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Abstract

un-annotated.

Background: Mutation(s) in proteins are a natural byproduct of evolution but can also cause serious diseases.
Aminoacyl-tRNA synthetases (aaRSs) are indispensable components of all cellular protein translational machineries,
and in humans they drive translation in both cytoplasm and mitochondria. Mutations in aaRSs have been implicated
in a plethora of diseases including neurological conditions, metabolic disorders and cancer.

Results: We have developed an algorithmic approach for genome-wide analyses of sequence substitutions that
combines evolutionary, structural and functional information. This pipeline enabled us to super-annotate human
aaRS mutations and analyze their linkage to health disorders. Our data suggest that in some but not all cases, aaRS
mutations occur in functional and structural sectors where they can manifest their pathological effects by altering
enzyme activity or causing structural instability. Further, mutations appear in both solvent exposed and buried
regions of aaRSs indicating that these alterations could lead to dysfunctional enzymes resulting in abnormal protein
translation routines by affecting inter-molecular interactions or by disruption of non-bonded interactions. Overall,
the prevalence of mutations is much higher in mitochondrial aaRSs, and the two most often mutated aaRSs are
mitochondrial glutamyl-tRNA synthetase and dual localized glycyl-tRNA synthetase. Out of 63 mutations annotated
in this work, only 12 (~20%) were observed in regions that could directly affect aminoacylation activity via either
binding to ATP/amino-acid, tRNA or by involvement in dimerization. Mutations in structural cores or at potential
biomolecular interfaces account for ~55% mutations while remaining mutations (~25%) remain structurally

Conclusion: This work provides a comprehensive structural framework within which most defective human
aaRSs have been structurally analyzed. The methodology described here could be employed to annotate
mutations in other protein families in a high-throughput manner.
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Background

Mutation(s) in housekeeping proteins often lead to serious
ailments in humans [1]. Analysis of molecular bases of
mutations that lead to dysfunctional proteins is an im-
portant step towards acquiring a detailed understand-
ing of genetic disorders. Several studies have annotated
disease-causing mutations in the human genome [2,3].
The knowledgebase developed through these will be useful
in guiding and orienting translational therapeutic research
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[4]. Aminoacyl-tRNA synthetases (aaRSs) drive cellular
protein translation by catalyzing ligation of cognate
tRNA with amino-acid for use in ribosomal protein
synthesis [5]. The catalytic reaction follows a two step
process as follows:

AA + ATP — AMP-AA + PP;
AMP-AA + tRNA — tRNA** + AMP

In the first step, amino acid (AA) is charged with ATP
and pyrophosphate (PP;) is released. The second step in-
volves charging of cognate tRNA with amino acid and
release of AMP. Evolution of a dedicated editing domain
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in some aaRSs highlights the stringent requirement for
fidelity of these reactions [6,7]. In addition to these trans-
lational functions, aaRSs also participates in many other
important physiological activities such as translational and
transcriptional regulation, signal transduction, cell mi-
gration, angiogenesis, inflammation, and tumourigenesis
[8-10]. Indeed, in pathogenic systems, the numerous attri-
butes of aaRSs are just being uncovered [11,12]. Hence,
aaRSs with their exquisite range of canonical and non-
canonical functions constitute an important subset of pro-
teomes. These enzymes have a modular architecture with
separate domains for catalysis, tRNA binding and editing
[13]. Based on the domain architecture and tRNA binding
modes, aaRSs have been classified into two groups — Class
I and II [14]. Class I aaRSs in humans are monomeric ex-
cept for YRS and WRS that are dimeric. Class II aaRSs in
humans are dimeric enzymes except for ARS which is
monomeric. A penta-motif (‘KMSKS’) and a tetra-motif
(‘HIGH’) are the two evolutionarily conserved motifs that
mediate ATP binding in Class I enzymes [15-17]. Class II
aaRSs have three conserved motifs — motifl, motif2, and
motif3 — which facilitate ATP and amino-acid binding to
the active site of the enzyme [18].

In humans, except for GRS and KRS, separate set of
genes within the nuclear genome encode for cytoplasmic
and mitochondrial aaRSs [19]. Cytoplasmic and mito-
chondrial GRSs are generated from distinct translation
initiation sites on the same gene (GARS) [20] while for
KRS alternate spliced products of same gene (KARS)
undergo differential sub-cellular localization [21]. The
human genome lacks gene for mitochondrial QRS and it
has been hypothesized that mitochondrial GIn-tRNAS™
is synthesized in two steps — first, tRNAS™ is misacylated
to Glu-tRNA®™ and second, generation of Gln-tRNAS™
by the action of glutaminyl amidotransferases [22]. Thus,
the human genome in total has 37 genes coding for aaRSs.
Human mitochondrial aaRS are encoded by nuclear gen-
ome and are trafficked to the organelle. Ten mitochon-
drial and four cytoplasmic aaRSs have been implicated in
human diseases so far [23]. The Protein Data Bank (PDB)
has structural representatives for all 20 members of aaRS
family. For 11 aaRSs, crystallographic structures of human
proteins are also available. Further, crystal structures have
been solved to elucidate mechanism of interaction of these
proteins with other biomolecules like ATP [24], tRNA
[25] and other proteins [26]. Owing to the multitude of
functions that aaRSs perform, it is no surprise that muta-
tions in these proteins often prove to be deleterious and
lead to diseases [27,28].

Over the years, many mutations have been identified in
different aaRSs [28]. These mutations results in dysfunc-
tional aaRSs leading to various neurological and metabolic
disorder such as Charcot-Marie-Tooth (CMT) disease,
Amyotrophic Lateral Sclerosis, cancer, and diabetes [9,28].
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The repertoire of sequence and structural information for
aaRSs provides an opportunity to investigate structural
distribution and functional relevance for mutations in
these proteins leading to diseases in humans. In this study
we have systematically analyzed all aaRS mutations in
cytoplasmic and mitochondrial enzyme copies. We have
evaluated disease-associated mutations within aaRSs in
context of their structural features and sequence conser-
vation. Properties such as local secondary structure at the
site of mutations along with solvent accessibility profiles
have been investigated to evaluate potential perturbations
caused by mutations. In addition, evolutionary sequence
conservation information has been used to annotate all
mutant sites. The possibility of mutations to influence
intra- and inter- molecular interactions mediated by
aaRSs has also been examined. Our methodology can
be effectively used to predict whether a particular mu-
tation in an aaRS could directly affect aminoacylation
activity or alter some other attribute such as interaction
with biomolecules. The results presented advance our un-
derstanding of mutation driven pathologies in humans.
Further, this study offers a mutation annotation pipeline
which is available for academic groups in the form of py-
thon scripts. We believe that the methodology outlined
here would prove useful for examining mutations within
different protein families in a high-throughput manner
wherever sequence and structural information is available.

Methods

Throughout the manuscript aaRSs are referred to as
‘XRS where X is the single letter code for corresponding
amino acid e.g. alanyl-tRNA synthetase is mentioned as
ARS. The gene name for an aaRS§ is referred to as ‘XARS
where X is the single letter code for corresponding
amino acid e.g. the gene for alanyl-tRNA synthetase is
mentioned as AARS. The gene name for mitochondrial
proteins has 2’ as suffix e.g. gene names for cytoplasmic
and mitochondrial ARS are AARS and AARS2 respect-
ively. Mutations in GARS and KARS genes are discussed
under the cytoplasmic aaRSs although these two genes en-
code for both cytoplasmic and mitochondrial copies of
GRS and KRS respectively. The aaRS mutations annotated
in this manuscript were retrieved from the literature pub-
lished till first quarter of 2014. The mutational annotation
pipeline ran as follows (Additional file 1: Figure S1): these
analyses required sequences of human aaRSs and a list of
substitution mutations in each enzyme. Structural homo-
logues for human aaRSs were identified using BLAST
searches against PDB. These structures were then used to
identify residues participating in inter-molecular interac-
tions such as binding with ATP, amino acid, tRNA and
oligomer formation. In addition, secondary structure and
solvent accessibility for residues in structural homologues
corresponding to mutated residue were calculated. Finally,
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an annotated pairwise sequence alignment between hu-
man aaRS and structural homologue was constructed.
Evolutionary conservation at mutational sites was also cal-
culated. In general, we have annotated aaRSs mutations
into four categories: (a) those likely to abrogate or disturb
ligand or tRNA binding due to direct contacts with sub-
strates/products, (b) those that are part of aaRS structural
core and where a change may directly affect enzyme fold-
ing/stability, (c) those that occur at protein surfaces which
will end up being interfaces during assembly of oligomers,
and (d) those that do not fall into any of the above. In case
of latter, experimentation and validation is required to
understand the mechanistic basis of mutational effects.

Calculation of intermolecular contacts

Inter-molecular contacts between aaRS and their binding
partners (e.g. ATP, amino-acid, tRNA, homo-dimeric partner)
were calculated using distance-based approaches. Any
aaR$ residue within 4 A of the binding partner was
considered to be participating in intermolecular con-
tacts. These interacting residues were then used to an-
notate mutations sites.

Multiple Sequence Alignment (MSA)

MSA for each aaRS

Mammalian homologues for each human aaRS were iden-
tified in the non-redundant (NR) database using BLAST.
Top 100 BLAST hits were selected to generate MSA spe-
cific for each aaRS. These alignments were used to evalu-
ate the phylogenetic distribution of residues at mutation
location.

MSA for each class of aaRS

Non-redundant datasets of class I and II aaRS crystal
structures were prepared with total of 57 and 39 struc-
tures respectively. These were prepared with sequence
similarity cutoff of ~90% using tools available at Protein
Data Bank. Using this dataset, structure-based multiple se-
quence alignment was generated for each enzyme class
separately. Structural alignment was calculated using TM-
align program [29] as implemented in T-Coffee package
[30]. Both class I and II aaRS, independently, have very
similar folds within their classes — this allowed generation
of a structure-guided sequence profile for each. These
structure-based MSAs were used to calculate residue con-
servation score at different positions in the sequence using
blosum62 matrix. Positional conservation in structure-
based MSA was divided into four groups — <40%, 40%-
60%, 60%-80%, and >80%. Alignment positions with scores
that could fall in two intervals were assigned to an interval
with identical lower limit e.g. a score of 60% would be
classified under 60-80% interval.
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Pair-wise sequence alignment

Human aaRS sequences were aligned with sequences of
3D structures using T-Coffee [30]. Sites of mutations
were highlighted in the query sequences using in-house
python scripts. The interacting residues in aaRS identified
above were highlighted in the sequence data. Residues that
emanate from PDB file were color-coded based on conser-
vation scores from the MSA calculated above. Distribution
of residues at the site of specific mutation was also calcu-
lated from MSA. Human aaRSs lacking crystal structure
information were not used for structure-based MSA, and
instead the location of corresponding residue from hom-
ologous structure in pairwise alignment was used to calcu-
late structural conservation.

Calculations of structural features from tertiary structure
Secondary structure

Formatted files for human aaRSs were retrieved from
PDB, and DSSP program was used to assign secondary
structures — which were classified as a-helix, 3,4 helix,
B-strand, turn or unassigned.

Solvent accessibility calculations

Residue solvent accessibility (SA) was calculated using
DSSP. Relative solvent accessibility (RSA) for a residue
in protein structure is defined as:

SA of residue’ X' in Protein
SAof residue’ X' in G_X _ Gtripeptide

RSA =

Based on RSA values, residues were classified as solv-
ent accessible or buried using following criteria. If for a
particular residue the value of RSA was >20% then it
was considered solvent accessible else buried. PyMol
was used for visual analyses of 3D structures [31].

Results and discussion

Mutational landscape of cytoplasmic aaRSs
Disease-associated mutations have been identified in four
cytoplasmic aaRS enzymes so far [28]. Mutations in LRS/
YRS within class I and ARS/GRS/KRS within class II lead
to various human diseases (Table 1 and Figure 1A). Each
point mutation in a given cytoplasmic aaRS$ has been inde-
pendently associated with disease. Figure 2A shows sche-
matic representation of domain architectures for these.
Briefly:

Mutations in glycyl-tRNA synthetase that causes
neurological disorders

A total of 14 substitution mutations have been identified by
exome sequencing of GARS gene (Table 1 and Figure 2B).
Our phylogenetic and sequence conservation analyses
suggest that wild-type residues at mutation sites are highly
conserved (Table 2 and Figure 3A). The in-house analysis
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Table 1 List of disease-associated mutations in cytoplasmic aaRSs. In case of GRS and KRS, one gene encodes for

cytoplasmic and mitochondrial isoforms

aaRs (Class) ID (oligomer)

Substitution mutation(s)

Disease/affected organ

Distal hereditary motor neuropathy (dHMN)
or distal spinal muscular atrophy (dSMA)/neurons

Infantile hepatopathy/liver in new born babies

Dominant intermediate Charcot-Marie-Tooth
disorder type C (DI-CMTC)/neurons

dHMN, CMT type 2 N/neurons

GRS (1) P41250 (Dimer) Ala111Val, Glu125Gly, Pro152Leu,
Cys211Arg, Leu183Pro, Pro288Lys, Gly294Arg,
lle334Phe, His472Arg, Asp554Asn, Gly580Arg,

Ser635Leu, Gly652Ala

LRS (1) Q9P2J5 (Monomer) Lys82Arg, Tyr373Cys

YRS (1) P54577 (Dimer) Gly41Arg, Glu196Lys

ARS (II) P49588 (Monomer) Asn71Tyr, Arg329His, Glu778Ala, Asp893Asn

KRS () Q15046 (Dimer) Leu133His, lle302Met, Thr623Ser

CMT/neurons

program output (Figure 3B) displays annotated pairwise
sequence alignment between primary sequence and tertiary
structure of human GRS where mutations are highlighted
in boxes. Juxtaposition of sites in 3D structure of human
GRS shows that mutations are distributed throughout
GRS (Figure 3C). For Asp554Asn change, the correspond-
ing residue is naturally present in mammalian GRS from
C. cristata (star-nosed mole). Total of five (of 14) muta-
tions — Prol52Leu, Leul83Pro, Cys211Arg, Pro288Lys
and Ile334Phe are directly involved in non-bonded in-
teractions at GRS dimeric interface. Four of these are
solvent accessible while Ile334Phe is buried. These obser-
vations suggest that Prol52Leu, Leul83Pro, Cys211Arg,
Pro288Lys and Ile334Phe substitutions likely affect dimer
assembly. Other mutations like Glu125Gly reside in a-helix
(H1 in PDB ID 2ZT7) within the catalytic domain of GRS
and likely destabilize local secondary structure because of
introduction of glycine within «-helical structure. Simi-
larly, the Gly294Arg mutation occurs in a buried location
within a p-strand that forms the GRS catalytic domain.
Substitution of the smaller glycine residue with a bulky

and positively charged arginine may affect GRS folding
and stability. Disordered regions within the protein struc-
ture have been shown to be critical for mediating interac-
tions with other proteins [32]. The Asp554Asn alteration
maps to a disordered region of human GRS but its bio-
chemical effect remains unexplored. Two substitution
mutations — Ser635Leu and Gly652Ala — were observed
to be part of a-helix and bend structure within the C-
terminal domain of GRS where these sites are solvent ac-
cessible. It is likely that alterations at these two positions
could impair or enhance the ability of GRS to interact
with other proteins leading to pathological phenotypes.
For the AlalllVal mutation located in GRS N-terminal
region, there is no corresponding residue in the crystal
structure so its significance remains unexplained. Interest-
ingly, amongst all aaRSs, GRS has the maximum number
of disease-associated mutations reported in literature to
date. Our data suggest that pathology emanating due to
aforementioned GRS mutations may be due to variety of
biochemical reasons e.g. alterations/interference in dimer
formation and structural instability within GRS core. In

Cytoplasmic aaRSs

Disease-associated mutations - 20%
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Val

Ala, Gly,
Leu, Lys,

Tyr

Figure 1 Distribution of aaRSs within cytoplasm (A) and mitochondria (B) for which mutations have been experimentally identified
(blue background) - lack of mutation (green background). Mutant ARS, LRS and YRS from cytoplasm and mitochondria are associated with
diseases. The mitochondrial and cytoplasmic isoforms of GRS and KRS are encoded by the same gene i.e. GARS and KARS respectively.
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Domain organization for cytoplasmic aaRSs
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Structural mapping of disease-associated mutations in cytoplasmic aaRSs

Figure 2 Disease-associated mutations in human cytoplasmic aaRSs. (A) Schematic representation of domain architecture of human
cytoplasmic aaRSs in which disease-associated mutations have been identified. Catalytic domain and anticodon binding domain are in blue and
cyan respectively. Domain boundaries for aaRS sequences were calculated using Pfam server. (B) Mutations (red) in human cytoplasmic aaRSs
mapped on the crystal structures. Different domains in structures have been color-coded corresponding to (A).
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summary, GRS mutations fall under three different cat-
egories as per our annotation (see Methods): (b), (c),
and (d) (Table 3).

Mutations in leucyl-tRNA synthetase that causes infantile
hepatopathies

Mutations in the LARS gene identified using whole gen-
ome sequencing have been associated with life threatening
hepatopathies in new born babies [40]. Symptoms include
anemia, impaired liver function and overall poor infant
development [40]. The two substitution mutations -
Lys82Arg and Tyr373Cys — within the LRS catalytic do-
main have so far been implicated (Table 1 and Figure 2B).

We show that the wild-type residues at these two sites are
conserved in homologous mammalian LRSs (Table 2).
Our analyses suggest a lack of direct participation by resi-
dues at these mutation sites in inter-molecular contacts
with ATP, amino acid or tRNA. The Tyr373Cys position
lies partially buried in a -strand within the LRS catalytic
domain (Figure 2B). In addition, this site has ~80% struc-
tural conservation based on non-redundant dataset of 57
Class I aaRSs (Table 2). These results indicate an import-
ant contribution of the site 373 in LRS. It is likely that this
mutation affects aaRS conformation as substitution of
a bulky buried hydrophobic residue (tyrosine) with smaller
cysteine in the -strand could destabilize the local network
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Table 2 Annotations for cytoplasmic aaRSs - mutations that were observed to be naturally present in corresponding

mammalian aaRSs are highlighted (bold)

aaRS Mutation Sequence spread in homologs (%) Structure RSA  Intermolecular interaction Domain References
GRS (I Alat11val  "A%77,'S%21,'E: 1, -1 1 NA NA - - [33-39]
Glu125Gly ~ 'E= 84, 10,'D" 6 H 227 - -
Pro152Lleu  'P: 99, -1 H 750 Dimerization -
Leul83Pro 1290, -8, 'M:1,'V:1 E 543 Dimerization Catalytic
Cys211Arg ~ 'C: 100 E 348 Dimerization Catalytic
Pro288Lys  'P: 98,2 S 94.1 Dimerization Catalytic
Gly294Arg ‘G 81,116, P+ 1,°K: 1, T 1 E 0.0 - Catalytic
Pro298Leu ‘P 97,'-: 3 S 0.7 - Catalytic
lle334Phe 181,28, 8,'V:2,'C: 1 S 11.2 Dimerization Catalytic
His472Arg ~ 'H: 80, - 20 H 3.3 - -
Asp554Asn ‘D" 81,':8,'K:7,'G:2,'N:1,'S: 1 - - -
Gly580Arg ‘G- 92,8 E 14.3 - -
Ser635Leu 'S© 83,28, T:7,'A"2 H 246 - C-terminal
Gly652Ala ‘G: 85, 'H: 8,7 464 - C-terminal
LRS (1) Lys82Arg ‘K. 81,"-:18,'N: 1 - 224 - Catalytic [40]
Tyr373Cys Y2100 E 213 - Catalytic
YRS (1) Gly41Arg ‘G 74, 26 E 404 ATP/amino-acid binding Catalytic [41]
Glu196Lys  'E: 74,25, 'P" 1 H 16.9 - Catalytic
ARS (1) Asn71Tyr ‘N- 97,3 E 0.0 - Catalytic [42-44]
Arg329His  'R: 98, -2 H 4.3 - Catalytic
Glu778Ala ‘E:79,T:10,'A": 6,'G" 2,'S": 2,'V": 1 - - - -
Asp893Asn  ‘D": 75, ‘P": 21, ‘N": 2, 'X": 1, "1 1 - - - -
KRS (Il) Leu133His ‘L 100 H 2.4 Anti-codon binding [45,46]
lle302Met I 100 S 29.5 Catalytic
Thre23Ser  T:77,'P: 16,4, 'A: 1, "M 1, V11 - - -

RSA values (%) in bold indicate buried positions that were ordered in the crystal structures. Also see Figure 2.

of non-bonded interactions within the protein struc-
ture. The second mutation location of Lys82Arg occurs
within the catalytic domain in a buried environment
but without a clear hint of its possible structural effects
on LRS (Figure 2B). Based on our structural analysis
Lys82Arg and Tyr373Cys mutations falls under cat-
egories (d) and (b) respectively (Table 3).

Mutations in tyrosyl-tRNA synthetase cause
Charcot-Marie-Tooth (CMT) disease

Dysfunctional cytoplasmic YRS results because of two sub-
stitution and one deletion mutation (Table 1 and Figure 2B)
resulting in Charcot-Marie-Tooth (CMT) disease [41].
Amongst heritable disorders of peripheral nervous system,
CMT is the most prevalent disease [47,48]. CMT can be
of two types — type I is induced by axonal demyelination
whereas type II results because of decreased amplitudes of
evoked motor and sensory nerve responses [49]. Symp-
toms for CMT include muscular weakness, stoppage gait,
high arched foot, reduced or absent deep-tendon reflexes,

and impaired sensation [47,49]. Two substitution muta-
tions in YRS have been identified using genome-wide
SNP analysis followed by PCR-RFLP (Polymerase Chain
Reaction-Restriction Fragment Length Polymorphism)
of selected candidate genes. We observed that the wild-
type YRS residues at these sites are highly conserved in
mammalian YRS sequences (Table 2). The Gly4lArg
change occurs in a sector responsible for ATP recogni-
tion and hence potentially disrupts ATP binding to YRS
(Figure 2B). This drastic mutation site occurs in a solvent
accessible site where it forms part of B-strand structure
within the catalytic domain (Figure 2B). In contrast, the
Glul96Lys mutation site is buried as part of catalytic
domain a-helix in protein core (Figure 2B and Table 2).
Reversal of charge coupled with larger size of mutated
residue (Glul96Lys) may alter the local physicochemical
environment - thereby altering YRS structural stability.
Finally, the four-residue deletion (Vall53-Vall56) oc-
curs in a solvent exposed sector of a-helix H7 within
the Rossmann fold domain and thereby likely affects the
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Distribution of wild-type/mutated residues within
mammalian GRSs
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Figure 3 Annotation for mutations in human cytoplasmic GRS. (A) Frequency distribution of residues at sites of GRS mutations. The distribution
was calculated based on top 100 mammalian homologous sequences identified using BLAST. A -’ represents frequency for gaps in the alignment.
(B) Alignment between sequence and structure of human cytoplasmic GRS (UniProt ID P41250 and PDB ID 2ZT7) with mutations (boxes).
Residues in GRS that interact with ATP/analogue and dimeric interface are underlined in black and blue respectively. Structural conservation
for GRS is graded in four categories <40%, 40-60%, 60-80%, and >80% which are highlighted in magenta, blue, green and red respectively.
(C) GRS mutations and those in dimeric interface are highlighted with a box.
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Table 3 Potential defects identified using our mutational annotation pipeline in aaRSs

Disease aaRS/mutations Previous functional Structural/functional feature

annotation for mutation

potentially affected

(category for mutational annotation)

Charcot-Marie-Tooth
disorder (CMT)

Infantile hepatopathy

Type-2 diabetes

Perrault syndrome,
ovarian failure and
hearing loss

Myopathy, lactic acidosis,
and sideroblastic
anemia (MLASA)

HUPRA syndrome

Infantile cardiomyopathies

Ponto cerebellar hypoplasia

GRS (Ala111Val
GRS (Glu125Gly
GRS (Pro152Leu
GRS (Leu183Pro
GRS (Cys211Arg
GRS (Pro288Lys,
GRS (Gly294Arg
GRS (Pro298Leu
GRS (lle334Phe)
GRS (His472Arg)
GRS (Asp554Asn)
GRS (Gly580Arg)
GRS (Ser635Leu)
GRS (Gly652Ala)
YRS (Gly41Arg)
YRS (Glu196Lys)
ARS (Asn71Tyr)
ARS (Arg329His)
ARS (Glu778Ala)
ARS (Asp893Asn)
KRS (Leu133His)
KRS (lle302Met)
KRS (Thr623Ser)
LRS (Lys82Arq)
LRS (Tyr373Cys)
LRS (His324GIn)
LRS (Thr522Asn)
LRS (Thr629Met)
HRS (Leu200Val
HRS (Val368Leu
YRS (Gly46Asp)
YRS (Phe52Leu)

)
)

SRS (Asp390Gly)
SRS (Arg402His)
ARS (Leu155Arg)
ARS (Arg592Trp)
RRS (lle9Val)
RRS (GIn12Arg)
RRS (Trp241Arg)
RRS (Arg245GIn)
RRS (Arg469His)

No reported annotation
No reported annotation
No reported annotation
Defective dimerization
No reported annotation
No reported annotation
Defective dimerization
No reported annotation
No reported annotation
No reported annotation
Enhanced dimerization
Enhanced dimerization
Enhanced dimerization
No reported annotation
Impaired tyrosine activation
No reported annotation
Impaired tRNA charging
Imparired tRNA charging
No reported annotation
No reported annotation
Decreased enzyme activity
No reported annotation
No reported annotation
No reported annotation
No reported annotation
No reported annotation
Decreased enzyme activity
No reported annotation
Decrease enzyme activity
Decreased enzyme activity
Translational defects

Abnormal enzyme kinetics

Decreased enzyme activity
No reported annotation
No reported annotation
No reported annotation
No reported annotation
No reported annotation
No reported annotation
No reported annotation

No reported annotation

Un-annotated (d)
Dimerization (c)
Dimerization (c)
Dimerization (c)
Structural stability (b)
Dimerization (c)
Structural stability (b)
Structural stability (b)
Dimerization (c)
Structural stability (b)
Un-annotated (d)
Structural stability (b)
Inter-molecular interaction (c)
Inter-molecular interaction (c)
ATP/amino-acid binding (a)
Structural stability (b)
Structural stability (b)
Structural stability (b)
Un-annotated (d)
Un-annotated (d)
Structural stability (b)

Inter-molecular interactions (c)

Un-annotated (d)
Un-annotated (d)
Structural stability (b)
Structural stability (b)
Structural stability (b)
Structural stability (b)
Structural stability (b)
(b)

Structural stability (b

Inter-molecular interactions (c)

Inter-molecular interactions (c)

Structural stability (b)

y (
Structural stability (b)
Un-annotated (d)
Un-annotated (d)
Un-annotated (d)
Un-annotated (d)
Structural stability (b)
Structural stability (b)

)

tRNA binding (a
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Table 3 Potential defects identified using our mutational annotation pipeline in aaRSs (Continued)

Leukoencephalopathy
with brainstem and spinal
cord involvement and
elevated lactate (LBSL)

Fatal infantile

ERS (Arg55His)

ERS (Glu96Lys)

ERS (Arg107His)
ERS (Arg108Trp)
ERS (Gly110Ser)
ERS (Lys167Tyr)

ERS (Arg168Gly)
ERS (Gly204Ser)
ERS (Gly224Ser)
ERS (Gly317Cys)
ERS (Arg516Gln)
DRS (Ser45Gly)
DRS (Cys152Phe)
DRS (Arg179His)
DRS (Leu239Pro)
DRS (Arg263Gln)
DRS (Leu613Phe)
DRS (Leu626GIn)
DRS (Leu626Val)
FRS (Tyr144Cys)

No reported annotation
No reported annotation
No reported annotation
No reported annotation
No reported annotation
No reported annotation
No reported annotation
No reported annotation
No reported annotation
No reported annotation
No reported annotation
No reported annotation
Defective dimerization
No reported annotation
No reported annotation
Defective dimerization
No reported annotation
Decrease enzyme activity
No reported annotation
Defective tRNA binding

Structural stability (b)
Inter-molecular interactions (c
Inter-molecular interactions (c

Inter-molecular interactions (c

)
)
)
Inter-molecular interactions (c)
Un-annotated (d)
Un-annotated (d)
Inter-molecular interactions (c)
Inter-molecular interactions (c)
tRNA binding (a)
Structural stability (b)
Dimerization (c)
Dimerization (c)
Inter-molecular interactions (c)
Un-annotated (d)
Dimerization (c)
tRNA binding (a)
Inter-molecular interactions (c)
Inter-molecular interactions (c)

Un-annotated (d)

Alpers encephalopathy,

mitochondrial myopathies FRS (lle329Thn)

FRS (Asp391Val)

Impaired stability/decreased ATP binding
Impaired stability/decreased Phe binding

Structural stability (b)

Inter-molecular interactions (c)

Mutation are annotated under four categories: (a) those likely to abrogate or disturb ligand or tRNA binding due to direct contacts with substrates/products,
(b) those that are part of aaRS structural core and where mutation may directly affect enzyme folding/stability, (c) those that occur at protein surfaces which will
end up being interfaces during assembly of oligomers (like dimeric interfaces), and (d) those that do not fall into any of the above and therefore where further

experimentation may provide a mechanistic basis for mutational effects.

dimerization of YRS (Figure 4). Based on our annotation
criteria, the Gly41Arg and Glul96Lys mutations belong
to categories (a) and (b), respectively whereas the deletion
mutation falls under category (c) (Table 3).

Mutations in alanyl-tRNA synthetase that cause CMT and
muscular neuropathy

Four ARS substitution mutations (Asn71Tyr, Arg329His,
Glu778Ala and Asp893Asn) identified using exome sequen-
cing are associated with CMT disease [42] (Table 1 and
Figure 2B). Interestingly, for Glu778Ala and Asp893Asn
the corresponding mutated residue is naturally present in
other mammalian ARS sequences e.g. B. taurus ARS has
Ala778 and Mustela putorius furo (domestic ferret) ARS
has Asn893 (Table 2). Our results suggest that none of the
four substitution mutations directly participate in inter-
molecular interactions with ARS substrates (Figure 2B
and Table 2). The buried site Asn71Tyr lies in catalytic
domain B-strand structure where it may affect enzyme
stability due to introduction of large hydrophobic resi-
due in place of smaller hydrophilic one (Figure 2B). The
Arg329His mutation occurs in a region of high sequence
and structural conservation at a solvent inaccessible site

Val153-Val156
deletion

Figure 4 Disease-associated deletion mutation (red) in YRS
mapped onto the crystal structure with the two monomers
shown in different colors. Deletion mutation in human cytoplasmic
YRS (red) mapped onto the corresponding regions in the crystal
structure of T. thermophilus YRS (PDBID TH3E).
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within the ARS catalytic domain suggesting structural
perturbation (Figure 2B). Previous biochemical studies
have shown that ARSs with mutations of Asn71Tyr or
Arg329His are defective in aminoacylation activity [42].
The Glu778Ala and Asp893Asn reside in C-terminal
domain and there are no corresponding regions in the
homologous crystal structure. Overall, the four ARS
mutations were observed in different sub-domains of
ARS and the two annotated mutations (Asn71Tyr and
Arg329His) belong to category (b) whereas the other
two mutations fall under category (d) (Table 3).

Mutations in lysyl-tRNA synthetase cause CMT disease

Three KRS substitution mutations (Leul33His, Ile302Met,
and Thr623Ser) identified using whole exome sequencing
have been associated with CMT disease (Table 4 and
Figure 5B) [45,46]. KARS gene encodes two alternately
spliced isoforms that catalyze aminoacylation in cytoplasm
and mitochondria. Our sequence analyses suggest that
the corresponding wild-type residues are fully con-
served in mammalian KRSs (Table 5). We observe that
the Leul33His mutation does not participate in any
direct contacts with ATP, amino acid, tRNA or dimeric
partner (Figure 5B). Interestingly, this mutation lies at a
position with high sequence and structural conservation
(>80%) and is part of a buried a-helix within the anti-
codon binding domain suggesting that it might affect KRS
structural stability (Table 5). Previous reports on func-
tional aspects of the Leul33His mutation show that the
mutant protein has severely compromised aminoacylation
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activity [45]. The Ile302Met adopts -strand conformation
within the catalytic domain and does not participate in
inter-molecular interactions with any of the components
of aminoacylation reaction (Figure 5B). It is likely that the
introduction of this mutation causes steric incompatibility
within the protein structure. For the third mutation
(Thr623Ser) that lies towards C-terminal there is no cor-
responding residue in structural homologues. Overall,
KRS mutations appear to affect structural stability of the
enzyme leading to CMT and therefore these mutations fall
in category (b) and (d). Finally, a frame shift mutation
(Tyr173SerfsX7) within the anti-codon binding domain
results in premature termination of the transcript, again
linked to CMT [45].

Mutational landscape of mitochondrial aaRSs

Mitochondria are ATP synthesizing organelles in eukaryotic
cells. The 16,569 base pairs long closed circular human
mitochondrial DNA encodes for proteins, rRNA and
tRNA [64]. Additional nuclear encoded proteins required
for protein synthesis such as aaRSs and transcription fac-
tors are imported into mitochondria [64]. Dysfunctional
mitochondria, due to mutations in mitochondrial or nu-
clear DNA (including in tRNA genes and those that en-
code mitochondrial proteins), have been implicated in
numerous human diseases [28,65-67]. Remarkably, the
pathologies of dysfunctional mitochondria aaRSs are not
restricted to systematic impairment of ATP synthesis but
rather seem to have tissue-specific phenotypes [23]. Muta-
tions have been identified in both Class I and II enzymes.

Table 4 List of disease-associated mutations in human mitochondrial aaRSs

aaRs (class) ID (state) Substitution mutation(s) Disease(s)/affected organ
LRS (1) Q15031 (Monomer) His324GIn, Thr522Asn, Thr629Met Type-2 Diabetes, premature ovarian failure
and hearing loss in Perrault syndrome/ovary
and ears
ERS () Q5JPH6 (Monomer) Arg168Gly, Gly110Ser, Gly204Ser, Glu96Lys, Leukoencephalopathy with thalamus and
Lys167Tyr, Gly317Cys, Arg55His, Gly224Ser, brainstem involvement and high lactate
Arg107His, Arg108Trp, Arg516GIn 'LTBL/brain
YRS (1) Q9Y2Z74 (Dimer) Gly46Asp, Phe52Leu Myopathy, lactic acidosis, and sideroblastic
anemia/muscles and blood cells
RRS () Q5T160 (Monomer) lledval, GIn12Arg, Trp241Arg Arg245GIn, Ponto cerebellar hypoplasia type 6

SRS (I QO9NP81 (Dimer)
HRS (1) P49590 (Dimer)
FRS (1) 095363 (Dimer)
ARS (Il) Q5JTZ9 (Monomer)
DRS (1) Q6PI48 (Dimer)

Arg469His
Asp390Gly, Arg402His
Val368Leu, Leu200Val

1le329Thr, Asp391Val, Tyr144Cys

Leu155Arg and Arg592Trp

Serd5Gly, Cys152Phe, Arg179His, Leu239Pro,
Arg263GIn, Leu613Phe, Leu626GIn, Leu626Val

(PCH6)/brain
HUPRA syndrome/lungs and kidneys

Perrault syndrome, ovarian dysgenesis and
sensorineural hearing loss or Perrault
syndrome/ovary and ears

Fatal infantile alpers encephalopathy,
mitochondrial myopathies, diabetes,
encephalopathies, and deafness/central
nervous system disease, muscles and brain

Infantile cardiomyopathies/heart in
new born babies

Leukoencephalopathy with brainstem and
spinal cord involvement and elevated
lactate/brain
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Domain organization of mitochondrial aaRSs
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Figure 5 (See legend on next page.)
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(See figure on previous page.)
Figure 5 Disease-associated mutations in human mitochondrial aaRSs. (A) Schematic representation of domain architecture of mitochondrial
aaRSs in which disease-associated substitution mutations have been identified. Catalytic domain and anticodon binding domain are in blue and cyan
respectively. Domain boundaries for aaRS sequences were calculated using Pfam server. (B) Mutations (red) in cytoplasmic aaRSs mapped on the
crystal structures where its domains have been color-coded corresponding to (A).

Table 5 Annotations for mitochondrial aaRSs

aaRS Mutation  Sequence spread in homologs (%) Structure RSA Intermolecular interaction Domain Reference
LRS ()  His324GIn  'H:48,'K:22,'C: 14,14, 'R: 4, N 3,'P: 3,'A:1,'G" 1 H 4.7 - Catalytic [50,51]
Thr522Asn ‘T 86, - 14 T 204 - Catalytic
Thré29Met T 63, 'L: 22, -2 14,V 1 E 11.6 - Catalytic
ERS ()  Arg55His ‘R:77,°K: 12,210, L1 H 4.4 - Catalytic [52]
GludéLys ‘.79, 'A% 10,4 8, T 3 H 64.9 - Catalytic
Arg107His ~ ‘R': 79,15, ‘H": 2, ‘T": 2,'C": 1,‘Q": 1 T 47.8 - Catalytic
Arg108Trp  'R%78,-:15,'Q"4,'E" 3 T 56.8 - Catalytic
Gly110Ser ‘G: 84,15, 'E" 1 - 528 - Catalytic
Cys167Tyr  'C:83,-:15,'Q" 1, 'R 1 - - - Catalytic
Arg168Gly  'R: 83,14, L% 2, 'K: 1 - - - Catalytic
Gly204Ser ‘G2 82,Y: 11,16,V 1 E 38.1 - Catalytic
Gly224Ser ‘G: 81,117, 'A% 1,V S 428 - Catalytic
Gly317Cys  'G:81,T:10,-:7,'S" 2 - 44.7 tRNA binding Catalytic
Arg516GIn ‘R: 71,7 11,'D: 10,'S" 3, 'E= 2, 'K: 2,V 1 H 6.4 - C-terminal
YRS ()  Gly46Asp ‘G 84,112,'Q 2, 'E11,'S"1 T 523 - - (53,54]
Phe52Leu  'F© 89,710,V 1 E 288 - -
RRS () lle9val 084,12, 'A% 1, R L - - - - [55]
GIn12Arg ‘Q:53,'E:25,":11,'K: 6, T 3,’L: 1, 'R: 1 - - - -
Trp421Arg ‘W98, -2 H 13.2 - Catalytic
Arg245GIn 'R 98, - 2 H 6.8 - Catalytic
Arg469His  'R: 99, - 1 H 234 tRNA binding Editing
SRS (I)  Asp390Gly  'D:78,'N: 14,7, 'E"1 E 1.2 - Catalytic [56]
Arg402His ‘R: 78, 'K: 14, - 7,'A: 1 E 149 - Catalytic
HRS (I)  Leu200val 'L 100 H 0.0 - Catalytic [57]
Val368Leu V100 H 1.2 - Catalytic
FRS ()~ Tyr144Cys  'Y©73,-%19,°F:6,'E: 1, 'L 1 - 0.9 - Catalytic [58]
[le329Thr 173,16, W6, 'L 3,'G 1,V 1 G 4.1 - Catalytic
Asp391Val ‘D 81,1 16,'G: 2, 'E" 1 G 26.3 - -
ARS (I)  Leul55Arg  L297,-:3 H 0.0 - Catalytic [59]
Arg592Trp 'R’ 51,Q" 20, ‘N 20, ‘G- 6, - 3 - - - Catalytic
DRS (Il) ~ Ser45Gly 'St76,14,'N* 8, 'E: 1, 'K: 1 S 10.7 Dimerization - [27,60-63]
Cys152Phe  ‘C:74,'A%16,-:6,'Q" 1,'S" 1, W= 1,'X 1 - 31.1 Dimerization -
Arg179His ~ 'R%92,-:7,'G" 1 T 286 - Catalytic
Leu239Pro ‘L% 93, -7 - 18.2 - Catalytic
Arg263GIn ~ ‘R:79,'P: 16,5 E 56.0 Dimerization Catalytic
Leu613Phe L. 74,'P: 15,111 S 414 tRNA binding -
Leu626GIn L% 73,125,112 T 64.0 - -
Leu626Val  'L:73,-: 25,2 T 64.0 - -

Mutations that were observed to be naturally present in corresponding aaRSs are highlighted (bold). RSA values (%) in bold indicates buried positions. SS and

RSA could not be assigned for residues that were disordered in the crystal structure. Also see Figure 5.
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Most human diseases attributable to mutations in aaRSs
are due to alterations in the mitochondrial copies of
aaRSs. We show that ~55% of mitochondrial aaRSs have
been implicated in disease-associated mutations compared
with ~20% for cytoplasmic aaRSs (Table 4 and Figure 1B).
Each point mutation in a given mitochondrial aaRS has
been independently associated with a given disease except
in cases of RRS and HRS where more than one substitu-
tion has been observed in a single patient (see Table 5).
Figure 5A shows schematic representations of mitochon-
drial aaRS domain architectures. Specific analyses of mu-
tations follow here:

Mutations in mito-leucyl-tRNA synthetase causes ovarian
failure and diabetes

Three substitution mutations (His324Gln, Thr522Asn and
Thr629Met) in the mitochondrial LRS have been associ-
ated with ovarian failure, hearing loss and type-2 diabetes
(Table 4 and Figure 5B). Multiple sequence alignment of
homologous LRS sequences reveals that the wild-type resi-
dues for these are fully conserved across mammalian LRSs
(Table 5). We observed that none of these mutations are
likely to directly interact with aminoacylation reaction sub-
strates (Figure 5B and Table 5). The position for His324GIn
mutation lies buried as part of a-helical region (H12 in
PDB ID 4AQ7) in the catalytic domain and shows ~60%
structural conservation within class I aaRSs. Thr522Asn
and Thr629Met are located in buried sites within the LRS
catalytic domain and adopt turn and B-strand conforma-
tions respectively. In summary, our structural analysis sug-
gests that all the three LRS mutation falls into category (b).

Mutations in mito-tyrosyl-tRNA synthetase cause MLASA
Two substitution mutations (Gly46Asp and Phe52Leu)
in the YRS Rossmann fold domain have been linked to my-
opathy, lactic acidosis and sideroblastic anemia (MLASA)
[53,54]. We observed that in each of these cases, the cor-
responding wild-type residues are fully conserved in YRSs
(Table 5). Further investigation into location of mutations
suggests a lack of direct interactions with YRS substrates
or participation in enzyme dimerization (Figure 5B). The
Gly46Asp and Phe52Leu mutations are solvent accessible
and occur in B-strand and turn regions respectively within
the N-terminal region (and distal from the catalytic sector).
It therefore remains unclear from our analyses how these
mutations in non-functional YRS regions lead to disease
states in humans (category d). Previous biochemical stud-
ies have shown that the mutant YRSs have abnormal kin-
etics vis-a-vis wild-type enzyme [53].

Mutations in mito-alayl-tRNA synthetase cause
cardiomyopathy

Two substitution mutations (Leul55Arg and Arg592Trp)
in ARS identified using whole exome sequencing are
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associated with cardiomyopathies in infants [59] (Table 4
and Figure 5B). Comparison of the mammalian ARS se-
quences suggests very high conservation of these two
ARS sites. The Leul55Arg change is part of a-helix (H4
in Rossmann fold domain), remains buried and given
distance considerations it is unlikely to affect inter-
molecular substrate contacts (Figure 5B). The drastic al-
teration in physicochemical environment (replacement
of leucine with positively charged arginine) may affect
ARS folding and stability. The other ARS mutation
(Arg592Trp) occurs within the editing domain and is
severe given the conversion of arginine into a large aro-
matic residue. Hence, both the mutations are likely to
reduce structural stability of ARS and therefore fall in
category (b).

Mutations in mito-glutamyl-tRNA synthetase cause
leukoencephalopathy

ERS mutations are associated with multiple pathologies
including myopathy, respiratory failure and retinitis pig-
mentosa [52]. A total of 14 substitution mutations and
one insertion mutation (Thr426_Argd27insL) have been
reported for ERS (Table 4). Only one of the substitution
mutations, Argl07His, is naturally present in mitochon-
drial ERS from Mpyotis davidii (mouse-eared bat) (Table 5
and Figure 6A). All the other mutations map to evolu-
tionarily conserved positions within the ERS family
(Figure 6B). Four substitution mutations (Argl07His,
Argl08Trp, Glyl10Ser, and Arg516Gln) are observed
at positions with very high structural conservation
(>80%, residues are red in Figure 6B) and therefore
may affect enzyme structural core. In addition, the loss
of positive charge at three out of these four positions
would alter the electrostatic properties of ERS. The
Gly317Cys mutation occurs in the tRNA binding sec-
tor and could potentially affect tRNA binding to ERS
(Figure 6C). Four additional mutations — Arg55His,
Glu96Lys (catalytic domain), Arg516GIn (C-terminal
domain), and a deletion mutation at position 398 (cata-
lytic domain) occur in a-helical structures of ERS.
Amongst these substitution mutations, Arg55His and
Arg516GlIn are buried and therefore could potentially
alter enzyme stability. In cases of the Argl07His and
Argl08Trp mutations, the substitution of exposed argi-
nines will likely alter ERS electrostatic properties. Taken
together, the ERS mutations fall within two different
categories — (a) and (b) (Table 3).

Mutations in mito-arginyl-tRNA synthetase cause Ponto
cerebellar hypoplasia

Five substitution mutations and one frame shift muta-
tion have been identified in human RRS (Table 4 and
Figure 5B) [55]. Our annotation analysis suggests that
none of the five substitutions are likely to directly
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A Distribution of wild-type/mutated residues within mammalian ERSs
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(See figure on previous page.)

tRNA-binding interface is highlighted with boxed labels.

Figure 6 Annotation for mutations in human mitochondrial ERS. (A) Frequency distribution of residues at sites of ERS mutations. The
distribution was calculated based on top 100 mammalian homologous sequences identified using BLAST. A -’ represents frequency for gaps in
the alignment. (B) Sequence alignment of mitochondrial ERS (UniProt ID Q5JPH6) and T. maritima ERS where substitutions in human protein are
shown in boxes. Residues in T. maritima ERS that interact with ATP/analogue and tRNA are underlined in black and red respectively. Structural
conservation for T. maritima ERS is graded in four categories <40%, 40-60%, 60-80%, and >80% which are highlighted as magenta, blue, green
and red respectively. (C) Mutations (in parentheses) in human ERS mapped on to the crystal structure of T. maritima ERS where mutation in

contact substrate atoms (Figure 5B). Of the five, se-
quence comparisons show that GInl2Arg mutation is
naturally present in rabbit RRS sequence (Table 5) sug-
gesting that this mutation may not alter enzyme activity
as it is tolerated in other mammals. However, in case of
other three - Trp241Arg, Arg245GIn and Argd69His the
wild-type residues are highly conserved and these form
part of an a-helix. The Trp241Arg and Arg245GlIn substi-
tutions occur at buried sites that show high structural
conservation (>80%) within the Rossmann fold domain —
hence these are likely to cause structural perturbation of
RRS (category b) (Figure 5B). Further, the Argd69His lies
in the tRNA binding region of RRS editing domain and
hence falls in category (a). For the remaining two N-
terminal mutations (Ile9Val and GIn12Arg) our analyses
suggest structural disorder in homologs and hence these
remain un-annotated (category d). Amongst the five
disease-associated mutations in RRS, Arg245GIn and
Arg469His substitutions were observed in single patient
family; similarly, GIn12Arg and Trp241Arg substitutions
were identified within one disease affected family [55].

Mutations in mito-seryl-tRNA synthetase cause several
disorders

The Asp390Gly and Arg402His mutations in SRS are
associated with fatalities in newborns [56] (Table 4 and
Figure 5B). Patients with the HUPRA (Hyperuricemia,
pulmonary hypertension, renal failure, and alkalosis)
syndrome generally die because of multi-organ failure,
respiratory insufficiency or lung hypertension — these
SRS mutations were identified using SNP microarray
analysis [56]. Our analysis suggests that mutation hot
sites occur in residues of high conservation across mam-
malian SRSs (Table 5). The Asp390Gly and Arg302His
changes occur in buried sites within catalytic domain of
SRS, although they likely do not contact enzyme sub-
strates (Figure 5B). Interestingly, it has been reported that
the Asp390Gly mutant protein exhibits lower level of ami-
noacylation activity for one of the (two) isoacceptor
tRNAS®" [56]. However, it seems that the Asp390Gly
mutation does not affect charging of the other isoac-
ceptor tRNA®®" ¢y [56]. These data present an enigma
as they suggest differential recognition of cognate tRNAs
by the Asp390Gly mutant protein. Nonetheless, the
Asp390Gly mutation leads to loss of function leading the

pathological condition. From our analysis, it is evident
that both these mutations are in category (b).

Mutations in mito-histidyl-tRNA synthetase cause Perrault
syndrome

HRS mutations identified using genomic sequencing are
associated with ovarian dysgenesis and Perrault syndromes
[57]. Two substitution mutations (Leu200Val and Val368-
Leu) and one deletion mutation in HRS have been impli-
cated (Table 4 and Figure 5B). The affected individual was
observed to harbor both these mutations in HRS simul-
taneously. Sequence analyses within mammalian HRSs
reveal high conservation of wild type residues at these po-
sitions (Table 5), suggesting evolutionarily important func-
tional roles. Both Leu200Val and Val368Leu form part of
a-helix, where the former locates in HRS catalytic domain
while the latter is at the junction of Rossmann fold domain
and the loop connecting C-terminal domain (Figure 5B).
Our analysis shows that both these mutation sites are bur-
ied, and hence it is unlikely that these participate in direct
contacts with either the enzyme substrates or its dimeric
partner. These observations suggest that both these muta-
tions fall under category (b). Finally, a deletion mutant
where residues Leu200 to Lys211 are missing is associated
with Perrault syndrome [57]. These residues (200 to 211)
constitute a turn and a -strand structure within the dimeric
interface of HRS (Figure 7A). It is likely that the deletion
mutant protein has severely compromised ability to form
dimers (category c) and hence impaired enzymatic activity.

Mutations in mito-phenylalanyl-tRNA synthetase cause
muscular and neurological disorders

Three FRS substitution mutations identified using whole
exome sequencing have been implicated in various neuro-
logical and metabolic diseases in humans [58] (Table 4 and
Figure 5B). Wild-type positions at mutant sites display very
high sequence conservation (>90%) within mammalian
FRSs (Table 5). Our structural evaluations suggest that the
1e329Thr mutation within the catalytic domain is likely to
make direct contacts with ATP (Figure 5B). The 1le329Thr
and Asp391Val (in C-terminal domain) sites are present in
310 helical regions of FRS (Figure 5B). The third substitu-
tion mutation (Tyr144Cys) is buried and is not part of a
well-defined secondary structure element within the pro-
tein. Interestingly, the site for Tyr144Cys mutation suggests
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crystal structures.

Mapping of deletion mutation (red) on the dimeric HRS structure from 7. cruzi (PDB ID 3HRK)

L200-K211
Deletion

Mapping of deletion mutation (red) on the human mitochondrial DRS structure (PDB ID 4AH6)

M134-K165
Deletion

/%\f

Figure 7 Disease-associated deletion mutations (red) in mitochondrial HRS (A) and DRS (B) mapped onto their corresponding

high structural conservation (>80%). Overall, our results are
consistent with previous reports that correlate these FRS
mutations to disease states by affecting aminoacylation
activity as well as destabilizing the structure of FRS [58].
Hence, the three FRS mutations fall within categories

(a) and (b).

Mutations in mito-aspartyl-tRNA synthetase cause
leukoencephalopathy

Autosomal recessive mutations in mitochondrial DRS
induce LBSL (Leukoencephalopathy with brainstem and
spinal cord involvement and elevated lactate) [68,69] that
is characterized by abnormal muscle stiffness (spasticity)
and difficulty with coordinating movements (ataxia) [68,69].
Ten substitution mutations, one frame shift mutation, and
one deletion mutation have been identified in DRS (Table 4
and Figure 5B). These sites are highly conserved across
mammalian DRSs (Table 5). Four substitution mutations -
Ser45Gly, Cys152Phe, Argl79His, and Arg263Gln are at
the dimeric interface of DRS (Figure 5B). It is likely that
these mutations disrupt the network of non-bonded inter-
actions at the dimeric interface leading to dysfunctional
DRS. The Leu613Phe mutation occurs in the tRNA bind-
ing region - however this mutation has been shown to have

no affect on enzyme activity [70]. The site for Leu626GIn
mutation has very high structural conservation (>80%) in-
dicating that substitution at this site might perturb DRS
structure. Two nonsense mutations at positions Arg263
and Glu425 result in the introduction of a stop codon
leading to inactive protein. One deletion within the
anticodon-binding domain ranging from Metl134 to
Lys165 has also been associated with LBSL in humans
(Figure 7B) [69]. Overall, our mutational annotations
suggest that the pathological consequences of dysfunc-
tional DRS could stem from various molecular abnormal-
ities including defective dimerization, incompetent tRNA
binding and structural instability. The DRS mutations
hence fall under categories (a), (b), and (c) (Table 3).

Conclusions

We have developed a mutational annotation pipeline that
functionally categorizes mutations in proteins. The pair-
wise sequence alignment, which is the primary output
from our analysis pipeline, pictorially provides valuable
structural and evolutionary sequence conservation infor-
mation. Our approach also offers rapid structural annota-
tion for mutations in proteins vis-a-vis methods that first
build a 3D model of a sequence followed by mapping of
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the mutations. Our methodology can be automated to
annotate and classify mutations in any protein family. In
addition to the annotations adopted in this study, custom-
ized annotations can also be included in the output e.g, the
pairwise sequence alignment can have annotations for resi-
dues interacting with biomolecular partner(s). The ap-
proach presented here is built on an open-source platform
that is freely available for academic research, and it provides
a facile tool to decipher molecular effects of mutations
in proteins.

Mutations in proteins can cause pathological effects
through a variety of molecular mechanisms. Integrated
computational and structural biology offers an opportun-
ity to analyze molecular phenotypes for disease-associated
mutations in a high-throughput manner within structural
contexts of mutant proteins. The aaRSs are ubiquitous en-
zymes that drive protein translation in cells [5]. These
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enzymes accurately catalyze charging of tRNAs with their
cognate amino acids and therefore effectively decode the
genetic code [5,7]. Mutations in aaRSs lead to a variety
of diseases in humans [28]. Considering the diverse
roles of aaRSs, it is likely that mutations within these
proteins could manifest their pathological phenotypes
by either affecting the canonical activities (aminoacylation
and/or editing) or non-canonical functions (gain- or loss-
of-function). The etiology of these mutant phenotypes
could involve multitude of facets such as altered inter-
molecular interactions; abnormal sub-cellular localization;
changes in oligomeric states; variations in structural stabil-
ity or protein aggregation tendencies.

In this study, we have performed systematic and rigorous
computational analyses of human aaRSs disease-associated
mutations to evaluate their evolutionary, structural and
functional characteristics. Our results show that aaRS
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mutations can occur in structurally conserved regions
within both cytoplasmic and mitochondrial aaRSs. Four
mutations in cytoplasmic and seven in mitochondrial
aaRSs were observed to participate in inter-molecular
interactions with substrates of aminoacylation reactions
such as ATP, amino acid or tRNA (Figure 6). Such mu-
tations therefore could directly manipulate the ability of
aaRSs to accurately execute enzymatic activities poten-
tially leading to slower kinetics or even loss of activity.
In addition, mutational alterations distal from the active
site regions could affect non-canonical functions that
are often associated with this protein family (Table 3).
Evidence supporting pathological effects of mutations
due to anomalous non-canonical aaRS functions comes
from mouse model for CMT where a mutant GRS re-
tains wild-type aminoacylation activity [71]. Apart from
mutations annotation, we also show that deletion muta-
tions in YRS and HRS likely disrupt their dimeric as-
semblies, which in turn would lead to stalling of new
protein translation (Figures 4 and 8A). Similarly, the de-
letion mutations in ERS and DRS could compromise
ERS-tRNA interactions and editing activity respectively
(Figures 6C and 8B).

In humans, 9 aaRSs and 3 auxiliary proteins assemble
to form multisynthetase complex (MSC) within the cyto-
plasm [72]. These MSCs plays are critical role in various
non-translational activities within the cell. Cytoplasmic
LRS is the only component of MSC for which disease-
associated mutations have been reported [40]. It has
been suggested that the C-terminal domain of LRS inter-
acts with RRS within MSC [73]. Our analysis shows that
disease-associated mutations in LRS localize within the
N-terminal catalytic domain, and thus may not have a
direct affect on the assembly of MSC. Further crystallo-
graphic studies on MSC would provide necessary in-
sights into the assembly of different synthetases within
these complexes, as has been achieved for other cellular
assemblies [74-76].

Out of 63 mutations annotated in this work, only 12
(~20%) were observed in regions that could directly
affect aminoacylation activity via either binding to ATP/
amino-acid, tRNA or by involvement in dimerization.
Mutations in structural cores or at potential biomolecular
interfaces account for 55% mutations while remaining mu-
tations (25%) remain structurally un-annotated (Figure 8).
These observations call for further experimental investiga-
tions to understand the molecular effects caused by muta-
tions in aaRSs. Overall, the landscape for mutated aaRSs
highlights that no particular site within aaRSs is specific-
ally prone to mutations, or seems mutated often. Amongst
cytoplasmic and mitochondrial aaRSs, the most frequently
mutated residues were glycine (smallest residue, 6 muta-
tions) and arginine (largest polar residue, 10 mutations)
respectively. Further, Gly to Arg, Arg to His, and Arg to
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Gln were the three most frequent substitution muta-
tions in aaRSs (Tables 1 and 4). Intriguingly, only ~20%
of cytoplasmic aaRSs have been reported to harbor disease-
associated mutations compared to ~55% in mitochondrial
aaRSs (Figure 1A and 1B). Understanding the determi-
nants for higher propensity of mutations in mitochondrial
aaRSs within the nuclear genome requires additional func-
tional and genetic data. Such thrusts would advance our
understanding of heritable disorders since mitochondria
plays a critical role in maternal inheritance and has been
implicated in numerous human diseases.
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