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Abstract

Background: DNA methylation is associated with aberrant gene expression in cancer, and has been shown to
correlate with therapeutic response and disease prognosis in some types of cancer. We sought to investigate the
biological significance of DNA methylation in lung cancer.

Results: We integrated the gene expression profiles and data of gene promoter methylation for a large panel of
non-small cell lung cancer cell lines, and identified 578 candidate genes with expression levels that were inversely
correlated to the degree of DNA methylation. We found these candidate genes to be differentially methylated in
normal lung tissue versus non-small cell lung cancer tumors, and segregated by histologic and tumor subtypes. We
used gene set enrichment analysis of the genes ranked by the degree of correlation between gene expression and
DNA methylation to identify gene sets involved in cellular migration and metastasis. Our unsupervised hierarchical
clustering of the candidate genes segregated cell lines according to the epithelial-to-mesenchymal transition
phenotype. Genes related to the epithelial-to-mesenchymal transition, such as AXL, ESRP1, HoxB4, and SPINT1/2, were
among the nearly 20% of the candidate genes that were differentially methylated between epithelial and mesenchymal
cells. Greater numbers of genes were methylated in the mesenchymal cells and their expressions were upregulated by
5-azacytidine treatment. Methylation of the candidate genes was associated with erlotinib resistance in wild-type
EGFR cell lines. The expression profiles of the candidate genes were associated with 8-week disease control in patients
with wild-type EGFR who had unresectable non-small cell lung cancer treated with erlotinib, but not in patients treated
with sorafenib.

Conclusions: Our results demonstrate that the underlying biology of genes regulated by DNA methylation may have
predictive value in lung cancer that can be exploited therapeutically.
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Background
The methylation of DNA is involved in the control of
chromatin folding, protein complex assembly, and gene
expression. It is a normal process of cellular develop-
ment, aging, paternal/maternal genetic imprinting, and
X-chromosome inactivation [1]. DNA methylation is
the only known heritable modification of DNA, and is
aberrant in cancer, involving both excessive and insuffi-
cient methylation of DNA regions of cytosine–guanine
bonds (CpG), which then alters the expression of cer-
tain genes [2]. The aberrant hypermethylation of dense
CpG sites in many cancers occurs at tumor suppressor
genes in a non-random, tumor-specific pattern [3].
Given the possible role of aberrant DNA methylation

in cancer initiation and progression, a significant effort
has been directed to identify DNA methylation biomarkers
in cancer and to use such markers to predict therapeutic
responses and disease prognosis [4]. A notable example is
the association between the silencing of the O6-methylgua-
nine-DNA methyltransferase (MGMT) gene and the im-
proved response to temozolomide and radiation in patients
with glioblastoma [5]. Others include the association of the
methylation of PTEN, IGFBP-3, and various DNA repair
enzymes (hMLH1, MRN, BRCA1, ATM, and the FANC
genes) with either resistance (PTEN, IGFBP-3) or sensitiv-
ity (DNA repair enzymes) to chemotherapy or radiation
[6-10]. For lung cancer, DNA methylation of genes may be
useful for assessing cancer risk based on the analysis of the
sputum of smokers [11], and may be prognostic in early-
stage lung cancer [12,13].
To better understand the DNA methylation changes

associated with gene expression in lung cancer, we deter-
mined the methylation status of more than 27,000 CpG
sites across 14,000 genes at selective promoter regions in
73 non-small cell lung cancer (NSCLC) cell lines using
the Illumina HumanMethylation27 BeadChip. We inte-
grated this dataset with the gene expression profiles of
the same panel of cell lines to identify the genes with
expression levels that weremost affected by DNA promoter
methylation. We sought to determine the biologic signifi-
cance of genes that were significantly repressed in associ-
ation with methylation in silico, as well as experimentally,
both in vitro and in vivo.

Results and discussion
Identifying genes aberrantly associated with DNA
methylation in NSCLC Cell Lines
For each of the 73 NSCLC cell lines examined, we ana-
lyzed the relationship between the degree of methylation
(beta value 0 to 1, with 1 being completed methylated) of
a particular gene and the expression level of that gene. We
sought to identify genes that were significantly repressed
in association with DNA methylation, which we subse-
quently refer to as SRAMs, a term first used in the study
of breast cancer [14]. We computed the Spearman correl-
ation of the relationship between methylation and gene
expression for all the cell lines, assuming that genes nega-
tively regulated by DNA promoter methylation have a
negative Spearman rho value. This approach would only
identify differentially regulated genes and not genes that are
fully methylated or unmethylated in these cell lines. We
first tested our approach by looking at the Spearman correl-
ation for CDKN2A, a gene well known to be frequently
downregulated by promoter methylation in NSCLC [15]. In
the Illumina assay, four probes assessed four CpG sites
within the CDKN2A promoter. We found that CDKN2A
was differentially methylated in the various cell lines, and
the degree of methylation was significantly and inversely
correlated with gene expression (Figure 1A). This relation-
ship was preserved in each of the four probes examined
(Additional file 1: Figure S1).
We expanded our analysis to the rest of the probes. We

looked at the distribution of rho values for probes located
within or outside of CpG islands (CpGi). Rho values of
CpGi probes had a mean distribution that was significantly
shifted to the left of 0 compared to that of non-CpGi
probes (p < 0.00001, Figure 1B). For both sets of probes, an
excess was seen in the experimental dataset at the rho cut-
off of −0.5 that was more than expected when compared
to a random distribution (p < 0.00001, Figure 1B). This was
not observed for probes that had a positive correlation with
gene expression. There were also no differences regarding
whether the probes corresponded to CpGi or non-CpGi
genes (3.3% vs. 3.5%, P = 0.48). Greater than 80% of these
probes lie within 500 bp of the transcription starting site
(TSS), corresponding to sites under transcriptional control
by DNA methylation (Figure 1C). We found 750 probes
that correspond to 578 unique SRAMs, genes with expres-
sion levels that were inversely correlated with the degree of
DNA methylation (Additional file 2: Table S1). We found
the same pattern as that of CDKN2A for other genes
known to be regulated by methylation (CDKN2B, MGMT),
as well as for many novel genes not previously known to
be regulated by methylation (Additional file 3: Figure S2).
We validated a set of SRAMs using pyrosequencing and
quantitative real-time polymerase chain reaction (PCR) in
26 cell lines (Figure 2, Additional file 4: Figure S3).

SRAMs differentiate tumor from normal lung and
distinguish tumor subtypes
As aberrant DNA methylation is one of the defining
characteristics of cancer, SRAMs should reflect alter-
ations that discriminate cancer from normal tissue and
reflect the underlying tumor biology. We evaluated the
methylation status of SRAMs in a set of 110 lung tumors
from a Japanese cohort, hereafter termed the Kyoto tumor
set, which included 20 unmatched normal lung tissues
arrayed using the Illumina HumanMethylation450 BeadChip.



Figure 1 Differential genes are significantly repressed in association with methylation (SRAMs) in NSCLC cell lines. A) Example of the
relationship between gene expression and methylation status for a single probe interrogating a single CpG site within the promoter region of
CDKN2A. B) Frequency histogram of the Spearman rho values for all probes that correspond to either CpG or non-CpG island sites. Red curves are
theoretical Gaussian representation of the distribution of rho given the number of probes for each gene set and the actual mean and standard
deviation values; blue curves represent the empirical distribution from the data; dashed burgundy lines represent normal distribution curves for
comparison; and the arrow identifies the point where the two curves cross and an excess of probes are seen with a rho ≤ −0.5. C) Relationship of
rho to the distance from the transcriptional start site (TSS) for CpG and non-CpGi probes. Most of the probes (~80%) that are candidate SRAMs
cluster within 500 bp of the TSS.
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Since the cell line SRAM dataset was generated from the
HumanMethylation27 platform, we took 637 probes (520
unique genes) that overlapped between the two Illumina
platforms for the analysis. We found that SRAMs discrim-
inated NSCLC from normal lung tissue, with clusters of
probes that were either predominantly methylated in nor-
mal tissue or methylated in tumors (Figure 3A). SRAMs
also distinguished squamous carcinoma from adenocar-
cinoma, the two major histological subtypes of NSCLC, as
well as lung adenocarcinomas with or without an EGFR
mutation (Figure 3B). These observations were corrobo-
rated using SRAM expression profiles of lung adenocar-
cinomas included in the Director’s Challenge Consortium
for the Molecular Classification of Lung Adenocarcinoma
[16]. SRAMs preferentially separated EGFR mutants from
wild-type tumors (Figure 3C and D). In the Kyoto tumor
set, patients that separated into these clusters had significant
survival differences, similar to that seen for the Director’s
Challenge tumor set (Figure 3E).

SRAMs and the epithelial-to-mesenchymal transition
(EMT) phenotype
To further define the functional significance of genes
negatively regulated by DNA promoter methylation, we
performed a gene set enrichment analysis (GSEA) using
the Spearman correlation rho value as the ranking variable
[17]. The top gene sets that included genes negatively reg-
ulated by DNA promoter methylation had been obtained
from diverse cancer datasets and were involved in various
biologic functions, such as cell migration in bladder can-
cer and resistance to gefitinib in NSCLC, and included
genes downregulated with E-cadherin knockdown in hu-
man breast mammary epithelial (HBME) cell lines, genes
differentially expressed in metastatic melanoma, genes



Figure 2 Validation of the integrative analysis for select genes. Three genes with CpG islands were evaluated. Top row is the relationship
between array methylation data and Illumina gene expression; middle row provides Pearson correlation of the array methylation data with the
pyrosequencing methylation status; and bottom row shows the relationship of methylation status by pyrosequencing with the quantitative
real-time PCR results for the expression of these genes.

Lin et al. BMC Genomics 2014, 15:1079 Page 4 of 15
http://www.biomedcentral.com/1471-2164/15/1079
methylated in glioblastoma and pancreatic cancer, and
genes differentially regulated in luminal vs. basal/mesen-
chymal breast cancer cells (Additional file 5: Table S2).
We postulated that biologic functions identified by the

GSEA were related to the process of EMT, a developmen-
tal and adaptive cellular process that has been associated
with resistance to cancer therapies and regulation of me-
tastasis [18]. We performed a hierarchical cluster analysis
of the cell lines using the SRAMs, and overlaid the relative
protein expression of E-cadherin, a cell adhesion molecule
that is downregulated during EMT and which plays a key
role in the signaling and regulation of EMT [19], along
with the expression of EMT-related genes ZEB1, VIM,
Twist1, FN1, CDH2, and CDH1. We found that the identi-
fication of SRAMs clustered cells into two groups:
“epithelial-like (E)” cells, which expressed high E-cadherin
levels; and “mesenchymal-like (M)” cells, which expressed
low E-cadherin levels (Figure 4A). To identify genes
within the SRAMs that distinguish E cells from M cells,
we performed a Wilcoxon rank sum test. Out of the 578
unique genes, 111 (19%) were differentially methylated
between E and M cells, with a P-value < 0.001. We called
these genes EMT-SRAMs. A majority of EMT-SRAMs
(N= 88) were methylated in M cells compared to E cells
(Figure 4B, Additional file 6: Table S3). A few of the EMT-
SRAMs, including CDH1, were already known to be epige-
netically regulated during the process of EMT [19,20].
However, the epigenetic regulation of the remaining EMT-
SRAMs had not been established, including that of SPINT1
(HAI-1) [21], SYK [22], MST1R(RON) [22] and ESRP1 [23].
Interestingly, one of these genes is AXL, which encodes a
receptor tyrosine kinase that is associated with EMT and
with resistance to EGFR tyrosine kinase inhibition [24,25].
We found that the expression of AXL was inversely
correlated with promoter methylation (Figure 2), and
its promoter methylation was positively correlated with



Figure 3 NSCLC SRAMs are differentially methylated between normal and tumor tissues segregate into molecular pathologic subtypes.
A) Heatmap of the hierarchical clustering of 637 matched probes for SRAMs in the Kyoto set of 110 tumors and compared to 20 unmatched
normal lung tissue samples. B) Using matched 637 probes from the HumanMethylation450 to the HumanMethylation27 platforms, unsupervised
clustering of 110 tumors from the Kyoto tumor set was conducted, with tumor clustering along lines of histology (adenocarcinoma vs. squamous
cell carcinoma), EGFR mutation status, and tumor grades. C-D) Unsupervised clustering based on gene expression of the matched gene
regulatory module (GRM) genes on the Director’s Challenge dataset of 442 lung adenocarcinomas. The GRMs were able to segregate the tumors
in the Director’s Challenge into two main groups, with EGFR mutations and well-to-moderately differentiated tumors in group 1, and wild-type
EGFR and moderately-to-poorly differentiated tumors in group 2. E) SRAM segregates NSCLC tumors into prognostic groups in the Kyoto and
Director’s Challenge tumor sets. Branch point C1 vs C2 mostly segregates squamous from adenocarcinoma, without a difference in prognosis;
whereas branch point C3 vs. C4 is highly prognostic because of the separation of EGFR mutant from wild-type tumors. For the Director’s Challenge
tumor set, the two clusters that preferentially separate EGFR mutant and wild-type tumors are also prognostic for survival.
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E-cadherin expression (Additional file 7: Figure S4), indi-
cating that AXL may be epigenetically regulated during
EMT.
To further determine whether EMT-SRAMs define an

epigenetically regulated group of genes relevant to EMT,
we compared our gene list to a variety of publically avail-
able gene expression signatures from studies that experi-
mentally manipulated cells to undergo EMT. Specifically,
we examined datasets from prostate cancer cells trans-
duced with SNAI1 [26], a NSCLC epithelial cell line
(H358) transduced with SNAI1, ZEB1 or stimulated with
TGF-beta [27], and HBME cells transduced with Twist
[28]. We applied hypergeometric statistics to test the
significance of overlap between the entire dataset of
SRAMs (578 genes) and the EMT-SRAMs (111 genes).
We found that the SRAMs significantly overlapped with
the genes in the published datasets. On average, there was
a 16% overlap between the SRAMs and published EMT
gene signatures. EMT-SRAMs had greater overlap with
the published EMT gene signatures, ranging from 18% in
the breast cancer cell line signature to 48% in the H358
cells treated with TGF-beta (Additional file 8: Table S4).
The majority of overlapping genes were downregulated,
which is consistent with our observation of a greater pro-
portion of genes being methylated in M cell lines. There
appeared to be a greater overlap between genes from



Figure 4 Specific SRAM methylation patterns define epithelial (E) and mesenchymal (M) cell types. A) Hierarchical clustering of SRAMs for
a subset of cell lines (n = 47) with RPPA data for E-cadherin (ECAD) segregates cell lines into high and low ECAD groups. Representative genes
that are preferentially unmethylated (AXL) or methylated (CDH1, SPINT1) in the mesenchymal cells are shown. Illumina gene expression levels of EMT
markers (ZEB1, Vimentin (VIM), Twist1, Fibronectin (FN1), CDH2, and CDH1) are overlaid to confirm the E vs M identity of the cell lines. B)Wilcoxon rank
sum test was used to identify the SRAMs that are differentially methylated between E and M cells, which we call the EMT-SRAMs. The identified 135
probes (111 unique genes) were used for hierarchical clustering of the cell lines. EMT-SRAMs that are predominantly methylated in M cells are called
M-SRAMs, and those methylated in E cells are called E-SRAMs. C) EMT-SRAM association with EMT network genes using curated network analysis.
Closest second neighbor analysis of genes associated with core EMT factors (“EMT Hub genes”: CDH1, CDH2, FN1, SNAI1, SNAI2, GSC) finds numerous
associations with genes within the EMT-SRAM set. Red spheres represent SRAMs that are methylated in M cells; green spheres are those methylated in
E cells; white spheres represent linking genes.
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H358 cells and the SRAMs or the EMT-SRAMs than
either the prostate or breast cancer datasets. This suggests
that while there could be a common core group of genes
for both the SRAMs and the EMT-associated SRAMs, the
tissue-specific SRAMs may reflect the underlying biology
of the tissue of origin.
Using a curated network extracted from Pathway

Commons [29], which consists of 11,570 genes and
over a million biological interactions, we performed a
network analysis using markers of EMT, including 8
transcription factors and major regulators of EMT
(TWIST, SNAIL, SLUG, GSC, FOXC1, FOXC2, ZEB1
and ZEB2), and three recognized markers of EMT
(CDH1, CDH2 and FN), and the EMT-SRAM gene
list. We were able to map 73/111 EMT-SRAMs. The
pair-wise shortest distance between markers of EMT with
EMT-SRAMs was calculated using Dijkastra’s algorithm
[30]: 51/73 EMT-SRAMs (~70%) in the network had the
shortest path lengths of 1 and 2, connecting at least one of
the 11 markers of EMT (Additional file 9: Figure S5). This
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implies that a large proportion of the EMT-SRAMs are
functionally related to regulators of EMT. Using hyper-
geometric statistics, we created a core EMT subnetwork
(“EMT hub genes”) that accounted for all biological
interactions between markers of EMT-linking genes
(genes that are functionally related to EMT but are not
core EMT factors or part of the EMT-SRAMs), and
EMT-SRAMs (Figure 4C). While 2.8% of the genes in the
entire curated network were cited in the literature as
being related to EMT, 24.8% of the genes in the sub-
network were cited thusly (P < 0.0001, hypergeometric
testing). This indicates that there was a significant en-
richment for known markers of EMT in our subnet-
work, as well as novel interactions.
Taken together, these findings demonstrate that a

subset of NSCLC SRAMs is related to EMT, and that
epigenetic regulation through DNA methylation may
play an important role in the process of EMT.

EMT-related genes are epigenetically regulated
To determine whether genes associated with EMT were
epigenetically regulated, we created an EMT gene set
based on the E-cadherin differential expression (high or
low) in our panel of NSCLC cell lines. A total of 407
genes were ≥ 4-fold differentially expressed between
these two groups and thus were included in the EMT
gene set. We then identified the publicly available gene
expression profiles of NSCLC cell lines before and after
treatment with the hypomethylating agent 5-azacytidine
(5AZA) from a single study [31]. We performed a GSEA
using the A549 mesenchymal cell line. We found the
EMT gene set to be negatively enriched when genes were
ranked according to the rho value between gene expres-
sion and the average beta value in our integrative analysis
(enrichment score −0.571, P < 0.001). We found the EMT
gene set to be positively enriched when genes were ranked
according to the log2 fold-change before and after treat-
ment with 5AZA (enrichment score −0.612, P < 0.001)
(Figure 5A). We found statistical significance (P < 0.001,
hypergeometric testing) in the overlap between genes that
were overexpressed in response to 5AZA and genes that
were regulated by DNA promoter methylation and were
represented in the EMTgene set enrichment.
Since the M cells have proportionally more SRAMs

compared to E cells, we next determined whether 5AZA
was upregulating a larger number of genes in M cells
(A549, H157, H460, and H1299) compared to E cells
(H1819, H1993, and H2347). We performed a GSEA
that included the EMT gene set, with genes ranked ac-
cording to the log2 fold-change before and after treat-
ment with 5AZA, in all 7 NSCLC cell lines [31]. While
the enrichment of the EMT gene set was significant for
all but one E cell (H2347), the number of genes induced
by 5AZA with a fold-change ≥ 2 and the enrichment
scores tended to be higher in M cells (A549, H157,
H460, H1299, Additional file 10: Figure S6A) compared
to E cells (H1819, H1993, H2347, Additional file 10:
Figure S6B) (Figure 5B). We confirmed these results with
the dataset from Heller et al. [32] where two of the three
cell lines (A549 and H1993) overlapped with that in the
Shames et al. dataset. We performed GSEA analysis of
these two lines and compared the 5AZA and 5AZA +
trichostatin (TSA) treated cells compared to untreated
cells. We found similar enrichment of the EMT gene
set for the A549 cell line but not for the E cell type
H1993 (Additional file 11: Table S5).
To further test the hypothesis that M-related SRAMs are

more likely than E-related SRAMs to exhibit increased
expression in M cells after 5AZA treatment, we used a
Bayesian statistical method (Additional file 12: Text S1;
Additional file 13: Table S6; Additional file 14: Table S7).
We assigned each gene in each cell line to one of three
categories (up, down, or constant), as defined by a change
in expression that was at least a 2-fold change in response
to 5AZA. We calculated the posterior probability that
more genes increase (rather than decrease) expression after
treatment with 5AZA, by the type of cell line, using either
an uninformative prior or a conservative prior that as-
sumes most genes do not change expression. We found
that on average, the probability of induced gene expression
in the M cells is high for the M-related SRAM category of
genes, and is high for the E cells in the E-related SRAM
category of genes (Figure 5C). These results corroborate
the in silico data that indicated that more genes were
methylated in the M cells and were inducible upon 5AZA
treatment.

Association between SRAM methylation and resistance to
erlotinib in wild-type EGFR/KRAS NSCLC cell lines
Since the SRAMs segregate the cell lines into E and M
cell types, and EMT has been implicated in erlotinib
resistance [33,34], we determined whether the two clus-
ters of NSCLC cell lines defined by SRAMs (methylated
and unmethylated EMT-SRAMs) could be associated
with erlotinib resistance. Since EGFR mutation is known
to be associated with sensitivity to erlotinib, and KRAS
mutations are associated with resistance, we focused on
the group of wild-type EGFR/KRAS cell lines. We found
that the half maximal inhibitory concentration (IC50) for
erlotinib was significantly higher in cell lines that
segregated to clusters with methylated SRAMs compared
to those that segregated to clusters with unmethylated
SRAMs (Figures 6A and B).

SRAM expression profiles in tumors segregate along E vs M
expression patterns and erlotinib response
We next determined whether the SRAM profile was
associated with clinical benefit in patients. Since we



Figure 5 SRAMs induced with 5AZA are strongly associated with M cell lines. A) GSEA of SRAMs in A549 (M-type cell) finds a substantial
proportion of genes to have a negative association with gene sets that are repressed during cell migration and EMT states; this relationship is
readily reversed by 5AZA treatment. B) Data from Shames et al. [31] demonstrates more M-SRAMs being induced (≥ 2-fold more) than suppressed
in M cells, which is not apparent in the E cells. A similar trend is noticed in the E cells for the E-SRAMs, although not significant. C) Bayesian statistical
method to determine the posterior probability that more genes increase (rather than decrease) expression after treatment with 5AZA by the type of
cell line, using either an uninformative prior (pi0) or a conservative prior (pi1).
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found no available clinical datasets with DNA methyla-
tion profiling and erlotinib drug response information,
we analyzed the gene expression profile for SRAMs in
baseline tumor biopsies collected in patients with stage
IV NSCLC that were included in the clinical trial
Biomarker-Integrated Approaches of Targeted Therapy
for Lung Cancer Elimination (BATTLE-1) [35,36]. Gene
expression profiles were available for 27 patients treated
with erlotinib (including 25 patients with wild-type EGFR),
and for 47 patients treated with sorafenib (including 37
patients with wild-type EGFR), all of whom were evaulable
for the primary endpoint of the trial, which was 8-week
disease control. Interestingly, when SRAMs were used to
cluster tumor samples collected at baseline in BATTLE-1,
a similar pattern was observed in vitro (Figures 6C and
D). In order to summarize the effect of the SRAMs, we
computed the first principal component in each sample.
Among the patients treated with erlotinib who had wild-
type EGFR, the first principal component was lower in
the patients who had a clinical status of disease control
(P = 0.05) (Figure 6E). No difference was observed in
patients treated with sorafenib (P = 0.92). When we
further analyzed the 21 patients treated with erlotinib
who had both EGFR and KRAS wild-type tumors, we



Figure 6 Extent of methylated SRAMs associated with erlotinib response in cell lines and patients in BATTLE-1 trial. A) Hierarchical
clustering of EMT-SRAMs in 52 wild-type (WT) EGFR NSCLC cell lines, with erlotinib IC50 levels overlying individual cell lines. G1 and G2 represent
the two cell lines clustered by SRAM methylation. KRAS mutant cells are represented by asterisks. B) Erlotinib IC50 values of G1 vs G2 clusters for
the combined cell lines, and the WT EGFR/KRAS cells. G2 cluster had significantly higher IC50 values than G1 cluster. Error bars indicate average
and 95% confidence interval. C) Hierarchical clustering of expression of SRAMs in the panel of cell lines with RPPA data for E-cadherin (49) clusters
of E and M cells. Specific gene markers that relate to EMT are on the right. D) Hierarchical clustering based on first principle component analysis
(PCA) of SRAM expression signature in the tumor biopsies from patients in BATTLE-1 trial clusters tumors into groups that resemble the separation
seen in the cell lines. E) Eight-week disease control (DC) of patients treated with erlotinib or sorafenib based on the first PCA separation. EGFR mutant
tumors were excluded.
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found that the first principle component trended lower in
patients with a clinical status of 8-week disease control
(P = 0.08).

Conclusions
In this study, we carried out an integrative analysis of gene
expression and promoter CpG methylation profiles in
NSCLC cell lines to identify a group of genes that were
strongly associated with the degree of DNA methylation.
We found that a subset of these epigenetically regulated
genes reside within pathways related to epithelial and
mesenchymal states of cancer. Many of the genes that
distinguish E versus M cells in NSCLC significantly over-
lap with the genes that are suppressed during the EMT
processes found in other cancer systems, such as prostate
and breast cancers. We found that many of the genes were
methylated in M cells, and that 5AZA upregulated genes
that were silenced by DNA methylation in these cells
compared to the epithelial counterpart. Furthermore, we
found that SRAMs could predict erlotinib resistance in
the NSCLC cell lines, and the gene expression signature
of the SRAMs predicts erlotinib response in a cohort of
patients with NSCLC who were treated with erlotinib.
Our data suggest that the SRAMs of various tumors may
hold biomarkers that are predictive of response to drug
therapy.
Transcriptional regulation involves the interplay of a

host of epigenetic factors, such as chromatin remodeling,
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histone modification, non-coding RNAs, and DNA methy-
lation. Methylation of CpG sites promotes the recruitment
of methyl-binding factors, which serves as a scaffold for
protein complexes that contribute to nucleosome com-
paction, chromosomal condensation and transcriptional
silencing [37]. While a promoter CpGi is classically linked
to gene expression, the definition of what constitutes a
CpGi is fairly arbitrary and based on computational pre-
diction. Studies have shown that a large number of CG-
rich areas within regions of the promoter and first exon
that are not CpGi’s play important roles in transcriptional
regulation [38]. We found that for probes corresponding
to both CpG and non-CpG sites, a significant excess was
seen with a rho cutoff of less than −0.5 than expected
from normal distribution, suggesting the expression of
genes with this type of inverse relationship with DNA
methylation corresponds to the SRAMs. We also demon-
strated from this data that there is an equal likelihood for
SRAMs to correspond to promoters with CpGi’s as to
those without CpGi’s. More than 80% of the CpG sites
that are related to transcriptional regulation fall within
500 bp upstream or downstream of the TSS, which is con-
sistent with what has been reported in the literature.
Indeed, there were approximately 3.4% of the promoter
CpG sites to correspond to SRAMs, and 578 genes with
differential expression based on promoter CpG methyla-
tion in the NSCLC cell line to correspond to ~2.7% of the
genome. This is somewhat similar to what has been
reported in the literature regarding the percentage of
genes induced after 5AZA treatment in multiple cancer
types. However, for one study in NSCLC cell lines, the
number of SRAMs we found appears to be somewhat
lower [31]. This can be explained by the fact that 5AZA
not only exerts gene induction through hypomethylation
of normally hypermethylated promoters, but also has sec-
ondary effects, such as the DNA damage response [39].
Furthermore, our approach identified only genes that are
differentially methylated and expressed between cell lines,
and not genes that are uniformly suppressed in cancer
cells by DNA methylation, such as HIC1 [40] and SOX17
[41], which may be induced by 5AZA. We attempted to
identify genes whose differential methylation patterns
could help cluster cells according to functional subgroups;
therefore, we believe our approach identifies these differ-
entially regulated genes. Indeed, as proof of the validity of
our method, we identified many genes that are known to
be differentially methylated across various cancer types
(CDKN2A, CDKN2B, MGMT, SFRP1), in addition to
many novel genes not previously known to be regulated
by DNA methylation.
We found that nearly 20% of the lung cancer SRAMs

are related to genes that distinguish epithelial from mes-
enchymal cell types, which is similar to what was recently
reported [14,42]. We compared our EMT-SRAM gene list
with that from published gene expression datasets derived
from various cell systems treated to undergo EMT, and
found significant overlap in the gene sets. This was par-
ticularly apparent in the downregulated genes, suggesting
that a significant proportion of genes that are downregu-
lated during the EMT process may be regulated by DNA
methylation. Using gene interaction network analysis, we
found that almost 70% of the genes in the EMT-SRAM
panel are one to two gene neighbors away from six of the
key factors that play critical roles in the EMT process
(CDH1, FN1, CDH2, GSC, SNAI1, SNAI2). A great major-
ity of the methylated genes in the EMT-SRAM panel are
seen in mesenchymal cells. This is consistent with data
showing that the EMT state induces epigenetic alterations
in numerous genes in a non-random fashion. In breast
cancer, basal-like/mesenchymal breast cancers exhibit
patterns of methylation in genes such as Twist and the
estrogen receptor gene that are not found in the luminal
type of cells [20]. E-cadherin, or CDH1, a gene involved in
cell adhesion and signaling that plays a central role in
EMT, is suppressed by DNA methylation during per-
manent and irreversible EMT. This is seen for Ras-
transformed breast cancer cells stimulated with serum.
EMT induced in breast cancer cells by treatment with
isolated TGF-beta was found to be reversible when the
transforming growth factor was removed [20]. However,
when non-transformed AML12 hepatocytes were induced
to undergo EMT with TGF-beta, DNA methylation was
not observed, even though abundant epigenetic repro-
gramming is known to occur in specific chromatin regions
throughout the genome [43]. These data support the
proposition that DNA methylation of EMT-related factors
is a non-random event that depends on the transient ver-
sus permanent state of EMT. While similar sets of genes
may be suppressed during transient EMT, this is not due
to DNA methylation but rather is regulated by chromatin
factors. However, when subject to certain long-term envir-
onmental conditions as well as oncogenic factors, these
EMT-related genes become progressively and irreversibly
methylated [14]. Cells that acquire these characteristics
are locked into an epithelial-like or mesenchymal-like
state, which is seen in established cell lines of various ori-
gins and also in primary tumors. Tumors that are locked
into mesenchymal-like states may be responsible for
intrinsic resistance to drug therapies, such as erlotinib. The
mesenchymal-associated SRAMs could unveil important
pathways involved in the adaptive regulation of genes
directly involved in drug sensitivity, such as the expression
of AXL in erlotinib resistance.
We found that 5AZA treatment induced many of the

genes that were silenced by DNA methylation, and that
there was a preferential induction of genes in the mesen-
chymal cells, although a great majority of the genes were
uninducible, as seen in breast cancer [14]. Erlotinib therapy
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in combination with epigenetic agents may be a promising
avenue to help reverse resistance to EGFR tyrosine kinase
inhibitors in wild-type EGFR cells, as shown in a study of
cell lines, where EGFR silencing by DNA methylation con-
tributed to gefitinib resistance that was reversed with deci-
tabine treatment [44]. While current uses of decitabine are
mainly reserved for hematologic malignancies, the future
use of this drug in solid tumors may require a combination
of epigenetic agents, such as histone deacetylase inhibitors
with decitabine, or selective small molecular DNA methyl-
transferase inhibitors.
Methods
Cell lines and tumors
Additional file 15: Table S8 lists the 73 NSCLC and normal
cell lines used in this study. Cells were grown to logarithmic
phase and collected at 70–80% confluence in growth media
supplemented with 10% fetal bovine serum. Total RNA was
extracted using Trizol reagent. DNA was collected using
QIAquick DNA extraction kit (Qiagen, Valencia, CA).
Protein lysates used for RPPA were collected using RPPA
lysis buffer and protein quantitation using BCA.
Tumor samples were acquired from surgical excision of

the tumor mass along with normal lung within the lobec-
tomy specimen. Small tissue blocks were snap-frozen and
stored at −80°C. The cohort included only patients from
Kyoto University hospital, with the following patient
and tumor characteristics: Median age = 67.5 years, males =
61.4%, never smokers = 32.5%, adenocarcinomas = 69.3%,
squamous cell carcinoma = 24.6%, large cell = 2.6%, or
NOS = 3.5%, Well/Mod/Poorly differentiated tumors =
31.7%/50.0%/18.4%, stage I-II = 75.5%, stage III = 20.2%,
or stage IV = 3.5%, and EGFR mutants = 35.1%.
Genome-wide DNA methylation analysis at promoter
CpG sites
DNA methylation status of a set of 27,579 CpG sites
around promoters of 14,475 consensus coding sequences
was interrogated using the Illumina HumanMethylation27
BeadChip (Illumina Inc, San Diego, CA). Genomic DNA
(1 μg) extracted from NSCLC cell lines or tumors was
bisulfite converted using EZ DNA Methylation kit (Zymo
Research Corp, Orange, CA), and utilizing a cyclic denatur-
ation step during the conversion reaction as suggested by
Illumina for optimal conversion efficiency. Whole-genome
amplification, fragmentation, hybridization, washing, coun-
terstaining, and scanning were performed according to the
manufacturer’s instructions. The scanner data and image
output files were managed with the Illumina BeadStudio
Methylation Module v.3.2. The normalized data, pre-
sented as beta values, represent the degree of methylation
at each CpG site, with 0 being unmethylated, and 1 being
methylated.
MRNA gene expression data
Illumina HumanWG-6 v2 BeadChip human whole-
genome expression arrays (Illumina, Inc., San Diego, CA)
were used for mRNA expression profiling. The platform
contains 48,700 probes. Each RNA sample was amplified
using the Ambion TotalPrep RNA amplification kit with
biotin UTP (Enzo) labeling (Applied Biosystems/Ambion,
Austin, TX). The Ambion Illumina RNA amplification kit
uses the T7 oligo(dT) primer to generate single-stranded
cDNA followed by a second strand synthesis to generate
double-stranded cDNA, which is then column purified.
In vitro transcription was performed to synthesize biotin-
labeled cRNA using T7 RNA polymerase, and the cRNA
was column purified. The cRNA was then checked for size
and yield using the Bio-Rad Experion system (Bio-Rad
Laboratories, Hercules, CA). For each array, 1.5 μg of
cRNA was hybridized by using standard Illumina protocols,
with streptavidin-Cy3 for detection. Slides were scanned
using an Illumina BeadStation scanner. Expression values
were extracted using Illumina BeadStudio v2. The data
were background subtracted using the model-based back-
ground correction for BeadArrays algorithm [45,46] and
were quantile-normalized.

Bioinformatics preliminaries
A crucial step for integrative analysis of genomic data
across platforms is to include only genes that appear on
both platforms and to update the gene annotation. We
fitted the probes without the associated gene symbols. For
the two platforms, we assumed that the GenBank acces-
sion numbers supplied by the array manufacturer were
accurate. Using these accession numbers, we updated the
annotation for both platforms to the recent UniGene build,
using SOURCE, provided by Stanford University [47].

Correlating DNA methylation with mRNA expression
measurements on matched genes
On the Illumina mRNA expression platform, for a gene
with multiple measurements (multiple probes), we
computed the Pearson correlation coefficients and then
averaged the measurements with sufficient correlation
coefficients (R ≥ 0.4). Once this was completed, we
ended up with 16,104 unique genes on the mRNA plat-
form. For the DNA methylation platform, since each
probe corresponded to a unique CpG site at the pro-
moter region, we preserved all the measurements irrespect-
ive of the number of probes per gene symbol. We matched
22,992 CpG methylation measurements, representing
12,313 unique genes. We then computed the rank correl-
ation and associated P values for each gene between the
degree of methylation and the associated gene expression.
We modeled the resulting P values using a beta-uniform
mixture model. We selected the appropriate false discovery
rate cutoff to identify the set of genes significantly repressed
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in association with methylation (SRAMs) based on the
genes that had statistically significant correlation in the
degree of methylation and the associated mRNA expres-
sion level.

Pyrosequencing
Bisulfite treatment of genomic DNA was performed
using the EpiTect bisulfite kit (Qiagen, Valencia, CA)
according to the manufacturer’s instructions. Pyrose-
quencing was carried out for 8 of the SRAMs, reflecting
both promoter or first exon CpGi’s (CBLC, MST1R,
LAD1, ESRP1, HOXB4) and non-CpGi genes (PRSS8,
RAB25, AXL) (Additional file 16: Table S9). One micro-
liter of bisulfite-treated DNA was used for each poly-
merase chain reaction (PCR). After an initial hot-start at
95°C for 5 minutes, all PCR reactions ran at 95°C
for 30 seconds, annealing at various temperatures for
30 seconds, and underwent an extension step at 72°C for
30 seconds. All reactions were carried out with a nested
PCR step during which a biotinylated universal primer
was added. After PCR, the biotinylated strand was captured
on streptavidin-coated beads (Amersham Bioscience,
Uppsala, Sweden) and incubated with sequencing
primers. Pyrosequencing was performed with PSQ HS
96 Gold reagents on a PS QHS 96 pyrosequencer
(Biotage, Uppsala, Sweden) as published previously [48].

Quantitative real-time PCR (qPCR)
RNA was isolated from cell culture cells growing in loga-
rithmic phase (70%) using Trizol Reagent (Invitrogen,
Carlsbad, CA). First-strand cDNA synthesis was per-
formed using 1 microgram of RNA with the SuperScript
III First Strand synthesis kit for RT-PCR (Invitrogen,
Carlsbad, CA). Triplicates of qPCR were performed using
the QuantiTect SYBR Green PCR kit (Qiagen, Valencia,
CA; primer sequence in Additional file 15: Table S8) on
the ABI7500 Fast Real-Time PCR system. Normalization
was carried out using GAPDH as a reference gene.

Gene set enrichment analysis (GSEA)
Functional analyses were performed using GSEA software
v3.7 [17]. GSEA is a robust computational method that
determines whether an a priori defined set of genes shows
statistically significant, concordant differences between
two biologic states. GSEA eases the interpretation of
large-scale expression data by identifying pathways and
processes. This method shifts the level of analysis of the
microarray experiment from single genes to sets of related
genes. The main advantage of this method is its flexibility
in creating a molecular signature database of gene sets.
Such a database of gene sets allows biologist to make use
of previously accumulated biologic knowledge in the ana-
lysis and makes a more biology-driven analysis of micro-
array data possible. For the GSEA, the following three
required data inputs were generated: (1) genes pre-ranked
according to the Pearson correlation between DNA
methylation and gene expression, (2) a mapping file for
the identification of the Illumina HumanMethylation27
BeadChip platform, and (3) the C2 catalog of curated gene
sets from the Molecular Signature Database [49]. In the
analysis, we included chemical and genetic perturbations,
canonical pathways, Biocarta gene sets, KEGG gene sets,
and Reactome gene sets. After collapsing the probesets
into gene symbols, 12,313 genes were considered. Default
parameters were used throughout (we set the inclusion
gene size between 15 and 500, and permutated the pheno-
type 1,000 times). A total of 2,319 (or 2,320 if we include
the EMTgene set) gene sets were included in the analysis.

EMT network analysis
Known EMT genes (n = 11) were mapped along with the
genes identified in our EMT-SRAM signature in a curated
network downloaded from Pathway Commons [29], which
consists of 11,570 genes and over a million biological
interactions. The pair-wise shortest distances of the 11
known EMT genes with our EMT signature genes in the
network were calculated using Dijkstra’s algorithm [30].
We then applied the following strategy to create a core,
enriched subnetwork that consisted of biological interac-
tions between EMT regulatory factors and our EMT sig-
nature genes. We first applied hypergeometric testing to
identify linking genes that were not in the EMT signature
list, but which are statistically enriched for connections to
members of the signature gene list with the 11 EMT factor
genes. Linking genes that pass a P-value threshold of 0.05
were included in the analysis as significantly connected
with the EMT signature genes and the known EMT-
related factors. All interactions among the signature genes,
linking genes, and the EMT factor genes were included to
create the EMT subnetwork. The finalized core network
was visualized using Cytoscape [50].
To determine the relevance of the genes included in

the subnetwork analysis, we used the genes cited in the
EMT literature to test whether our subnetwork enriched
for EMT-related genes. We extracted all Pubmed IDs
related to the term “Epithelial Mesenchymal Transition”
from Pubmed. For each gene, we calculated the number
of citations related to EMT by mapping the extracted
Pubmed IDs to the gene citation information from
Entrez Gene, composed of genes and their correspond-
ing cited literature [51]. We then applied hypergeometric
testing to determine whether there was a significant
enrichment of EMT-related genes in our subnetwork.

Availability of supporting data
All human cell lines used in this study were produced by
Dr. John Minna and are all publically available through
ATCC. The data sets supporting the results of this article
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are included within the article and in the supplementary
tables.
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Additional files

Additional file 1: Figure S1. Integrative analysis of gene expression
and methylation degree for CDKN2A. A) Four probes interrogating 4 CpG
sites around the promoter CpG island region, mapped using the UCSC
Genome Browser. B) All 4 probes correspond to CpG sites that have
strongly negative correlation with gene expression, with rho values < -0.5.

Additional file 2: Table S1. List of 750 probes corresponding to 578
unique NSCLC SRAMs using FDR cutoff of 0.005.

Additional file 3: Figure S2. Representative candidate SRAMs. Some
SRAMs with rho≤ -0.5 out of a set of 750 probes that correspond to 578
unique genes. The x-axis is the degree of methylation, expressed as a
beta value from 0 to 1, with 1 indicating full methylation. The y-axis is
the gene expression level from the Illumina HumanWG-6 v 2 BeadChip,
expressed on a log2 scale.

Additional file 4: Figure S3. Experimental validation of a subset of
SRAMs. Using pyrosequencing of bisulfite-treated DNA and real-time PCR,
we aimed to validate the results obtained in the array analysis. The
expression of these genes is not known to be regulated by DNA
methylation. A) Correlation plots from our integrative analysis of 5
genes. B) Correlation between the Infinium methylation array beta
value and pyrosequencing methylation level at each promoter region.
C) Relationship between gene expression levels using real-time PCR
and the degree of methylation determined by pyrosequencing. Note
that the findings are consistent with the array data.

Additional file 5: Table S2. Top 7 ranked gene lists in gene set
enrichment analysis of the SRAM list of genes.

Additional file 6: Table S3. List of 135 probes corresponding to 111
unique SRAMs that discriminate E and E cells.

Additional file 7: Figure S4. Heatmap of the methylation status of a
few EMT-SRAMs. Three genes represent the genes that are preferentially
methylated (and silenced) in E-cadherin-low cells (SPINT1, RAB25, CDH1);
three genes are preferentially methylated in E-cadherin-high cells (AXL,
TWIST1, SPARC). The number in the parentheses is the number of CpG
probes that represent the data for each gene.

Additional file 8: Table S4. Overlap between EMT and breast cancer
datasets with lists of SRAMs or EMT-SRAMs.

Additional file 9: Figure S5. EMT-SRAM association with specific hub
genes using curated network analysis. A – E) Closest second neighbor
network representation with each of the EMT factors (hub genes),
demonstrating that CDH1 acts as a central hub for a majority of the
EMT-related factors, with strong connections with FN1 and CDH2. SNAI1/
2/GSC genes have secondary networks that are not as closely tied to the
other three factors.

Additional file 10: Figure S6. EMT-NSCLC gene set enrichment in
NSCLC cell lines from the Shames et al. dataset [31] treated with
1000 μM 5AZA. A) Gene set enrichment analysis (GSEA) of 5AZA-treated
mesenchymal cell lines (n = 4) enriches for the EMT-NSCLC gene set in
a positive direction, with low P values and false discovery rate (FDR)
q-values. B) GSEA of 5AZA-treated epithelial cell lines (n = 3) also
enriches for genes present in the EMT-NSCLC gene set, but with much
higher FDR q-values.

Additional file 11: Table S5. GSEA using EMT gene set for two cell
lines from Heller et al. [32].

Additional file 12: Text S1. Supporting Information.

Additional file 13: Table S6. Posterior probability that more genes
increase (rather than decrease) expression after treatment with 5AZA, by
type of cell line, using either an uninformative prior or a conservative
prior that assumes most genes do not change expression.

Additional file 14: Table S7. Posterior probability that more genes
increase (rather than decrease) expression in a cell line after treatment
with 5AZA, using either an uninformative prior or a conservative prior
that assumes most genes do not change expression.

Additional file 15: Table S8. Characteristics of the 73 cell lines used in
the study: the ATCC alias, histologic origin, and EGFR mutation status.

Additional file 16: Table S9. Primer sets used for validation of gene
expression by quantitative RT-PCR (QPCR) and pyrosequencing (PSQ).
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