the absence of
mutations or selection. While the effect of mutations is
often negligible on the short evolution times we are inter-
ested in, they could be easily accounted for in the deriva-

tions of E[II; o (t)] using a stepwise mutation model
[34]. Selection advantages for Q or ¢ would be more diffi-
cult to incorporate, because they make the expression of
E[IT; q,;, (t +1)] (see (8) in Appendix) non linear in
[1(¢). Finally, it should be noted that [Iy(f) was not

assumed to be constant in our model; this assumption
was made in [10] and criticized in [35].
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Knowledge of the haplotypes is required to apply haplo-
type-based mapping methods including the one described
here. In our simulations we used a true set of haplotypes,
but in the analysis of real data the haplotypes have to be
inferred from the data or using pedigree information. Sev-
eral algorithms have been proposed in the literature to
perform such inferences [36]. Combined advances in
both these algorithms and molecular haplotyping meth-
ods will enable this question to be solved more efficiently
in the future. Moreover, several studies [37,38] have
shown that the efficiency of fine mapping methods is not
greatly reduced by uncertainty of the haplotype phases. If
this did not hold for HAPim, the gain from using this
method rather than T2 would be low given that T2 is not
affected by the haplotype phases. This should be investi-
gated in the future.

In our simulation study the results obtained with HAPim
were similar to the ones given by the IBD method using
two-marker haplotypes. Nevertheless, there are funda-
mental differences between HAPim and the IBD method.
First, haplotype effects are modeled as fixed effects in the
former and as random effects in the latter. While it is well-
known that location parameters are easier to estimate
than dispersion parameters, it is not clear whether this has
a significant effect on the estimation of the QTL position.
Second, the IBD method doesn't include dominance
effects, while HAPim handles that very efficiently, as illus-
trated in Table 2. Third, the time ¢ since the initial creation
of LD and the effective population size N have to be
known before using the IBD method. Some simulation
results in [21] suggested that the default choice of t = 100
and N = 100 was almost optimal, whatever the true value
of these parameters. However the comparison of tables V
and VII in [22] indicates that the IBD matrix with N =
1000 is really different from the one with N = 100. Thus it
is not obvious why the IBD method assuming N = 100
should be accurate for a population of actual effective size
N =1000. On the other hand, neither t nor N are required
for the use of HAPim. Consequently this method can be
used in a wider range of populations. A nice advantage of
the IBD method is its ability to deal with haplotypes com-
posed of more than two markers. If used with caution, this
can provide more accuracy in location estimates [27]. As
explained previously, HAPim could also offer this possi-
bility in the future. At present, the several differences high-
lighted in this paragraph already justify the interest of this
method.

An important purpose of QTL mapping methods is to pro-
vide a confidence interval for the QTL location. Classical
pedigree linkage analyses have proposed log-odds (LOD)-
support intervals [39], similar confidence intervals [40],
and bootstrap confidence intervals [41]. The simplicity of
the bootstrap technique, its ease of implementation, and
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the accuracy of the coverage probability makes it an
appealing approach to use. In LD mapping methods, the
coverage accuracy of the LOD-support interval and the
credible interval in the Bayesian framework have been
studied only for disease traits [12,23,42]. Simulations
have shown that both intervals are either unbiased or only
slightly conservative. This issue has not yet been
addressed for QTL location. An anticonservative bootstrap
confidence interval was obtained when we ran a prelimi-
nary single simulation with HAPim, which may indicate
that the classical bootstrap scheme we used - sampling
with replacement of entire records - did not produce
enough variability of the QTL location estimate. Confir-
mation of this result may indicate that providing a correct
confidence interval for the QTL location is a challenging
and tricky problem.

Although our two-marker haplotype model was basically
designed for unrelated individuals, it can also be used in
situations where pedigree information is available. For
instance, in studies involving large half-sib families, our
model can easily be integrated in the combined LD and
linkage mapping method of Farnir and colleagues [19]. In
their method, LD information is contained in the proba-
bilities of Table 1 ([19], p. 277). These probabilities were
derived under a single-marker model, and could instead
be derived under our two-marker model using (5) with-
out changing the rest of the method. However, the use of
combined LD and pedigree information appears to be
more efficient in designs with many small families than in
those with a few large families [43]. Consequently a
promising strategy for future QTL mapping studies would
be to genotype and phenotype more unrelated individuals
and use the parental information (if any is available) to
infer the haplotypes. In this context the use of our method
could be fruitful.

Conclusion

We have presented a new method for the fine mapping of
QTLs, denoted HAPim. It is a likelihood method, whose
originality is in modeling the frequencies of haplotypes
comprising one trait locus and two flanking markers. The-
oretical derivations under this evolution model avoid the
intensive computations required to evaluate the likeli-
hood values at each location.

Our simulations have demonstrated the excellent proper-
ties of our method. Over a wide range of parameter values
(effective population sizes and sample sizes from 200 to
1600, times since LD creation from 50 to 300 generations,
and marker spacings from 0.125 to 2 cM), the MSEs
obtained with HAPim were almost always significantly
lower than those obtained with composite likelihood
method T2. Combined with a previous study [18], these
results show that HAPim is more accurate than single-
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marker methods and composite likelihood methods in
general. The power to detect the QTL was also greater with
HAPim. With approximately the same parameter values,
we observed that HAPim was as accurate as the classical
IBD method [21] used with two- or ten-marker haplo-
types. It also has several advantages over the IBD method,
as the ability to incorporate dominance effects and to deal
as easily with any value of t or N. Finally, our simulations
suggested that the use of MSTs is very efficient if the anal-
ysis is performed with HAPim: the computing time was
longer than with SNPs but was still reasonable, and the
estimates were more robust to departures from the
assumed model. Given that more and more mapping
studies are being designed with SNP, this suggests that
close SNPs should be combined into groups of two or
three to build pseudo-multiallelic markers that avoid spu-
rious associations.

Our method could be improved in several ways, such as
by modeling mutations or LD between markers, and using
haplotypes with more than two markers, but it is unclear
whether these modifications would increase the precision.
Providing confidence intervals - in addition to the point-
wise QTL location estimates — will also be an interesting
challenge. The continuing advances in genotyping and
haplotyping technologies will increase the importance of
LD fine mapping methods, even in situations where ped-
igree information is available.

Methods

Likelihood maximization

The description of the model highlights that parameters
other than the QTL location x have to be estimated: the
time ¢ since the initial creation of LD, the initial frequency
[15(0) of allele Q, the initial associated haplotype j, and
the heterogeneity parameter . We take the values that sat-

isfy

max  L(x,t,T15(0), j,o |D)
x,t,HQ(O),j,a

This maximization is carried out numerically using the
E04CCF simplex algorithm from the NAG library [44].

Marker allele frequencies II; and II; also have to be

estimated. We use their empirical frequencies in the sam-
ple and thus do not need to include them in the likeli-
hood maximization.

We also tested a homogeneity method where a was arbi-
trarily set to 1. On the basis of simulation results (similar
to those presented in this paper), we finally dropped this
because it was not as robust as the more general method
to departures from the assumed model.
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Simulation procedure

We used forward simulations as outlined in [18,45]. The
baseline scenario was as follows. We initially define a
population of 2N haplotypes with L equally spaced mark-
ers, either biallelic (SNPs) or multiallelic (MSTs) with five
alleles. In both cases, all of the marker alleles have the
same frequency and the markers are in linkage equilib-
rium. Then, each new generation is created by sampling N
pairs of haplotypes at random from the current generation
and allowing random recombinations within these pairs.
The recombination rate for each marker interval is com-
puted using Haldane's mapping function. We let the pop-
ulation evolve for 20 x (N/400) generations in order to
break the linkage equilibrium between markers with a
random drift force that does not depend on the effective
population size. At time 0, a mutated allele Q is intro-
duced at the QTL location on a single haplotype, and
again we let the population evolve as previously. At time
t, a sample of N, individuals is collected, and phenotypes
for the trait are simulated according to the model in (1),
witha =1, d =1 (complete dominance) and ¢ = 1. In all
simulation scenarios but the one reported in Table 3, the
sample size N, was equal to the effective population size
N.

Two extensions of this scenario were also considered.
Firstly, some copies of allele Q were introduced into the
population from the first generation of the simulation,
with frequency [1(0) equal to 0.05 or 0.10. These earlier
copies of Q were in equilibrium with all markers, so at
time O the association created between Q and one partic-
ular marker haplotype was incomplete. Secondly, we
allowed the presence of phenocopies; i.e.,, phenotypes
that mimic the phenotype produced by the mutation. To
reproduce this effect, a given percentage of the individuals
carrying allele g (15% or 30%) were randomly drawn in
the last generation and were given the same genetic effect
as individuals carrying allele Q.

In all scenarios, replicates were discarded when fixation
occurred for the QTL or any of the markers, or when the
final frequency of allele Q was less than 0.05 or greater
than because rare QTL alleles account for a small propor-
tion of the trait variance and are not of interest in QTL
mapping studies. To reduce the number of discarded rep-
licates, the new QTL allele was conferred with a slight
selective advantage during a few generations after time 0.

The accuracy of QTL location estimates was evaluated

according to the MSE defined as

1 & 2
MSE=EZ(x, - )

r=1
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where R is the number of replicates (equal to 500 unless
otherwise specified), &, is the estimated QTL location in

the rth replicate, and x is the true location. The MSE con-
tains information of both the bias and the variance of
location estimates. Differences in MSE between methods
were tested using paired ¢-tests while assuming normality.

Power computation

Together with the set of optimal parameter values, HAPim
returns the log-likelihood ratio test between the null
hypothesis "a = d = 0" and its alternative. In order to com-
pare the power of T2 and HAPim we computed an approx-
imate threshold for any set of population parameter
values (N, t, marker spacing ...). This threshold was
obtained as the empirical 0.95 quantile of 500 replicates
under the null hypothesis.
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Appendix

Derivation of the formula for [ [/, o(t)]

In this section we consider the segregation of one QTL and
one multiallelic marker, with a recombination rate ¢
between them. Let X;(t) and X; () be the number of
haplotypes (i, Q) and (i, g) in the population at genera-
tion ¢, respectively, and X(t) = (X o(1),..., X (1), Xy,
(1), X;,4(1)); we define also the vector of haplotype fre-
quencies

X
1) = 5 5 = (g0 g0 g (0140

These vectors are stochastic processes of time. We first
present a two-locus Wright-Fisher model [46,47] that
describes the distribution of X(¢ + 1) given X(¢). From this
model and under the assumption that the allelic fre-
quency [1;(1) = I (1) + I1; ,(1) is deterministic and time
invariant, we deduce a recursive relation between E [[](t
+ 1)] and E [II(¢)] that we use to determine the expres-
sion for [ [IT; o(1)].

In the two-locus Wright-Fisher model, the effective popu-
lation size N(¢) is a deterministic function of time and the
vector X(t + 1) follows, conditional on X(t), a multino-
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mial distribution with parameters (2N(t + 1), 1, o(),..., 7
10(0), T1,4(2) -+ 714(2)), where

1.o(8) = (1 - )I1; (1) + cllo()IT(1)

The two terms of this formula represent the probabilities
of choosing nonrecombining and recombining haplo-

types.

From the properties of multinomial distributions we have
B [X; ot + 1) [ X(t)] = 2N(t + 1)r; o(t), and thus E [IT; o(t
+1) [ X(t)] = 1;0(t). A classical result on conditional prob-
abilities yields

E[IT; (¢ +1)] E[B[IT; ¢ (¢t +1) | X(t)]]
E[r; o(1)]

(1= )BT g ()] + B[ (0)IT;(1)]

We assume that [I;(¢) = I1; is time invariant, which is rea-
sonable because allele i is supposed to be much older than
allele Q and consequently its frequency is much higher.
This leads to

B [iq(t+ 1)) = (1 - ) E[IT;o(0)] + ¢ B [Io(0)]1;

and the entire vector [](t) satisfies
B[t + 1)] = BI1(0)] (cA + (1 - )Id;)  (6)

where A = (I1;,..., [1})) ® 1, where ® is the Kronecker
product, 1,is the column vector of size I with all compo-

nents equal to 1, and Id, is the identity matrix of size I x .

. . I
A is idempotent since Zizll'li =1, and so we can prove

by recurrence on ¢ that

B@0] = B [II0)] ((1 - (1-¢)) A+ (1 -c)1d;)

Taking the ith coordinate we get
E [io(0)] = (1-)TLo(0) + (1 - (1-¢)) Ho(O)I;  (7)

Derivation of the formula for E[I1; o ; (t)]

We now consider the more complex case of two multial-
lelic markers flanking the QTL. We proceed as in the pre-
vious section, defining first a three-locus Wright-Fisher
model and then deducing from it a recurrence relation for
the expected value of haplotype frequencies. To do this we
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also assume that the markers are in equilibrium. From the
recurrence relation we finally obtain the expression for

B[ q,q, (0)]-

The three-locus Wright-Fisher model describes the segre-
gation of haplotypes composed of the QTL and two flank-
ing markers. The first marker has I, alleles and a

recombination rate c¢; with the QTL; the second one has I
, alleles and a recombination rate ¢, with the QTL. We
denote Xj q;,(¢),i1=1,.... Iy, i;=1,..., I, as the number
of copies of haplotype (i;, Q, i,) in the population at gen-
eration t, and I1; q; (t) as the corresponding frequency.
X(t + 1) has dimension 2I,1,, but still has a multinomial
distribution given X(t) with
CNE+) .10 11,1, O F,g1 O, 1, (6)),

where

parameters

7,y (1) = (=) (1= )T g1, (6) + 1 (1= )T T, (6) + €2 (1= )T, Ty o (6) + oIy, (T (1)
, I, T1;,, and [1,(t) are the marginal frequencies of alle-
les i, at the left marker, i, at the right marker, and Q at the
QTL, respectively, and I1; o(t) and Ig; (t) are the mar-
ginal frequencies of haplotypes (i;, Q) and (Q, i,), respec-

tively. The four terms in this formula correspond to the
different origins of haplotypes (i; Q, i,) at generation t +

1: nonrecombining, recombining between QTL and the
left-side marker, recombining between QTL and the right-
side marker, and double recombining.

As in the previous section, we can express the expected
value of the frequencies of haplotypes at time ¢ + 1 as

E[I; g, (t +1)]

BlE[T;, g, (t+1) [ X(1)]]

= El5 q4,(0)]

= (1=c)(1 = c2)E[IT; g, ()] + e (1) E[lg i, (1))
+ (1= o), B[ ()] + 16 B[ 5, (g (1)]

Assuming that the markers are in equilibrium and that the
allelic frequencies are constant; i.e.,

I 5, (0) =T (O, (1) = I1; IT;,
we get

B[l g4, (t+1) = (1-c)A-)E[ g (O] + 6 (1-c2)E[Mg,;, ()T
2 (1= c)E[IT; o (O, + crco BT ()11 IT;,

+
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Substituting E [II; o(¢)] and E[Ilg, (t)] with the

expressions determined in the previous section gives

B[ 0 (t+1)] = (1—a)(1-c)BI; g (014 Boci(1-c2) ! + Brea(1-p) ™!
+ (=) +ea(1-e)+ i) ()T, TT;,

(8)

This is a recurrence relationship that can be solved easily.
We can prove that if (1), is a series in R defined by

Uy =au,+ bottl + cpyprl + d

then for every t > 0,

t t t

- - 1-a
u =a'ug+by a ot +cy a Ty +d——
s=1 s=1 1-a

Applying this result witha = (1 -¢,)(1-¢,), b= By, a=1

-Cy €= ¢y y=1-cp,andd = (¢, + ¢, - ¢,¢,)[1(0) l'[l-1 Hi2
yields

B[ o4, (0] = (1-a)'(1-c) ;g (0)

t t
+ ﬁzcl(l—fz)t(z‘,(l—cl)tﬂ ]*ﬂﬁz(l—ﬁ)t(z‘,(l—cz)ksJ
s=1 s=1
1-(1-¢)'(1-¢)
+ (a+e *Clcz)n(g(o)%rlqni
= (1-¢)(1-¢) ', q0)
+ Bali-c) (1-(-c)' )+ Bill-a) (1-(-c2)')

+ Tg(0)(1-(1-¢) (1-c) ) Ty,

2

Replacing S, and f, by their actual expressions gives

B[ o, (0] = ToO)I; I, +(1 -6 (I (0) ~ MO Iy, + (1 -c5) (T4, (0) ~ M (0);, I (9
+ (1=0) (1=6)' (T, g, (0) = T (0)Tiz = g, (O)TT;, + Mg (O)TT; TT;,)
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