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Abstract

Background: Various analytical methods exist that first quantify gene expression and then analyze
differentially expressed genes from Affymetrix GeneChip® gene expression analysis array data.
These methods differ in the choice of probe measure (quantification of probe hybridization),
summarizing multiple probe intensities into a gene expression value, and analysis of differential gene
expression. Research papers that describe these methods focus on performance, and how their
approaches differ from others. To better understand the common features and differences
between various methods, and to evaluate their impact on the results of gene expression analysis,
we describe a class of models, referred to as generalized probe models (GPMs), which encompass
various currently available methods.

Results: Using an empirical dataset, we compared different formulations of GPMs, and GPMs with
three other commonly used methods, i.e. MAS 5.0, dChip, and RMA. The comparison shows that,
on a genome-wide scale , different methods yield similar results if the same probe measures are
chosen.

Conclusion: In this paper we present a general framework, i.e. GPMs, which encompasses various
methods. GPMs permit the use of a wide range of probe measures and facilitate appropriate
comparison between commonly used methods. We demonstrate that the dissimilar results stem
primarily from different choice of probe measures, rather than other factors.

dance of a single gene. Recognizing that non-specific
hybridization could significantly alter the accurate quan-

Background
Microarray experiments are routinely conducted to assess

associations of experimental factors (or disease out-
comes) with gene expression profiles. The Affymetrix
GeneChip® gene expression analysis array, one of most
commonly used microarray technologies, uses multiple
oligonuleotides (25-mers) to measure expression abun-

tification of transcript abundance, Affymetrix designs the
array to contain two types of probes. Probes that are per-
fectly complementary to the target sequence, called Per-
fect Matches (PM), are intended to measure mainly
specific hybridization. A second set of probes identical to
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PM except for a single nucleotide in the center of the
probe sequence (the 13t nucleotide), called Mismatches
(MM), are intended to quantify non-specific hybridiza-
tion [1]. A PM and its corresponding MM constitutes a
probe pair, and multiple probe pairs, i.e. a probe set, are
summarized to measure transcript abundance for a partic-
ular gene. "Probe measure" is used in this paper to refer to
the manner in which probe hybridization is quantified
based on a pair of PM and MM intensity values. For exam-
ple, PM-MM is a probe measure, and PM only is another
probe measure.

A number of methods have been developed to quantify
gene expression abundance from GeneChip® expression
analysis array data using different probe measures and
summary schemes. Among them, Microarray Suite 5.0
(MAS 5.0) [1], dChip [2] and robust multiple-array aver-
age (RMA) [3] are the best known.

Prior to MAS 5.0, the probe measure used in MAS 4.0 was
PM-MM [4]. The problem arises when a significant pro-
portion of MM values, (~33% in the HuGeneFL array and
~25% in the Human Genome U133A array), is greater
than the corresponding PM values, which makes PM-MM
negative. To resolve this anomaly, in MAS 5.0, Affymetrix
computes an "ideal mismatch" (IM) based on missing
data theory such that PM-IM is always greater than zero
[1]. Then, all probe pairs are used to estimate a gene
expression value based on Tukey's Biweight algorithm.
However, even with the use of IM, the variation among
probes could be greater than between samples.

Li and Wong modelled probe level data to generate model
based expression index (MBEI) and implemented it in the
dChip software [2]. Noting that probe specificity is signif-
icant, highly reproducible and predictable, Li and Wong
used a hybridization rate parameter to account for the
hybridization specificity for a probe. For a probe pair,
hybridization rates are different for PM and MM; the
former is always greater than the latter, and both are
greater than zero. The rate was fixed for the same probe
across all the samples. Both PM and MM together or PM
only, can be used in the Li and Wong model.

Another approach, RMA, available from Bioconductor
[5], summarizes probe intensities into a gene expression
measure based on an additive model on the logarithmic
scale of a background corrected PM (PM,,,,) [3]- RMA esti-
mates a common mean non-specific hybridization back-
ground (for an entire chip) from PM using a convolution
model and then subtracts this background from PM to
generate the PM, ..

The gene expression obtained from either MAS 5.0 or
dChip or RMA can then be used to associate the gene

http://www.biomedcentral.com/1471-2164/6/16

expression values with experimental factors using an algo-
rithm of the users' choice. Three main factors affect the
analytical results of differential gene expression analysis:
the probe measure chosen, the algorithm used to summa-
rize probe level data into gene expression (called sum-
mary algorithm in this paper), and the model used to
associate gene expression with the experimental factors
(called association model). Direct comparisons of the var-
ious approaches proposed for analyzing GeneChip® gene
expression data are complicated considering these three
factors. Generalizing the various algorithms into one
framework would facilitate comparisons.

In this paper we propose a class of generalized probe
models (GPMs) that includes various analytical
approaches for GeneChip® gene expression analysis array
data as special cases. Using an empirical dataset, we assess
the impact of different processes on the analytical results
by comparing different formulations of GPM as well as
GPMs with three other methods, MAS 5.0, dChip, and
RMA.

Results

We applied GPM to the analyses of data obtained from a
study investigating gene response to ATRA (all trans retin-
oic acid) or drug diluent (ETOH, ethyl alcohol). Briefly, at
twenty-four hours after treatment, total RNA was extracted
from cells, processed and hybridized to the HuGeneFL
GeneChip®. The dataset consists of ten samples from the
ATRA treatment group and ten samples from the control
group (ETOH treated) in four medulloblastoma cell lines.
We are interested in identifying genes that are differen-
tially expressed between the two treatment groups.

We used three different probe measures: PM-IM, PM only
and PM,,,,, and compared the performance of different
methods using standardized coefficients, defined as the
estimated coefficient divided by its standard error. The
reason for using this index is that the standardized coeffi-
cients, usually known as Z-score test statistics, are inde-
pendent of scale, and may be used to make statistical
inference.

GPM-1 (2), GPM-2 (3) and GPM-3 (4) can be derived
from the full GPM model (1) by making different statisti-
cal modeling assumptions. GPM-1 takes summarized
gene expressions and associates them with experimental
factors; GPM-2 and GPM-3 directly associate probe level
data with experimental factors without first summarizing
gene expressions (see Methods).

Comparison of GPMs with three other commonly used
methods

We compared GPMs with three commonly used methods,
i.e. MAS 5.0, dChip, and RMA. Each of these methods
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Comparison among MAS 5.0, dChip and RMA. Gene expression was computed from MAS 5.0, dChip, and RMA using
the probe measure dictated in the methods. Standardized coefficients for each method were estimated using the association

model GPM-1| and were plotted pair-wise.

dictates its own specific probe measure, i.e. PM-IM in MAS
5.0, PM-MM, or PM only in dChip and PM,,, in RMA. We
found that all the methods were similar when the same
probe measure was used, and the dissimilarity between
the MAS 5.0 and other PM based approaches most likely
stems from the different probe measure used. We first
computed the gene expression using the software availa-
ble for MAS 5.0, dChip (using the PM only option) and
RMA, and then estimated the standardized coefficients for
each gene with the association model GPM-1. We refer to
these analytical options as MAS 5.0 PM-IM and hereafter

rma

(in MAS 5.0 PM-IM we omitted the term GPM-1 which
indicates the association model used since GPM-1 is the
only one in GPMs that handles gene expression values),
dChip PM and RMA PM,,,., respectively. Figure 1 shows
the pair-wise comparisons among MAS 5.0 PM-IM, dChip
PM, and RMA PM For each pair-wise comparison, we
plotted the standardized coefficients for each pair in a XY
plot. To assess the similarity between two methods, we
computed the correlation coefficients (R) between the
standardized coefficients generated from the two meth-
ods. In addition, we computed the mean squared error

rma*
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(MSE) between the two standardized coefficients, i.e.
1 N

MSE=E2(Z]-1 —Zj ) where N is total number of
j=1

genes, Z;; and Z;, are the standardized coefficients for j th
gene, for two methods, respectively. When two methods
are similar, the XY plot of their standardized coefficients
will lie closely along the diagonal line. Correspondingly,
the correlation coefficient will be closer to one and the
MSE will be closer to zero. In Figure 1, we see smaller R
and larger MSE in the comparisons of MAS 5.0 PM-IM ver-
sus dChip PM, and MAS 5.0 PM-IM versus RMA PM, .
compared to dChip PM versus RMA PM,..

Next, using probe measures of PM only and PM-IM, we
directly (in a single step) estimated standardized coeffi-
cients with GPM-2 (referred as GPM-2 PM and GPM-2
PM-IM. We omitted the term which indicates the sum-
mary algorithm since GPM-2 and GPM-3 directly associ-
ate the probe level data with the experimental factors
without first summarizing across all probes) and GPM-3,
respectively. Figure 2 shows the pair-wise comparisons
among MAS 5.0 PM-IM, GPM-2 PM, GPM-3 PM, GPM-2
PM-IM, and GPM-3 PM-IM. We see greater similarity
between MAS 5.0 PM-IM and GPM-2 PM-IM or GPM-3
PM-IM (Figure 2, second row), than between MAS 5.0
PM-IM and GPM-2 PM or GPM-3 PM (Figure 2, first row).
In the latter comparisons, only the probe measure is dif-
ferent indicating that the probe measure plays a more sig-
nificant role than the combined effect of the summary
algorithm and the association model.

Comparison among the GPMs

We also compared the results from GPM-1 (2), GPM-2 (3)
and GPM-3 (4), to evaluate their differences, and found
similar results when using the same probe measure. We
selected the top eight candidate genes from the results of
MAS 5.0 PM-IM and used them to compare the perform-
ance of GPM-2 PM-IM and GPM-3 PM-IM. In Table 1, for
the eight selected genes we list estimated coefficients, their
standard errors and standardized coefficients, estimated
under the three GPM models. From Table 1, for these
eight selected genes, the statistics generated from the three
GPMs formulation are similar using probe measure of
PM-IM. Next, to compare the standardized coefficients on
a genome-wide scale, Figure 3 panel A shows the pair-wise
comparisons using probe measure of PM-IM. Figure 3
panel B shows the pair-wise comparisons using PM only
and PM, ... The six plots in Figure 3 demonstrate the sim-
ilarity of standardized coefficients on a genome-wide scale
among variants of GPMs when the same (or similar, in the
case of PM versus PM,,,,,) probe measures are used in the
analyses.

http://www.biomedcentral.com/1471-2164/6/16

In summary, we conclude that the GPMs are similar to
MAS 5.0, dChip and RMA on a genome-wide level when
using the same probe measures and that the choice of
probe measure may be more important than the summary
algorithms to obtain the gene expression or models used
to compute the coefficients.

Discussion

In this paper, we have described a general framework that
can be used to compare various methods and evaluate
their similarities and differences. We found that various
methods tend to generate similar results, on a genome-
wide scale, when the same probe measure is chosen, and
probe measure seems to have greater impact on the ana-
lytical results than other factors.

In Figure 1, we compared the standardized coefficients
estimated with GPM-1 using gene expression computed
from MAS 5.0, dChip and RMA with their own dictated
probe measures. Since we consistently used GPM-1 as the
association modeling machinery for each analysis, we
assessed the combined impact of probe measure and sum-
mary algorithm. We found that the results obtained from
dChip PM and RMA PM,,,, were similar to each other, but
different from those obtained from MAS 5.0 PM-IM.
Although dChip PM and RMA PM,,, use different sum-
mary algorithms, their analytical results are similar due to
the PM based probe measures used in both analyses.

In Figure 2, we see again, that on a genome-wide scale,
results from MAS 5.0, GPM-2 and GPM-3 are more similar
when same probe measure is used than when the probe
measures are different, indicating that the probe measure
plays a key role in determining the similarity of results
from two methods. Our preliminary analyses suggest that
the choice of probe measure has bigger impact on the
results than summary algorithm and association
modeling.

For the three variants of GPMs, we compared the stand-
ardized coefficients from GPM-2 or GPM-3 with those
from GPM-1 using the gene expression values computed
in MAS 5.0, dChip and RMA. From the high R values (and
correspondingly, low MSEs) in the six plots shown in Fig-
ure 3, we infer that the standardized coefficients obtained
from variants of GPMs are similar when they used the
same probe measure.

For seven of the eight candidate genes selected by GPM-1
using gene expression values generated by MAS 5.0, the
gene-specific regression coefficients were similar among
the MAS 5.0 PM-IM, GPM-2 PM-IM and GPM-3 PM-IM.
This indicates that for these seven genes it makes little dif-
ference between using summary measures or modeling
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Impact of probe measure on analytical results. Gene expression from MAS 5.0 was used to estimate standardized coef-
ficients using the association model GPM-1. Either PM-IM or PM only was used directly in GPM-2 or GPM-3 models. Standard-

ized coefficients were plotted pair-wise.

directly at the probe level data in GMP-2 or GPM-3, when
the same probe measure is used.

In addition to the three factors we mentioned (i.e. choice
of probe measure, summary algorithm and association
modeling) that have an impact on analytical results, data
pre-processing/normalization could also affect the analyt-

ical results. Some researchers combine the probe measure
and pre-processing normalization together. Normaliza-
tion matters the most when the arrays in an experiment
are not comparable to each other. In such cases, normali-
zation process could significantly impact on the result. In
our case, we normalized the data in the GPMs using a
regression-based approach [6], either at probe level in
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Table I: Estimated parameters for eight candidate genes from GPMs

http://www.biomedcentral.com/1471-2164/6/16

Probe set ID Y00291_at L13738_at D79990_at

MI13666_at

X02158_rnal_at X84002_at L19605_at M60503_at

Parameters p SE Z p SE Z p SE Z B SE

Z pB S zZ p SE Z p SE Z B SE Z

GPM-1 PM-IM 3.17 048 6.65 0.80 0.18 4.50 3.04 0.68 4.47 107 025 424 -1.07 025 -424 063 0.5 418 051 0.12 416 -2.05 0.50 -4.13
GPM-2PM-IM 279 036 7.74 065 0.13 489 292 0.67 43 I.1l 024 46 -092 024 -38 033 0.12 263 05I 009 553 -156 035 -4.44
GPM-3 PM-IM 305 035 860 071 0.12 569 3.10 0.63 4.89 131 022 593 -140 025 -573 025 0.1l 226 0.52 0.09 6.02 -225 0.38 -5.96

Estimated coefficients (/), their standard errors (SE ) and standardized coefficients (Z ) for eight candidate genes from GPM-1 (using MAS 5.0 expression measure), GPM-2 and

GPM-3 using PM-IM

GPM-2 and GPM-3, or on gene expression level in GPM-
1. The expression measures obtained from dChip and
RMA were normalized by their own normalization
schemes. However, even with the different normalization
schemes, probe measure appears to be the primary factor
to impact the results in our data set.

An important feature of the framework presented in this
paper is that it accommodates various probe measures
(see Table 2) to quantify the abundance of the transcript.
A question arises: how does one combine results from
analyses using different probe measures. This is the
dilemma we face when we analyze thousands of genes
simultaneously. On the one hand, microarray technology
is still imperfect and it is prudent to evaluate a number of
exploratory approaches. On the other hand, by the very
nature of the problem, it is unlikely that a single approach
will be equally appropriate for each gene. The reality is
that microarrays afford a rapid preliminary assessment of
thousands of genes for future experimental validation.
Ultimately, any scientific validation has to be drawn from
further bench experiments.

To facilitate the evaluation and use of GPMs, we have
developed a software program, called ProbePlus that
implements our GPMs. This program will be made avail-
able to academic researchers through the website http://

qge.thcrc.org/probeplus.

Conclusions

In this paper we describe a general framework to analyze
GeneChip® gene expression analysis array data. This
framework is flexible to permit comparisons of different
methods with respect to the choice of probe measure and
analytical models used. We found that different methods
yield similar result when probe measures are the same.

Methods

The generalized probe model

Consider an experimental study with K chips. Each chip is
engineered to assess levels of ] gene expressions. Each gene
has I probe pairs. Now let y;;;, denote the intensity value
for the jth gene (j = 1,2...]), the ith probe pair (i = 1,2...I),
PM (I=1) or MM (I = 0), and the kth sample (k = 1,2...K).

Table 3 displays the notation for a typical microarray
dataset. The probe intensity y;; , quantifying the abun-
dance of the RNA hybridized on a probe, is treated as a
random variable, influenced by the effects of probe-spe-
cific hybridization, gene-specific hybridization, non-spe-
cific hybridization and random noise. In this paper we use
Zj, to denote the quantification of the signal of the ith
probe, in the jth gene from the kth sample. Z;;, could be
based on any probe measure, such as PM only or PM-IM
(some other selected probe measures are listed in Table
2).

In a typical experiment as described above, it is frequently
of interest to discover genes that are significantly associ-
ated with one or more experimental covariates x;, . For
example, consider an experiment to discover genes that
are differentially expressed between two groups, x;, takes a
binary values: x, = 0 for the control group and x,, = 1 for the
treatment group. To achieve the scientific objective, the

analytic procedure is to assess associations of Z ik = (Zj
+ Zigje r--Zing ) with covariates x;, via the distribution func-
tionf (Z it | x; ). In essence, Zy, are treated as vectors of

multivariate correlated outcome variables, and used to
identify the probes/genes that are differentially expressed.
Recognizing the high dimensionality of multiple probes
and multiple genes, we propose to apply a marginal
model that uses marginal means to describe relationship
of probes/genes with the covariates without the necessity

of specifying the full distribution f ( Z i | x,). Our frame-

work directly associates experimental factors with probe
intensities and is referred to as the generalized probe
model or GPM. We propose the following (1) to describe

relationship between Z i and xy,,

Zik Tj1 Bj St Vilk Eink
7. 7 B; & v &
j2k j2 j2 j2k j2k j2k
=0y, + Al + x|+ =0+ A + i (1)
ZiNk TN | | Bin Eine Vine | | &ine

where (8,, 4,,) are chip-specific heterogeneity factors for k
th chip [7], 7; are gene- and probe-specific parameters
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3A:Comparison among GPMs using PM-IM. Gene expression from MAS 5.0 was used to estimate standardized coeffi-
cients using the association model GPM-1. Standardized coefficients from GPM-I, GPM-2 and GPM-3 with same PM-IM probe
measure were plotted pair-wise. 3B: Comparison of GPM-2, GPM-3, dChip and RMA using PM. Gene expression from
dChip, and RMA were used to estimate standardized coefficients using the association model GPM- 1. Standardized coefficients
from GPM-2, GMP-3, dChip and RMA with probe measures of PM or PM,,, were plotted pair-wise.
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Table 2: A list of selected probe measures

http://www.biomedcentral.com/1471-2164/6/16

Scenario Calculation Annotation
I. MAS4.0-equivalent Zy= it~ Yiiok) Direct difference between PM and MM
2. MAS5.0-equivalent * *
Zy = ik~ yjiOk) Yjiok is the Idealized Mis-match (M)
3. PM only Zy = Y Ignore MM
4. RMA-equivalent Zy = log(yjin - Vi) V1 is the mean background estimated from PM for the kt chip
5. Log ratio Zy = In(jii ! Vo) Difference on the logarithmic scale
6. Log difference * Difference on the logarithmic scale
Ziy = In(jik- Vjiok)
7.Log PM Zye= In(yjine) PM only on the logarithmic scale
8. Box-Cox on PM ® Box-Cox transformation on PM only
Zy = (YVjitk - N/ @

9. Box-Cox on PM-IM

Zi = [0k Viior)”- 111 @

Box-Cox transformation on PM-IM

Table 3: A typical probe-level data generated from GeneChip® gene expression analysis array

Sample ID Probe PM (1) | 2 k K
Covariate ID MM(0) X Xy X Xk
ORF, I I Yin Yinz Yinik Yink
I 0 Yiiol Y102 Yiok Yilok
2 I Yian Yi212 Yi21k Y21k
2 0 Y1201 Y1202 Y120k Y120k
N I YINTI YiNi2 YIN 1k YINIK
N 0 YiNol YIN 02 Y INok YIN oK
ORF,' I I Yirn Yinz Yitik Yink
I 0 Yirol Yi02 Yitok Yj 10k
2 ! Y Yj212 Y21k Yj21k
2 Y Yol Yj202 Yj20k Yjpok
i I Yiin Yjil2 Yjitk Yiitk
i 0 Yiol Yjio2 Yiiok Yjiok
N I YiNt1 YiN12 YiN1k YiNIK
N Y YiNol YiNo2 YiNok YiNok
ORFj I I Y Y2 Ytk Yk
I 0 Yol Y102 Yok Yjiok
2 ! Yn Y12 Y1k Y1k
2 0 Yol Yno2 Y20k Y20k
N ! YINII YN12 YINIk YINIK
N 0 YINoi YINo2 YINok YINoK

quantifying the mean intensity value for the ith probe of
the jth gene, f; quantifies the gene- and probe-specific
parameters quantifying the difference between treated
and control groups, and v, quantifies expression values
for individual probe pairs. Lastly, (&1, S s S ) TEPTE-

sents a vector of gene- and probe-specific random varia-
tions across K independent samples. Since probe pairs are
selected to target the jth gene and are spatially arranged by
a pre-selected design to eliminate common artifacts, they
may be correlated because of cross-hybridizations or spa-
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tial dependencies. From the biological perspective, speci-
fying a joint distribution for (&), &y /- Gy ) wWould be
difficult, if not impossible. It is thus preferable to leave it
unspecified.

The above GPM (1) includes a range of more simplified
models based on specific assumptions. First, under the
assumption that all probe-specific parameters are the
same, i.e., 7;= 5;and f;= 3, the general model (1) simpli-
fies to the following model:

1
NZ Zjjp, =0y, +/'Lk(fj+ﬁjxk)+ﬁz Siikr (2)
1 1

and is equivalent to using a summarized gene expression
to associate with the experimental factors [7]. For simplic-
ity and comparison with other special models, we refer
this model as GPM-1.

If one postulates that all probe-specific parameters are not
the same, but follow an additive probe model, then gen-
eral model (1) under modeling assumption that ;= f3,
with probe-specific values (7, 7,...,7;y ) may be written
as

Zik T Sk
7 T: g
j2k j2 j2k
=0y, + A + Bjx ]+ . (3)
ZiNk TiN SiNtk

in which estimating S, is of primary interest. This variation
of the general model is referred to as GPM-2.

On the other hand, the probe parameters may follow a
multiplicative model (in the spirit of Li and Wong's
model), then the third model, referred to as GPM-3, is
derived under the assumption that 7;~ ¢, 7;and f; > ¢; B
, and may be written as

Zitk on ik
Zjok 9; Sjok
PEA =g al] 7 g+ Byl | (4)
ZiNk N SiNk

where ¢; denote the multiplicative probe-specific effects
and can be uniquely determined by constraining the
mean to be one.

Estimation and inference

Our estimation procedures do not require any assump-
tions with respect to the error distribution, since any dis-
tributional assumptions, which may be appropriate for
some genes, are likely to be violated for other genes. To
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ensure the robustness of statistical inference, we propose
to use generalized estimating equation theory, which has
been fully described in a seminal paper by [8]. In the cur-
rent context, we choose the "working independence"
assumption for modeling dependencies between probes
[8,9]., to avoid making any assumptions on dependence
structures. The asymptotic variance matrix is estimated
with the usual "sandwich" estimator [8]. Diagonal ele-
ments in the variance matrix are estimates of marginal var-
iances for all estimated parameters, and are denoted by

6]-2 for the estimated parameters Bj in the model. Both

estimates can be used to construct test statistics, such as

the ratio of ﬁj over 6'j, known as Wald-statistic. Under

the null hypothesis, each statistic has an asymptotic nor-
mal distribution when the sample size is sufficiently large,
and can therefore be used for making statistical inferences.
When the sample size is small, this quantity is treated as a
standardized regression coefficient.
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