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Role of chromatin and transcriptional co-regulators
in mediating p63-genome interactions in
keratinocytes
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Abstract

Background: The Transcription Factor (TF) p63 is a master regulator of epidermal development and differentiation
as evident from the remarkable skin phenotype of p63 mouse knockouts. Furthermore, ectopic expression of
p63 alone is sufficient to convert simple epithelium into stratified epithelial tissues in vivo and p63 is required
for efficient transdifferentiation of fibroblasts into keratinocytes. However, little is known about the molecular
mechanisms of p63 function, in particular how it selects its target sites in the genome. p63, which acts both as an
activator and repressor of transcription, recognizes a canonical binding motif that occurs over 1 million times in
the human genome. But, in human keratinocytes less than 12,000 of these sites are bound in vivo suggesting that
underlying chromatin architecture and cooperating TFs mediate p63-genome interactions.

Results: We find that the chromatin architecture at p63-bound targets possess distinctive features and can be used
to categorize p63 targets into proximal promoters (1%), enhancers (59%) and repressed or inactive (40%) regulatory
elements. Our analysis shows that the chromatin modifications H3K4me1, H3K27me3, along with overall chromatin
accessibility status can accurately predict bonafide p63-bound sites without a priori DNA sequence information.
Interestingly, however there exists a qualitative correlation between the p63 binding motif and accessibility and
H3K4me1 levels. Furthermore, we use a comprehensive in silico approach that leverages ENCODE data to identify
several known TFs such as AP1, AP2 and novel TFs (RFX5 for e.g.) that can potentially cooperate with p63 to modulate
its myriad biological functions in keratinocytes.

Conclusions: Our analysis shows that p63 bound genomic locations in keratinocytes are accessible, marked by active
histone modifications, and co-targeted by other developmentally important transcriptional regulators. Collectively,
our results suggest that p63 might actively remodel and/or influence chromatin dynamics at its target sites and in the
process dictate its own DNA binding and possibly that of adjacent TFs.
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Background
Tp63 is an important transcription factor of the p53/
p63/p73 family that dictates a wide range of cellular
properties including but not limited to stem cell renewal,
lineage choices and maintaining the balance between
proliferation and differentiation [1,2]. This diverse func-
tion of p63 is critical for morphogenesis during develop-
ment, particularly for epithelial-enriched tissues such as
the skin and its appendages such as the hair follicles and
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mammary glands. Indeed, p63-null mice die after birth
and exhibit a dramatic agenesis of epithelial-rich struc-
tures and widespread developmental defects of the limb,
orofacial region, and external genitalia [3,4]. These p63-
deficient structural defects are thought to be the result
of a failed program of epithelial stratification and/or
diminished capacity for stem cell renewal, both of which
can jeopardize normal epithelial-stromal interactions
needed during embryonic organ development [5,6]. In
agreement with the mouse phenotype, p63 mutations in
humans lead to congenital abnormalities such as abnor-
mal limb development and ectodermal dysplasia, which
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are associated with a spectrum of developmental disorders
including AEC or EEC syndrome [7,8].
The biological function of p63 is mediated by several

isoforms derived from distinct transcripts [1]. These in-
clude the longer TAp63 isoforms and N-terminal deleted
ΔNp63 isoforms generated from an internal promoter
located within intron 3. Furthermore alternative splicing
can result in α, β, and γ isoforms, which differ in the
C-terminus. All p63 isoforms share the DNA-binding and
oligomerization domains, which are analogous to that of
p53. It is now well-established that ΔNp63, especially
ΔNp63α is the predominant isoform that is present in
most epithelial cells such as the keratinocytes of the skin
[9]. Importantly both gene complementation studies
and isoform specific knockouts have conclusively af-
firmed that ΔNp63 harbors most of the function and
biological activity of p63, particularly as it pertains to
the epithelial tissues [10-14].
The role of p63 in regulating transcription during

development has been extensively studied in skin where
ΔNp63 is highly expressed and regulates the transition
from simple ectodermal cells to stratified epithelium
[5,15]. Given the master regulatory function of p63, it is
not surprising that the repertoire of p63-targets is vast
and represents practically every crucial gene regulatory
and signaling pathway. This is evident from the ~11,000
binding sites for p63 in human keratinocytes as determined
by chromatin immunoprecipitation with next-generation
sequencing (ChIP-seq) studies [16]. p63 controls expres-
sion of basal keratin genes K5 and K14 and regulates MYC
levels thereby controlling keratinocyte proliferation via the
Wnt/β-catenin and Notch signaling pathways [10,17,18].
The keratinocyte differentiation program is also regulated
by p63, in part via its effect on the ZNF750-KLF4 regula-
tory axis [19].
While the identification of p63 bound cis-regulatory

elements in keratinocytes has received much attention,
the mechanics of p63-DNA interaction is still relatively
unknown. p63 binds a canonical motif, defined as closely
spaced 2 decamers (RRRCRWGYYY, RRRCWYGYYY),
although there is growing evidence that p63 can target
sites that do not completely conform to this consensus
sequence, including half sites [20]. Given the degenerate
nature of the p63 binding motif, it is not surprising that
by conservative estimates, there are more than 1 million
such potential sites in the human genome. However, as
is the case with most other Transcription Factors (TFs),
only a small subset of these sites are bound by p63
in vivo [16,21]. It is likely that the local chromatin archi-
tecture, among other factors plays an important deter-
ministic role in dictating how and why p63 selects its
target DNA. Hence, this is an important area of future
investigation; especially given the increasing evidence
that p63 can play an important role in modulating the
chromatin structure. Indeed, recent studies have demon-
strated that p63 can functionally interact with several
epigenetic factors in keratinocytes, which can in turn
profoundly influence p63-dependent transcriptional
activation and repression. Examples of such interactions
include the reinforcement of p63 mediated repression of
p16 by Lsh, a member of the SNF2 family of chromatin
remodeling ATPases [22], direct recruitment of histone
deacetylases, HDAC1 and HDAC2 by ΔNp63 during re-
pression of target genes in the embryonic epidermis [23]
and the crosstalk between p63 and chromatin organizer
Satb1 in regulating keratinocyte differentiation genes [24].
p63 can also control higher-order chromatin structure
in epidermal progenitor cells during skin development
by regulating Brg1, a ATP-dependent chromatin re-
modeler [25]. Given these emerging links between p63
and chromatin, it is important that any comprehensive
studies on the mechanism of p63-genome interactions
takes into account the underlying state of epigenetic
modifications.
Here we have utilized the p63 ChIP-Seq dataset and

available chromatin modification datasets for Normal
Human Epidermal Keratinocytes (NHEK) to investigate
the rules that govern binding of p63 to its target DNA.
We find that p63 binds to a canonical motif (2 decamers
with zero spacer in-between) at the majority (73.3%) of its
sites, whereas non-canonical motifs containing 1–15 spa-
cer between decamers are present in only 16.4% of the
sites. The chromatin at p63 binding sites is largely
marked by active histone modifications (H3K4me1 or
H3K4me3 and H3K27ac). Moreover, chromatin accessi-
bility with H3K4me1 can accurately predict bona-fide
bound p63 sites without the need for any additional DNA
sequence information. Finally, using a comprehensive in
silico approach, we identify several cooperating TFs that
appear to define specific classes of p63 regulated genes.

Results
Underlying sequence patterns and chromatin architecture
of p63 targets
Several groups have determined global p63 binding loca-
tions in various primary and immortalized keratinocytes
using ChIP-chip or ChIP-Seq techniques [16,21,26-28].
For our studies, we focused on the most comprehensive
p63 ChIP-Seq data [16] available to date. It had an added
benefit of being generated from primary keratinocytes
(NHEK) and more importantly conforming to ENCODE
guidelines [29]. To facilitate uniform comparisons across
other ENCODE datasets, we re-aligned the p63 ChIP-Seq
to the latest human genome build (hg19) with Bowtie
[30]. In strong agreement with Kouwenhoven et al., by
using high stringency conditions (p-value: 1e−10), we iden-
tified a reliable and robust dataset of 11632 p63 bind-
ing sites that were common among the three biological
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replicates. On examining the underlying DNA sequence
of these p63-ChIPed elements, we found that 73.3% of
these sites have at least one p63 canonical motif. Among
these, 32% show a close match to the p63 consensus
(strong motif) while the remaining 41.3% are a weaker
match (Additional file 1: Figure S1). Both the strong and
weak canonical motifs are significantly enriched at the p63
ChIPed regions compared to random genomic regions
(P value <1×10−200). An additional 16.4% of the binding
sites show a close match to the non-canonical p63 motif,
which has 1–15 base spacers separating the two half-sites
(Additional file 2: Figure S2). Interestingly, 10% of the p63
bound genomic sites do not have a recognizable p63
motif raising the possibility that p63 can perhaps also
be recruited to target regulatory elements through indirect
mechanisms such as protein-protein interactions. Our ana-
lysis also revealed that only a few of the p63 binding sites
contained just a half site (Additional file 2: Figure S2).
Next we compared the chromatin architecture of the

11,632 p63 bound sites and randomly selected 30,000
unbound sites, which have at least 1 strong p63 canonical
motif. For this purpose we focused on 5 active (H3K4me1,
H3K4me2, H3K4me3, H3K9ac, H3K27ac) and 2 repressive
(H3K9me3, H3K27me3) histone modifications profiles in
NHEK cells that have been generated by the ENCODE
consortium [31]. As shown in Figure 1A, the genomic
segments of DNA bound by p63 are characterized by a
chromatin architecture consisting of high H3K27ac,
H3K4me1, H3K4me2, and H3K4me3 and low H3K9me3
and H3K27me3 modifications. In contrast, the randomly
selected stretches of DNA corresponding to the un-
bound p63 sites are completely lacking in these chromatin
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Figure 1 Chromatin architecture differs between p63 bound
and unbound sites. Average profiles of the 5 active (H3K4me1,
H3K4me2, H3K4me3, H3K9ac, H3K27ac) and 2 repressive (H3K9me3,
H3K27me3) histone modifications are plotted for a 1 kb window
centered at p63 motif. (A) Average chromatin architecture at 11632
p63 bound locations. (B) Average chromatin architecture at 30,000
unbound locations that have a strong p63 motif. Profiles were
generated with ArchTEx [32].
profiles (Figure 1B). Hence chromatin architecture could
contribute to selective targeting of p63.
p63 has been shown to target different types of regula-

tory regions (such as promoters and enhancers) and invol-
ved in both activation and repression of gene expression
[33-36]. Recent studies have demonstrated that specific
states of chromatin modifications at the regulatory regions
are strongly associated with the level of gene expression for
the corresponding genes [37]. To determine whether such
differences exists for distinct classes (active vs. repressed
for e.g.) of p63 targets, we clustered the p63 bound regula-
tory regions by their underlying chromatin architecture.
We first divided p63 targets into two groups (Cluster A
and B) based on the magnitude of signal (chromatin state)
and then performed unsupervised clustering using the
spatial arrangement of the histone modifications (chroma-
tin architecture) [38].
Using standard K-means clustering (with K = 4) we

were able to capture all patterns within cluster A and B
but this resulted in redundancy (i.e. clusters with similar
chromatin patterns or mirror images of each other). There-
fore, we compared all 8 sub-clusters to each other in both
orientations, grouping together those with a Pearson cor-
relation above 0.9. This resulted in the classification of p63
targets into 5 distinct, non-redundant groups (Figure 2 and
Additional file 3: Table S1). Based on chromatin based seg-
mentation [39], the majority of p63 targets are predicted to
represent enhancers (58.7%) (sub-clusters A2,B1,B2) while
only 167 (1.4%) represent active promoters (sub-cluster A1).
The distance of the regulatory regions to the nearest TSS
supports these predictions (Table 1). It is interesting to note
that none of the clusters are characterized by repressive
histone marks. However this does not imply that p63
cannot act as a repressor. In fact the largest sub-cluster B3
(39.8% of p63 targets) has very low signal for active chro-
matin marks and predicted by chromatin based segmenta-
tion likely to represent repressed/inactive targets. Indeed,
upon probing the RNA-Seq data from keratinocytes,
it is evident that the regulatory regions of the B3
sub-cluster are associated with genes that are weakly
expressed (Additional file 4: Figure S3). Therefore this
cluster might represent repressed/poised genes for which
p63 may not play an active role in activation at least in the
basal growth conditions of NHEK cells.
We next used Genomic Regions Enrichment of Annota-

tions Tool (GREAT) [40] to determine whether the five
clustered groups of p63 targets could be segregated into
distinct classes of genes involved in specific biological
pathways. Our analysis revealed that each cluster in-
deed was overrepresented by genes that were involved
in closely related, yet disparate biological activity. For
example, cluster B1, which primarily encodes for strong
enhancers is enriched for Gene-Ontology Biological Process
(GO-BP) of epidermis development, while cluster B3
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Figure 2 Clustering of p63 targets by chromatin intensity and shape. p63 bound locations are clustered by 5 active (H3K4me1, H3K4me2,
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by spatial arrangement of the histone modifications.
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representing repressed/inactive sites is enriched for
GO-BP of hair cycle. This raises the intriguing possibility
that p63 might play an important role in actively driving
the epidermal developmental processes while keeping
the hair cell fate repressed – a notion that is supported
by data from prior transgenic mouse studies [41]. The
complete annotation for each group of p63 targets is
provided in Table 1. Thus, collectively the data obtained
by chromatin architecture-dependent clustering of p63
targets allowed us to determine both the active and poised
targets of p63 and annotate these to specific biological
processes (Additional file 3: Table S1).

p63 binding can be accurately predicted from chromatin
modifications
We next implemented two different statistical approaches
to test whether epigenetic modifications can be exclusively
utilized to identify functional p63 binding sites. We gener-
ated a discriminant and a regression model of p63-binding
events based on data from histone modifications as deter-
mined by ChIP-Seq and chromatin accessibility as inferred
from DNase-Seq and FAIRE-Seq experiments. DNase-Seq
and FAIRE-Seq assays generate both distinct and overlap-
ping accessibility information about the genomic land-
scape [42]. Also the different histone modifications usually
correspond to transcriptional regulation in a combinatorial
fashion [43]. As these various chromatin features are not
mutually independent of each other, we created interaction
datasets from each pair of chromatin datasets, such as
DNase*FAIRE (DF). These were also used as predictors for
our statistical models. For the discriminant approach we
generated the model on a training dataset containing 5000
p63 binding sites with 30,000 unbound genomic locations
and for the regression approach we generated the model
on a training dataset containing 5000 p63 binding sites
with 45,000 unbound genomic locations (see Methods).
We then validated the models on a test dataset of 56,392
genomic locations (6632 p63-positive sites and 49760 p63-
negative sites).
The discriminant model identifies boundaries between

groups of objects (in this case p63 bound versus un-
bound sites), the boundaries being defined in terms of
those variable characteristics that distinguish the objects
into two groups. This technique allows us to determine
which chromatin modifications are strongly predictive of
p63 binding status (Figure 3A). In addition this model
can be used to predict if an unknown site is bound or
unbound by p63. We found that a three variable model
was able to accurately classify p63 binding sites (sensi-
tivity: 89.8%(±0.3), specificity: 97.6%(±0.02)) (Figure 3C).



Table 1 Annotating p63 targets clustered by chromatin profiles

Cluster Size of
cluster

Chromatin based
segmentation

Median distance
to nearest TSS

Median expression of
nearest gene (RPKM)

Top GO terms (Biological Process)
(Binomial FDR Q-val)

Top PANTHER pathways
(Binomial FDR Q-val)

A1 167 Active Promoters Proximal (898 bp) 8.09 1. Regulation of programmed
cell-death (2.98e-2)

1. P53 pathway (1.27e-3)

A2 1309 Strong Enhancers Distal (35 kb) 5.03 1. Anti-apoptosis (8.28e-14) 1. Apoptosis signaling
pathway (1.94e-9)

2. Hemi-desmosome assembly
(1.166e-10)

2. Integrin signaling
pathway (1.67e-7)

3. Epidermis development
(1.85e-9)

3. Interleukin signaling
pathway (1.1299e-6)

B1 2035 Strong Enhancers Distal (37 kb) 3.85 1. Epidermis development
(3.29e-9)

1. T cell activation (2.06e-4)

2. Hair follicle development
(3.25e-6)

3. Hair cycle (3.88e-6)

B2 3491 Strong/weak
enhancers

Distal (49.3 kb) 2.28 1. Response to mechanical
stimulus (9.75e-10)

1. T cell activation (1.9e-8)

2. Negative regulation of intracellular
protein kinase cascade (1.54e-6)

2. VEGF signaling pathway
(3.77e-5)

3. Response to reactive oxygen
species (2.6e-6)

B3 4630 Repressed/Inactive Distal (57.4 kb) 1.09 Hair cycle (1.19e-9) No term enriched

Hair follicle development (1.56e-9)

Cellular response to gonadotropin
stimulus (4.16e-4)

p63 bound locations are clustered by 5 active (H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K27ac) and 2 repressive (H3K9me3, H3K27me3) histone modifications
sequenced in NHEK cell-line. The 5 groups are annotated by chromatin based segmentation and median distance to nearest TSS. GREAT is used to find the top 3
GO-BP terms and top 3 PANTHER pathways that enrich for each cluster.
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This model was based on DF, H3K4me1, and H3K27me3
datasets. In this model both DF and H3K4me1 had posi-
tive coefficients as anticipated by p63 binding to sites with
high values for these chromatin datasets. On the other
hand, the repressive modification H3K27me3 had a nega-
tive coefficient suggesting that p63 is being excluded from
genomic sites with this histone modification.
We also utilized the regression model to determine

which chromatin characteristic(s) best predicts the occu-
pancy of p63 binding at any genomic location (Figure 3B).
When applied to the test dataset, the regression model with
only three variables has a MSE (Mean Squared Error) of
0.083(±0.001) and R2 of 0.747(±0.011) (P value <1× 10−200)
(Figure 3C). For the regression model H3K4me1, DNase,
and DF variables were the most informative. For both
models, a chromatin accessibility dataset (DNase or
DF) with H3K4me1 were found to be very predictive
(Additional file 5: Table S2, Additional file 6: Table S3).
Furthermore, a regression model using only the DF term
has a R2 = 0.665, which exemplifies the importance of
chromatin accessibility in defining true in vivo binding
sites. However these models do not inform whether the
accessibility is a prerequisite or a secondary effect of p63
binding. We therefore integrated the nucleosome-DNA
interaction model in our analysis, which is based on the
principle that certain DNA sequences show a greater pre-
disposition to wrap around the histone octamer and form
nucleosomes [44]. This model has previously been used to
predict and experimentally validate that p53 preferentially
binds nucleosome rich regions [45]. Our analysis showed
that the p63-bound genomic segments in keratinocytes
have higher sequence defined nucleosome occupancy than
randomly chosen sequences (Figure 4). This suggests that
the increased chromatin accessibility at p63 bound sites is
likely to be actively shaped by p63-DNA interactions.
For both the regression and discriminant models, p63

motif data was not included even though p63 motif is a
statistically significant predictor (P value <0.0001). Indeed
on its own the sequence information accounts for 14% of
the variability in p63 binding (Additional file 5: Table S2,
Additional file 6: Table S3). We therefore performed
additional analysis to ascertain the importance of p63′s
motif in dictating DNA binding, when taking into ac-
count epigenetic information. We divided all accessible
genomic locations as determined by DNase-Seq into
three groups based on the presence of a strong, weak,
or the absence of a p63 motif. Our results indicate that
the presence of a strong or weak p63 motif leads to stron-
ger p63 occupancy (Figure 5A). This finding that p63
DNA-sequence motif is an important determinant of in-
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vivo binding is difficult to reconcile with the fact that p63
motif was not considered a strong predictor in our statis-
tical models. One possible explanation for this discrepancy
is that the chromatin datasets we use in our models have
already embedded in it the DNA sequence motif informa-
tion. Indeed, using our regression model, we predicted
p63 occupancy for each group and showed that predicted
p63 occupancy is also higher for sites containing a strong
or weak p63 motif (Figure 5B). This provides further sup-
port for the notion that H3K4me1, DNase and DF vari-
ables in our statistical models already account for the
information represented by the p63 consensus motif. Thus
accessible sites with a strong or weak motif are more
accessible and have higher deposition of H3K4me1 than
sites lacking a p63 motif (Figure 5C, 5D). Taken together,
these results lead us to postulate that p63 might exist as
part of a chromatin remodeling complex, which creates a
distinct epigenetic architecture at its binding sites (see
Discussion for details).

Identification of p63 Cooperating TFs
It is well established that many TFs often act in a com-
binatorial fashion to govern tissue-specific gene expres-
sion. Hence, we wanted to examine the repertoire of p63
associated TFs that might play such role in modulating
p63 binding and possibly influencing p63-dependent
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gene expression in keratinocytes. We therefore used a
combination of in-silico analysis of the p63 binding sites
and careful data mining of large-scale genomic datasets
such as RNA-Seq and ChIP-Seq from the ENCODE pro-
ject. We posit that the TF that are likely to directly co-
operate with p63 will have the following features. First,
their DNA binding motifs will likely be enriched at p63
bound elements, keeping in mind that co-occurrence of
such motifs adjacent to p63 sites is not a prerequisite for
such interactions. Second, their in-vivo binding profiles
will overlap with p63 binding profile. Here we reasoned
that TF binding to some extent could be extrapolated
from ChIP-Seq in other cell types, as it has been shown
that TFs share a large number of common binding sites
across different cell lines [46]. Finally, we contend that
the relevant TF should be expressed in keratinocytes.
Applying this criterion, we examined 631 TFs for

which ChIP and/or expression data was available from
the ENCODE project. Of these, 467 were enriched at
p63 targets as determined by their in-vivo binding pro-
file or in silico motif analysis. However, we rejected 404
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of these TFs as potential cooperating TFs because they
were either not expressed in keratinocytes (RPKM <2)
or not enriched by both ChIP-Seq and motif analysis
(P value >0.01 or overlap <5%). An additional 50 TFs
were also not considered from further evaluation due to ill-
defined/unknown DNA binding motifs or missing ChIP-
Seq data. This shortlisted the potential p63 cooperating TFs
to 13 TFs, which had both an enriched motif and in-vivo
binding signal (P value <0.01 and overlap >5%) at p63
bound locations in NHEK cells (Additional file 7: Table S4).
These 13 TFs include: CEBPB (C/EBP family); CFOS,
FOSL2, and JUND (AP1 family); BACH1 (bZIP family);
TFAP2C (AP2 family); STAT1 and STAT3 (STAT family);
MAX, c-MYC, and USF2 (bHLH family), RFX5 (RFX
family); ELK1 (Ets family) (Figure 6). In this context, it is
important to note that several of the predicted TF dis-
covered by our analysis, such as AP1, AP2, MYC, STAT
and C/EBP have been previously linked to p63 and kera-
tinocyte biology [9,18,47-50]. On the other hand, some of
the other potential p63 cooperating TFs such as RFX5,
ELK1 and BACH1 are new members of this class. They
represent an interesting group for which much less is
known about their expression and function in keratinocytes
and any possible correlation with p63. One particularly
intriguing p63 cooperating TF is RFX5, which is highly
expressed in NHEK cells as evident by the RNA-Seq data
(Figure 6). Furthermore, a recent study has also shown that
RFX5 mRNAs and protein are preferentially expressed in
the p63-rich basal cells of the human epidermis further
raising the prospects of a functional interplay between these
two TFs [51].

The potential role of p63 in modulating different biological
functions in coordination with various cooperating TFs
p63 is involved in myriad biological functions and it is
possible that this diversity of p63 function is brought
about by in part by different subtypes of p63-TF com-
plexes. We therefore constructed a correlation matrix of
the 13 TFs based on their in-vivo binding signal and
their DNA-binding motif scores at the 11,632 p63 bound
locations (see Methods for details). The 13 TFs corres-
pond to 10 unique DNA-binding motifs (CEBPB, AP1,
BACH1, AP2, STAT1, STAT3, MYCMAX, USF2, RFX
and ELK1). There appears to be multiple complexes with
unclear distinctions between them (Figure 7A). Two dis-
tinct complexes containing overlapping TFs could be
identified. The first group comprised of C/EBPB, JUND,
CFOS, and STAT3, whereas the second complex was
primarily represented by ELK1, FOSL2, and MYC-MAX.
We next asked if there were different sub-groups of
genomic targets where p63 was bound in coordination
with these distinct cooperating TFs. Upon clustering the
11632 p63 targets, 5 clear groups emerged (C1 to C5)
based on the presence/absence of the cooperating TF
motifs (Figure 7B, Additional file 3: Table S1). AP2, STAT3
and MYCMAX seem to be the driving force for the cluster-
ing, whereas CEBPB, AP1 and ELK1 motifs were quite ubi-
quitous in their presence. Further annotating the clusters
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using GREAT allowed us to associate specific groups of p63
targets with distinct biological functions, based upon Top
GO terms and significant pathways. The complete annota-
tion for each group of p63 targets and the type of complex
it represents is shown in Figure 7B.
Our clustering analysis revealed an interesting and com-

plex correlation between p63, its network of associated
cooperating TFs and the nature and physiological role of
the p63 target genes. Case in example is AP2. It seems to
be an important co-player of p63 in regulating genes
involved in keratinocyte differentiation and epidermis
development (clusters C1 and C2), modestly linked with
hair follicle development and cell cycle arrest (C4) but not
at all involved in the activation of MAPKK activity (C3)
or regulation of carbohydrate metabolic process (C5).
Similarly, while STAT1 and STAT3 seem to share similar
co-regulatory function as evident by their enrichment in
clusters C2 and C5, there are also clear differences be-
tween these two closely related family members based on
their enrichment patterns for clusters C1, C3 and C4. This
point is further illustrated by the correlation matrices
made in Figure 7A. In contrast, binding motifs for C/EBP,
ELK1 and AP1 did not seem to exhibit a preference for
any of the particular clusters representing different GO
terms or biological pathways. Interestingly, none of the 5
clusters showed any difference in terms of p63 motif
strength or the type of regulatory regions (data not shown).
One obvious limitation of our approach is the fact that

for the purpose of the aforementioned studies, a specific
p63-binding site was assigned to be regulatory element
for the nearest gene, often without any supporting experi-
mental data. However it has been shown, that linking dis-
tal enhancer elements to the nearest gene, as is the norm,
might not always be an accurate representation of the
regulatory landscape [52]. There is an absence of chroma-
tin interactions data such as those obtained from chro-
mosome conformation capture (3C), in keratinocytes. We
therefore virtually linked the distal regulatory elements to
their target genes, by exploiting the characteristic that
regulatory regions become DNase hypersensitive (DHS) in
synchrony with their target promoters. To examine this
further, we first retrieved the global map of distal
DHS-to-promoter connections as generated by the
ENCODE consortium [53]. Overlapping this map with
the p63 ChIP-Seq data allowed us to link 4011 p63 bound
distal genomic regions to their putative target promoters/
genes (Additional file 8: Table S5). Further analysis
revealed interesting facets of long-range interactions
between distal p63-bound elements and the promoter
as evident by the KRT14 gene, a known p63 target [14,17].
While prior studies have focused primarily on the prox-
imal regions 5′ of the KRT14 gene, including a well-
characterized p63-bound enhancer ~1.4 kb upstream
[14,17], we discovered 7 novel distal p63-bound elements
that are located quite far away (~60 kb to ~450 kb) as pre-
dicted by the DHS-to-promoter connections (Additional
file 8: Table S5). Two of these p63-bound genomic seg-
ments, which are predicted to be enhancers for KRT14 are
shown in Figure 8A. These regulatory regions also con-
tained potential binding sites for some of the p63 cooper-
ating TFs such as CEBPB, c-MYC and AP2. Interestingly
these two distal p63-bound elements are not exclusive to
the KRT14 gene since they are also putatively linked to
related KRT16/ KRT17 genes, which are located in a rela-
tively closely spaced genomic cluster (Figure 8A). This
raises an interesting possibility that a specific p63-bound
regulatory region (an enhancer for e.g.) might be com-
monly utilized to coordinate the regulation of multiple
closely related genes in keratinocytes.
We also discovered possible new target genes under

the control of p63-bound distal regulatory regions that
otherwise would have been missed by the conventional
strategy of assigning a p63-regulated element to its
closest gene. As shown in Figure 8B, one such interesting
candidate is RFX5, a novel cooperating TF of p63 as
discussed above. p63 binds a regulatory element 469.4 kb
upstream of the RFX5 gene and motif analysis suggests
that AP1, E-box binding factors and BACH1 are part
of the transcriptional complex at this site (Figure 8B).
Hence, there might exist a transcriptional regulatory loop
whereby p63 in cooperation with additional TFs activates
RFX5, which then in turn, modulates p63 binding to its
target sites. Similar to the case with the KRT14 gene, this
distal regulatory element for RFX5 is predicted to be also
linked to the TUFT1 and RORC genes. In the future in-
depth studies such as 3C experiments will help to confirm
these distal enhancer-promoter interactions and to firmly
establish the true identity of the p63-driven gene network
in keratinocytes.

Discussion
This study aimed to decipher the mechanics of p63 bind-
ing by determining the minimal in-vivo motif required for
binding, distinguishing between chromatin architecture of
bound and unbound motifs and identifying cooperating
TFs that modulate p63 biological activity.

p63 requires a full site for binding to target sites
The transcription factor p63 binds as a homotetramer to
two decamers RRRCRWGYYY, RRRCWYGYYY separated
by a 0–15 base pair spacer region. We found that the p63
sites containing the decamer pair with intervening spacers
was much less prevalent (16.4%) than those where the two
half sites were juxtaposed to each other (73.3%). A very
small subset (only 8 genomic locations) of p63 binding
sites consisted of only a half site (1 decamer) (Additional
file 2: Figure S2). This is in contrast to a similar study that
found 3-4% of p53 binding sites having a half site [54].
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This observation can be explained by a slight difference in
the consensus motifs of the two factors, which also results
in 3 fold lower binding affinity of p63, in comparison to
p53 [55]. One possibility is that the dimer-dimer interac-
tions are important for p63 DNA binding specificity and
therefore p63 requires a full site to bind DNA efficiently.
Indeed, such differences in the DNA-protein interactions
among p53 family members are quite evident from recent
structural studies with p73 [56]. Interestingly, not only the
distance between two p73 half-sites influences the p73
quaternary structure, but tellingly transcriptional activity
is also more affected by spacer length in p73 response
element than in p53. Finally, it is worth noting that ~10%
of p63 ChIPed sites in keratinocytes do not have a
recognizable p63 binding sequence suggesting that the
p63 binding at these sites is driven by indirect mecha-
nisms that might involve other DNA-binding TFs and/or
non-canonical p63 motifs.
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The p63 consensus motif is not required for predicting
binding events in keratinocytes
We utilized two computational modeling approaches to
uncover key characteristics defining p63 binding sites. First,
we utilized discriminant modeling that allowed us to pre-
dict p63 binding as a binary score (presence or absence).
Second, in a parallel strategy, we used regression modeling
that predicted the degree of p63 occupancy. Our approach
was distinct from other published methods in that we
trained our statistical models on random genomic sites
which might or might not have p63 binding sequences
[57]. This allowed our models to include the 10% binding
sites that do not have p63 DNA-binding motif. Surpris-
ingly, we found that our final models constituting only
chromatin marks (H3K4me1, H3K27me3 and accessibility
data) predicted p63 binding with high accuracy (Discrim-
inant Model - 89.8%(±0.3) sensitivity, Regression model –
0.083(±0.001) MSE). Adding sequence information to the
models, did not lead to any significant improvement even
though p63 motif is a statistically significant predictor
(Additional file 5: Table S2, Additional file 6: Table S3).
One possible explanation is that in keratinocytes, regions
of the genome that have a functional p63 motif are on
average more accessible and marked with active chroma-
tin marks. This result is not surprising if p63 is a key com-
ponent of the regulatory complex that is involved in
remodeling the chromatin at its binding sites. Indeed
p63 target sequences dictate higher nucleosome occu-
pancy than random genomic sequences according to
the nucleosome-DNA interaction model (Figure 4). It
can be then hypothesized that p63 binding shifts the
nucleosomes creating an accessible active chromatin
structure at its targets. Support for such a role for
p63 comes from a recent study, which examined the
selective loss versus gain of DHSs targeted by lineage
regulating TFs during lineage differentiation from ESCs
[58]. While the recognition landscape for p63 remains
largely unchanged during development of all other line-
ages, there is a significant and selective gain of p63 binding
elements in the DHSs of the human skin keratinocytes,
which represent the ectodermal lineage. Such deterministic
function of p63 is further evident by data showing that p63
in combination with KLF4 can efficiently convert human
fibroblast into keratinocytes [59]. These interesting correla-
tive findings, together with our results presented here
strongly suggest that p63 functions as part of a pioneering
complex which can target and remodel chromatin at many
of its sites.

Binding of p63 in coordination with cooperating TFs
It is likely that the p63-depedent regulation of target
genes in keratinocytes requires co-operation of other TFs.
We have used a multi-pronged approach to identify such
p63-associated cooperating TFs by processing data from
NHEK RNA-seq, available ENCODE ChIP-seq and com-
putational prediction methods based on TF motifs. Our
analysis led to a few surprising observations about the
identity of candidate TFs that were likely to be involved in
p63-genomic interactions. One striking result from our
study is that many of the p63-associated factors belong to
broadly expressed family of TFs such as AP1, AP2, MYC
and STAT rather than highly tissue-specific factors. Al-
though at first glance, this result may seem disappointing,
we think that given the master regulatory role of p63, such
a finding makes biological sense. Indeed, given the fact
that p63 is highly expressed in a lineage-restricted fashion
and plays a crucial role in dictating keratinocyte cell fate,
it is conceivable that some of the p63-associated coope-
rating TFs might just provide ancillary role in regulating
gene expression. Another interesting possibility is that
the keratinocyte-specific gene expression is mediated
by a combinatorial interaction of multiple TFs as sugges-
ted by prior studies [60]. However it is important to stress
that many of the broadly expressed TFs such as AP1 and
AP2 do have keratinocyte-specific roles that are often
masked due to functional redundancy from expression of
multiple family members [47,49]. Future functional stud-
ies on these TFs that are part of the p63-driven transcrip-
tional network, including ones that are relatively under
studied such as RFX5 will shed important insights into
gene regulatory mechanisms in keratinocytes.
Conclusion
Despite the wealth of information obtained from our
data-mining studies, long term follow-up experimental
studies are needed to better elucidate the p63 TF net-
work and the role of chromatin in regulating myriad bio-
logical functions of p63. Unraveling the complex nature
of the distal regulatory elements such as enhancers, which
are by far the most common sites of p63 binding is a
formidable challenge. The new insight into the dynamic
interplay between p63, its many cooperating TFs and the
local chromatin environment, as reported here is the first
step towards tackling such challenges.
Methods
Determining p63 binding profile in the genome
Global p63 binding locations in keratinocytes was deter-
mined from ChIP-Seq datasets generated by Kouwenhoven
et al. [16]. The Illumina FASTQ sequencing files from three
independent replicates were aligned to hg19 with bowtie
[30] with the following parameters: m = 1 (i.e. removes all
those alignments with more than one match). P63 binding
locations were then identified in each experiment under
stringent conditions with MACS (cutoff p-value = 1e-10)
[61]. The 11632 locations that were common in all three
replicates were used in this study.
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Finding p63 motif in p63 bound locations
Patser [62] was used to search for the occurrence of p63
canonical motif (defined as 2 decamers (RRRCRWGYYY,
RRRCWYGYYY) with zero spacer in between) [20] in a
500 bp window around the 11632 p63 bound locations.
To determine a cutoff score, above which the motif
would be termed as a significant match, we created a back-
ground model with 100000 random genomic sites. The
motif score for which the probability of any stronger motif
occurring by random chance would be less than 0.01, was
selected as the cutoff for strong motifs (For p63 - cutoff
score of 7.14). A relaxed cutoff of 2.24, corresponding to a
weaker motif (0.1 probability of occurring by random
chance) was also determined. We then repeated the above
procedure for possible non-canonical p63 motifs. For this
we modified the position weight matrix (PWM) used earlier
by inserting spacers (1–15 with 0 weight for each base,
i.e. each base assumed to be equally likely) and again
used the background model to calculate cutoffs and
determine significant matches. We also did this for a
half-site (only 1 decamer).
Identifying the chromatin profile at p63 targets
Histone modification ChIP-Seq data for 5 active his-
tone modifications (H3K4me1, H3K4me2, H3K4me3,
H3K9ac, H3K27ac) and 2 repressive histone modifications
(H3K9me3, H3K27me3) in NHEK (Normal Human
Epidermal Keratinocytes) cell-line were obtained from
ENCODE [31]. The coordinates for the 11632 p63 bound
locations and 30,000 negative genomic sites (any genomic
site not within 5 kb of a p63 bound location was termed
as a negative site) that had strong p63 canonical motif
were obtained. The histone marks were plotted for a 1 kb
window at 10 bp resolution in standardized tag count
space.
Clustering p63 targets by histone signature
An average signal across a 1 kb window centered at the
p63 binding site was plotted for the 5 active (H3K4me1,
H3K4me2, H3K4me3, H3K9ac, H3K27ac) and 2 repres-
sive (H3K9me3, H3K27me3) histone modifications. Using
k-means clustering algorithm, implemented in Cluster 3.0
software package [63], with k = 2, the p63 targets were
divided into Group A which contained high overall signal
for the different histone modifications and Group B,
which contained sites with lower overall signal. For each
of the two groups, the seven histone modifications were
standardized and again plotted in count space, this time at
10 bp resolution. This was done to take into account the
spatial arrangement of the histone modifications. Both the
groups were individually clustered using k-means algo-
rithm, with k = 4. Pearson correlation was calculated be-
tween each pair of clusters, in both directions, for both
the groups. Clusters with Pearson correlation higher than
0.9 were grouped together.

Training and test dataset for computational models of
p63 binding
The 100,000 random genomic locations were filtered to
generate 94760 negative sites (Sites not within 5 kb of a
p63 bound location were termed as negative sites). These,
along with 11,632 p63 bound locations were used to train
and test our Fisher’s discriminant and regression models.
Five active (H3K4me1, H3K4me2, H3K4me3, H3K9ac,
H3K27ac) and two repressive (H3K9me3, H3K27me3)
histone modifications as measured by ChIP-Seq, along
with accessibility as measured by DNase-Seq and FAIRE-
Seq, in NHEK cell-line were plotted as an average signal
across a 1 kb window for each of the 106,392 genomic
coordinates, in sqroot space. All the datasets were stan-
dardized to 30 million tag count so as to be comparable to
each other. These 9 datasets along with interaction terms
(calculated as product of two datasets for all possible
combinations – e.g. DF (DNase*FAIRE)) were used as pre-
dictor variables along with the p63 canonical motif score
as generated by Patser, for the computational models. p63
tag count in standardized sqroot space was the response
variable for the regression model and a categorical variable
with two possible values (0 (bound) and 1 (unbound)) was
the response variable for the discriminant model. The
94,760 negative genomic coordinates and 11,632 positive
genomic coordinates were then randomly divided into
training and test datasets, such that the training dataset
had 45,000 negative genomic sites and 5000 positive gen-
omic sites. For the discriminant model, the training data-
set was further filtered so as to keep only those negative
genomic locations that had p63 tag count (standardized
sqroot space) less than 0.25, resulting in 30000 negative
genomic sites and 5000 positive genomic sites. This ran-
dom division into training and test datasets was then
repeated 10 times to obtain the mean sensitivity (true
positive rate) and mean specificity (true negative rate) for
the discriminant model and mean MSE (mean square
error) and mean R2 (fraction of variance in p63 occupancy
explained by the model) for the regression model.

Fisher’s discriminant model
DISCRIM procedure in SAS statistical software package
was used to construct a Fisher’s Discriminant Model. Using
all the variables in the discriminant training dataset (9 chro-
matin features (H3K4me1, H3K4me2, H3K4me3, H3K9ac,
H3K27ac, H3K9me3, H3K27me3, DNase, FAIRE) and one
interaction term (DNase*FAIRE)), we created a full dis-
criminant model. To simplify the model, we used the
STEPDISC procedure to determine 8 variables with signi-
ficant predictive power. They were used to make the
significant chromatin marks model. This was further
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simplified into the Best 3 variable model, by using only
the top 3 variables (H3K4me1, DNase, H3K27me3), with
the highest predictive power. The Best 3 variable model
was then tested on the test dataset.
Regression model
REG procedure in SAS statistical software package was
used to create a regression model for p63 occupancy
based on the chromatin features (no sequence informa-
tion). We started with a model with no predictors and
used stepwise selection to add significant predictors to
the model, starting with the one that had the smallest P
value (till P value for entry was less than 0.01). At each
step the P value for exit was also calculated and the
predictor was retained only if its P value was less
than 0.01. The 9 chromatin features (H3K4me1, H3K4me2,
H3K4me3, H3K9ac, H3K27ac, H3K9me3, H3K27me3,
DNase, FAIRE) and one interaction term (DNase*FAIRE)
were all found to be statistically significant and formed the
full regression model. To simplify this model and find the
features with the most predictive power we then used
MAXR (Maximum R2 Improvement) selection method,
with parameter STOP= 3, to determine the best 3 variable
model for predicting p63 occupancy.
Identifying p63 cooperating TFs
We utilized the motifs database by Genomatix software
and used Patser to search for the occurrence of 900 TF
motifs in a 1 kb window centered at the 11632 p63 bound
locations (test set) and 94760 negative genomic sites
(background set). Chi-Square test was done to statistically
determine which of the TFs motifs were enriched at the
p63 binding sites versus the background. % overlaps of the
motifs with p63 binding profile were also determined. We
then examined for co-occurrence of the TFs motifs with
p63 motif. For this our test set contained 8,375 p63 bound
locations that had at least a weak p63 motif (score greater
than 2.24) and the background set contained 515,933
unbound genomic sites (containing a weak motif). Again
chi-square test was done to find the statistically enriched
motifs within 100 bp of p63.
The second step to our approach was to use the

in vivo binding profiles of TFs, to find the potential
cooperating TFs of p63. 264 ChIP-Seq experiments as
carried out by ENCODE, capturing an in-vivo binding
profile of TFs across 30 cell-lines were used for this ana-
lysis. Overlaps were determined between these experi-
ments and p63 binding profile. The same was repeated
for the 94760 negative genomic sites. Chi-square test
determined the TFs showing enriched binding at p63 tar-
gets. We also used NHEK RNA-Seq data to eliminate TFs
with RPKM <2 in keratinocytes.
Correlation matrix of cooperating TFs
ChIP-Seq correlation matrix: 13 TFs (CEBPB, CFOS,
FOSL2, JUND, BACH1, TFAP2C, STAT1, STAT3, MAX,
c-MYC, USF2, RFX5, ELK1) were identified as the most
probable cooperating TFs of p63. ChIP-Seq alignment
files in Hela-S3 cell-line were obtained from ENCODE
via the UCSC genome browser for 11 of the 13 TFs. For
BACH1 and FOSL2 we used the alignment files from
K562 and A549 cell-lines respectively. An average signal
across a 1 kb window was plotted for each of the 13
factors across the 11632 p63 bound locations. Then
Pearson correlation coefficient (r) was calculated for each
pair. Motif correlation matrix: The 13 TFs corresponded
to 10 Position weight matrices (PWMs) (CEBPB, AP1
(CFOS, FOSL2, JUND), BACH1, AP2 (TFAP2C),
STAT1, STAT3, MYCMAX (MAX, c-MYC), USF(USF2),
RFX(RFX5), ELK1). For each PWM, a Patser generated
motif score was obtained for the 11,632 locations.
Again, Pearson correlation coefficient (r) was calculated
for each pair.

Clustering p63 targets by cooperating TFs motifs
The 10 PWMs (CEBPB, AP1, BACH1, AP2, STAT1,
STAT3, MYCMAX, USF, RFX, ELK1) were used to search
for the occurrence of REs in a 1 kb window centered at
each of the 11632 p63 binding sites. The default cutoffs
determined by Patser based on the information content of
each of the weight matrices were used to assign a binary
score of 0 (Motif absent) and 1 (Motif present) across the
11632 genomic locations. This binary matrix was then
clustered using k-means algorithm, implemented in
Cluster 3.0 software package [63], with k = 5.

Additional files

Additional file 1: Figure S1. Background Model for determining strong
p63 motif. Patser is used to search for the occurrence of p63 canonical
motif in a 500 bp window around the 11632 p63 bound locations and
100000 random genomic sites. A relative frequency chart of the motif
scores is plotted for both the bound and background locations. Strong
motifs are defined as occurring in less the 1% of random background
sequences while weak motifs occur in less than 10% of background
sequences.

Additional file 2: Figure S2. P63 binds to the canonical p63 motif
without a spacer. Patser is used to search for the occurrence of p63
non-canonical full motifs (2 decamers with a spacer sequence of length
1–15 nucleotides) and half site (only 1 decamer). (A) Frequency of p63
binding sites containing zero spacer, i.e. canonical motif (blue), 1–15
spacer (red) and half-site (green). (B) P63 binding sites divided by type of
motif. 73.3% have canonical motif, 16.36% have non-canonical motif, only
0.07% have half site and the rest do not have a p63 motif.

Additional file 3: Table S1. P63 Master Annotation Dataset. Columns
A-C contain the genomic coordinates (hg19) of the 11632 p63 binding
sites. These regulatory regions are assigned a p63 motif score based on
Patser (column D). They are linked to the nearest gene (column E,
column F) and annotated using chromatin based segmentation (column
G) [39]. Each region is assigned to a histone cluster (column H) as shown
in Figure 2 and to a cofactor cluster as depicted in Figure 7B (column I).

http://www.biomedcentral.com/content/supplementary/1471-2164-15-1042-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-15-1042-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-15-1042-S3.csv
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Presence (1) / absence (0) of individual cofactors motifs at each regulatory
region is then shown (column J-S).

Additional file 4: Figure S3. Chromatin profiles are associated with
gene expression. p63 bound locations are clustered by 5 active
(H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K27ac) and 2 repressive
(H3K9me3, H3K27me3) histone modifications (Figure 2). The 5 groups
(A1, A2, B1, B2, B3) of p63 targets are annotated to the nearest genes
by GREAT. Box plots of gene expression as determined by RNA-Seq in
keratinocytes, is shown.

Additional file 5: Table S2. Discriminant Models. Fisher’s Discriminant
models are made in SAS statistical software using DISCRIM procedure
with 11 predictors. The full models use all the 10 chromatin marks.
Significant chromatin marks models use 8 chromatin marks (Significant, if
P value <0.0001). Regression 3 Model is made with the three marks
(H3K4me1, DNase, DF) used to make the final regression model. Best 3 is
the final discriminant model used to predict p63 binding, made with the
three predictors having the highest predictive power (H3K4me1, DF,
H3K27me3) according to STEPDISC procedure in SAS statistical software.
Sensitivity and Specificity are used to judge the accuracy of the models.

Additional file 6: Table S3. Regression Models. Regression models are
made in SAS statistical software using REG procedure. The full models use
all the 10 chromatin marks as predictors (Each predictor is significant at
P-value 0.0001). Best 3 Model is made with the three marks (H3K4me1,
DNase, DF) that together have the highest predictive power (Accounts
for 74.8% variability in p63 binding, MSE = 0.08). Finally models with each
individual predictor are also made.

Additional file 7: Table S4. p63 Cooperating TFs Dataset. The 467 TFs
enriched by either ChIP-Seq analysis or motif analysis (P value <0.01) are
divided into 4 groups - Group A: 13 TFs that are a) expressed in
keratinocytes (RPKM >2), b) their in-vivo binding profiles are enriched
(P value <0.01 & overlap >5%), c) motifs are enriched at p63 targets
(P value <0.01 & overlap >5%) and co-occurs with p63 motif (P value <0.01).
Group B (Incomplete Analysis): 11 TFs for which DNA binding motifs are
unknown, Group C (Incomplete Analysis): 39 TFs for which there is no
ChIP-Seq data and Group Rejected: 404 TFs rejected because a) they are
not expressed in keratinocytes (RPKM <2) or b) they are not enriched by
ChIP-Seq or motif analysis (P value >0.01 or overlap <5%). In the table,
columns A-C mention TF name, −logPvalue of enrichment and % overlap of
the in-vivo binding profile of the TF with p63 binding sites. Column D is the
expression of the factor in keratinocytes. Columns E-F contain -logPvalue of
enrichment and % overlap of the TF motif with p63 bound sites. Column G
is the -logPvalue of enrichment of the co-occurrence of TF motif with p63
motif (i.e. within 100 bp). The motif name is in column H. Any missing data
is represented by −1. The TFs are arranged in descending order by an
average percentage rank calculated across columns B-G for each of the
4 groups.

Additional file 8: Table S5. Distal p63 binding sites linked to target
promoters dataset. This .csv file has 9106 lines of data (excluding header),
for 4011 p63 binding sites (distal regulatory regions), that are linked to at
least one target promoter in accordance with the global map of distal
DHS-to-promoter connections generated by the ENCODE consortium
[53]. Columns A-C contain the genomic coordinates of each of the 4011
p63 binding sites (hg19). Columns D-F represent the genomic coordinates
of the linked promoter. Gene names are given in column G. The distal
regulatory regions might be linked to more than one promoter/gene and
are therefore represented as multiple records in the dataset, with different
promoter coordinates for each repetition.
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