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Abstract

frequency and recombination.

Background: Simple sequence repeats (SSRs) are highly variable features of all genomes. Their rapid evolution
makes them useful for tracing the evolutionary history of populations and investigating patterns of selection and
mutation across gnomes. The recently sequenced Daphnia pulex genome provides us with a valuable data set to
study the mode and tempo of SSR evolution, without the inherent biases that accompany marker selection.

Results: Here we catalogue SSR loci in the Daphnia pulex genome with repeated motif sizes of 1-100 nucleotides
with a minimum of 3 perfect repeats. We then used whole genome shotgun reads to determine the average
heterozygosity of each SSR type and the relationship that it has to repeat number, motif size, motif sequence, and
distribution of SSR loci. We find that SSR heterozygosity is motif specific, and positively correlated with repeat
number as well as motif size. For non-repeat unit polymorphisms, we identify a motif-dependent end-nucleotide
polymorphism bias that may contribute to the patterns of abundance for specific homopolymers, dimers, and
trimers. Our observations confirm the high frequency of multiple unit variation (multistep) at large microsatellite
loci, and further show that the occurrence of multiple unit variation is dependent on both repeat number and
motif size. Using the Daphnia pulex genetic map, we show a positive correlation between dimer and trimer

Conclusions: This genome-wide analysis of SSR variation in Daphnia pulex indicates that several aspects of SSR
variation are motif dependent and suggests that a combination of unit length variation and end repeat biased
base substitution contribute to the unique spectrum of SSR repeat loci,

Background
Tandem arrays of DNA nucleotides, known as simple
sequence repeats (SSR), are extremely dynamic parts of
the genome. These tandem repeats vary in motif
sequence, length, and repeat number. The most com-
mon SSR loci are homopolymers (repeated single
nucleotide), dimers (repeated nucleotide pair), and tri-
mers (repeated nucleotide triplet). The highly poly-
morphic nature of SSRs makes them desirable for use in
both genotyping and population-level evolutionary stu-
dies. Simple sequence repeats may influence the fitness
of the organism [1], and in specific cases are known to
be causal of human disease [1].

A high mutation rate at SSRs has been well documen-
ted in a number of organisms using microsatellite
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constructs, pedigree analyses, and mutation accumula-
tion (MA) experiments [2-4]. The high mutation rate in
SSRs is due to a propensity for DNA misalignment dur-
ing replication [5], regulated primarily by the universal
mismatch repair system (MMR). MMR knockout experi-
ments show dramatic increases (up to 100 fold greater)
in the rate of simple sequence variation [6,7]; and sug-
gest that surveillance by MMR may vary across the gen-
ome [8]. Although the MMR system has been well-
categorized in certain species, the components of MMR
may vary from species to species, which may result in
lineage specific patterns of SSR repair, and consequently
lineage specific patterns of SSR variation [9]. In addition
to MMR fidelity; repeat number, motif sequence, motif
size, local rates of recombination and genomic location
can influence rates of SSR variation [8,10,11]. Genome
wide analysis of SSR variation in well-characterized sys-
tems will facilitate a greater understanding of the
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relationship between MMR evolution, and the abun-
dance of SSR and levels of variation at these loci.

Daphnia pulex (water flea), crustacean represents a
particularly useful platform for the study of SSR evolu-
tion. The Daphnia pulex lineage is distinct from the two
model organisms Caenorhabditis elegans (nematode)
and Drosophila melanogaster (fruit fly), both of which
have well characterized simple sequence repeat variation
[2,12]. The genome sequence of D. pulex is based on a
single heterozygous genotype sampled from a natural
population with minimal inbreeding [13]. The hetero-
zygosity within the genome sequence can be assayed by
analysis of the raw sequence reads (8 x coverage) allow-
ing a nearly genome-wide analysis of the variation at
SSR loci.

There are two main goals of this study. The first is to
provide a detailed catalog of SSR loci and their distribu-
tion within the genome of Daphnia pulex. The second
goal is to assay SSR heterozygosity on a genome wide
scale to test for motif specific rates and patterns of SSR
evolution.

Results and Discussion

Catalog and Distribution of SSR loci

In order to enumerate all types of SSRs in the Daphnia
pulex genome, we first identified all SSR loci in the lar-
gest 100 scaffolds (Daphnia pulex assembly 9/01/2006;
N50 = 103) with repeat motifs from 1 to 100 nucleo-
tides, repeated perfectly three or more times. Motif size
is defined by the length of the set of nucleotides that
are repeated, while repeat number reflects the number
of times that set is repeated. For example, the nucleo-
tides ATATAT have a motif size of 2 (AT) and the
number of repeats is 3. Under these criteria, we identi-
fied a total of 7,229,342 perfect SSRs, spanning 48.4
Mbp (21.3%) of the Daphnia pulex genome (Figure 1).
As with all prior studies, the abundance of all SSR types
exceeds random expectations based on nucleotide com-
position [14]. Homopolymeric repeats (HPs) make up
93% of all SSRs (6726771 loci), followed distantly by
dimers (4.8%; 347288 loci) and trimers (1.8%; 133428
loci). The remaining SSRs with motifs larger than 3 base
pairs constitute a much smaller fraction of the genome.
The distribution of SSR in the Daphnia pulex genome
most closely resembles the SSR distribution in Caenor-
habditis elegans (93% HP, 5.3% dimers, 1.3% trimers)
(Figure 2).

The number of simple sequence repeats follows an
exponential decay with increasing motif size (Figure 1).
The motifs with the size class of 24, 36, 42, 54, and 60
deviating from the regression line (Red in Figure 1).
Closer analysis of these motif classes using D. pulex
genome annotations [15] reveals that the overrepre-
sented motifs are protein coding sequences of tandemly
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Figure 1 Genome-wide Daphnia pulex count for simple
sequence repeats for motif size 1-100. Each simple sequence
repeat has a minimum repeat size of 3, red points contains
repeated amino acid motifs (r* = 0957, p < 1e-10).

repeated amino acid motifs found in multiple copies
that are spread across the genome. For example, the
24mers are multiple copies of an 8 amino acid repeat
found in the largest subunit of DNA-directed RNA poly-
merase II. This inflates the count of these motifs, all of
which are necessarily divisible by one codon unit.

Abundance of Specific SSR Motif Types

The number of A/T homopolymers (5,276,283) vastly
exceeds the number of G/C homopolymers (1,450,489).
The ratio of A/T to G/C homopolymers is not predicted
by the Daphnia pulex base composition (A/T 59%, G/C
41%, p = 0). The overabundance of A/T homopolymer
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Figure 2 SSR characteristics for motif sizes 1-10 with minimum
3 repeats in Daphnia pulex, Caenorhabditis elegans, Drosophila
melanogaster, Saccharomyces cerevisiae.
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tracts may reflect unique origins of the A/T homopoly-
mers from A/T rich transposable elements [16,17] or
base specific mutational patterns in repetitive sequence
motifs [14,17].

When studying SSR loci, genome-wide annotations
commonly combine repeat motifs into complementary
and overlapping DNA pairings [4], such that CA = AC =
GT = TG, GA = AG = CT = TC, AT = TA, and GC =
CG. In each case, the first two motifs of each set (e.g. CA/
AC) represent cases where the longest perfect repeat
begins with each of the two bases and the second pair of
motifs (e.g. GT/TG) are the complementary base. Our
approach counts each of the 12 dimer motifs indepen-
dently and determines the maximum size of a perfect
microsatellite repeat regardless of the starting base. Using
these criteria, we observe a bias in the starting (and end-
ing) nucleotide of dimer repeat loci. While the number of
repeats from each of the two strands is necessarily equiva-
lent, the starting base for each motif is significantly biased
in all cases for both dimers and trimers (Table 1). For tri-
mers, we examined the overall codon usage for Daphnia
pulex, and did not see any correlation between motif class
representation and codon usage (Table 1).

One explanation for the unexpected count differential
between motifs in a similar grouping is the existence of
a motif specific pattern of end base substitution, a phe-
nomenon that has been previously observed in chicken
microsatellites [18]. These observations may be informa-
tive with regard to the origin, or maintenance of SSR
loci. To explore these patterns further, we analyzed var-
iation at all SSR loci within the D. pulex genome assem-
bly involving repeat number, incomplete insertion
deletion events (indels), and base substitutions.

SSR heterozygosity

Multiple models have been developed to explain the
pattern of SSRvariation, such as the stepwise mutation
model (SMM) [19], and more recent models that focus
on a balance between the rate and pattern of length var-
iation and base substitutions [20]. To evaluate the rela-
tive levels of these two processes, we analyzed the
number of loci that were heterozygous for motif unit-
length variation and non-repeat unit polymorphism
(NRUPs). First, we identified all SSR loci that showed
significant evidence of repeat length variation in the raw
sequence data from which the genome was assembled
(see methods). In Daphnia pulex, we were able to assay
6,062,268 of the 7,229,342 total SSRs for heterozygosity,
of which 23,360 of the SSRs varied in length by at least
one perfect repeat. Although smaller scaffolds may con-
tain additional repeats, there is a increased possibility
that these smaller scaffolds are either contaminated
sequences or paralogous sequences, therefore we
excluded them from the heterozygosity analysis.
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For the five most abundant SSR motif sizes (1-5bp),
we observe either an exponential or linear increase in
repeat length heterozygosity as repeat number increases
(Figure 3). Repeats with motif size greater than 5 were
analyzed, however, due to the limited sample of large
motifs, we were unable to discern any distinguishable
pattern. The pattern observed in D. pulex for motifs
with size 1-5bp is consistent with the previous observa-
tion in yeast and humans that mutation rate increases
are correlated with increasing repeat number
[7,17,21-23]. The observed pattern is unlikely to reflect
SSR sequencing errors because while the frequency of
sequencing errors does increase with the number of
repeats, it is unlikely that the error will result in the var-
iation of a perfect repeat unit.

We then further dissect repeat length heterozygosity,
focusing on potential differences in heterozygosity
among specific motif types. Due to the lack of heterozy-
gotes in motifs longer than dimers, this analysis is lim-
ited to the two homopolymer and four dimer repeat
motifs (Figure 4a and 4b). Homopolymers in Daphnia
pulex exhibit increased repeat heterozygosity with
increasing repeat number reaching a maximal rate of
increase between 6 and 12 repeats (A/T r’= 0.925, G/C
r’= 0.899). The G/C motif achieves a much higher fre-
quency of heterozygosity (>20%) than A/T loci (~10%).
The higher level of heterozygosity in G/C loci is consis-
tent with direct estimates of the mutation rate using
Caenorhabditis elegans mutation accumulation lines,
where the G/C homopolymer mutation rate was ~20
fold greater than that for A/T HP loci [6], and consis-
tent with previous experiments on E. coli, human, and
yeast HPs which show a higher mutation rate of G/C
HPs attributed to possible differences in base stacking
properties during replication [24]. While it is possible
that G/C loci with large numbers of repeats are being
selectively excluded due to higher sequencing error
rates, the fact that the A/T loci with lower levels of het-
erozygosity also show this plateau suggests that it may
not simply be a sampling bias. If we assume that replica-
tion errors increase proportionately with an increase in
repeat number, a plateau of A/T and G/C loci suggest
that there may be a length threshold for differential
repair activity, length-dependent counter mutation, or
selection.

Similar to homopolymer repeats, dimer repeat hetero-
zygosity increases with increasing repeat number (AC r?
= 0.862; AG r* = 0.891, AT r* = 0.736, CG r* = 0.539)
(Figure 4d). Our analysis indicates that the motifs AC
and AG show the highest rate of increase in heterozyg-
osity (1.22% and 0.99% per repeat unit) followed by AT
and CG motifs (~0.75% per increase in repeat unit). In a
pedigree study of forty-two microsatellite loci using six
different Drosophila melanogaster populations, AC/AG
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Table 1 Abundance and Starting Nucleotide Preference for homopolymer and dimer loci in D. pulex

Dimers

Motif Type Count (obs) End (exp) p-value Starting Pref. Motif Type  Count (obs) End (exp) p-value Starting Pref.

TA 48814 42186 0 T GC 8444 7623 1E-39 G
AT 35558 42186 CG 6802 7623
GA 33951 31919 0 G/T AC 33773 29999 0 AT
AG 30185 31919 CA 26535 29999
TC 40029 31919 TG 35249 29999
cT 23511 31919 GT 24437 29999
Trimers
AAC+ 2728 2821 1E-78 T/C ACT 598 695 7E-15 G/T
ACA* 2431 2821 CTA+ 734 695
CAA* 3380 2821 TAC+ 791 695
GTT* 2339 2821 AGT 665 695
TGT* 2657 2821 TAG+ 564 695
TTG* 3390 2821 GTA+ 815 695
AAG 5734 4486 0 T/A AGC+ 1839 2823 1E-226 /G
AGA* 3657 4486 GCA* 2363 2823
GAA* 4278 4486 CAG+ 4131 2823
@) 3393 4486 GCT 3115 2823
TCT 3692 4486 TGC+ 2725 2823
TTC+ 6161 4486 [@[€] 2767 2823
AAT* 4099 2937 5E-216 A AGG+ 971 1039 2E-18 G/T
ATA+ 2260 2937 GGA* 1222 1039
TAA* 2406 2937 GAG+ 988 1039
ATT* 3533 2937 ccr 905 1039
TAT* 2233 2937 TCC 1207 1039
TTA 3093 2937 CTC 940 1039
ACC+ 855 1089 4E-40 /T ATC 1153 1404 8E-46 T
CAC+ 1057 1089 TCA* 1703 1404
CCA* 1383 1089 CAT* 1342 1404
GGT 1034 1089 GAT* 1452 1404
GTG 921 1089 TGA 1661 1404
TGG* 1285 1089 ATG* 111 1404
ACG 1229 1373 8E-11 G CCG 703 742 1E-47 G
CGA 1406 1373 CGC+ 519 742
GAC+ 1561 1373 GGC 916 742
CGT 1325 1373 CGG 731 742
TCG 1267 1373 GCG+ 585 742
GTC 1452 1373 GCC 995 742

This table shows nonrandom starting nucleotides in both dimers and trimers. Motif type indicates largest possible repeat identified for each staggered SSR set. P-
value calculated using Pearson’s chi-square test for random expectation based upon observed and expected frequencies.

Preferential starting base is determined by the highest frequency SSR for the motif grouping. * indicate highly used codons, + indicate rarely used codons.
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Figure 3 Percent repeat heterozygosity for each motif size in
Daphnia pulex. The X-axis is the repeat number found in the
assembly. The Y-axis shows the percent of loci at that motif size
that are heterozygous. Motif sizes best fit 1-3 an exponential curve
while motif sizes 4 and 5 best fit a linear pattern. (Motifs 1-5
respectively: r* = 0975, p < Te-7; * = 0990, p < 1e-8; r* = 0.995, p
< le-6; 1> = 0824, p < 01; * = 0999, p < 01).

repeats were shown to vary in repeat size at ~3-fold and
~1.5-fold more than AT repeats, with GC repeats not
surveyed [12]. All other things being equal, both Daph-
nia pulex and Drosophila melanogaster have similar pat-
terns of repeat variation such that the order of variation
by motif sequence is AC/AG > AT > GC.

Studies in yeast and C. elegans have shown that the
homopolymer mutation rate is ~100-fold greater than
the mutation rate at dimer loci [3,7]. On a per locus
basis, the percent heterozygosity of homopolymer
repeats and dimer repeats are nearly identical in Daph-
nia pulex (+/- 0.5%), with the largest differences occur-
ring at large repeats. Together, these observations
suggest that the homopolymer and dimer mutation rates
may be more similar in the Daphnia genome or that
selection severely limits variation at homopolymer loci.

Non-repeat Unit Polymorphisms
Non-repeat unit polymorphisms (NRUPs) are base sub-
stitutions or indels that interrupt the continuity of SSR
locus and can shape the observed abundance of each
repeat class (eg. CACATCACA is an interruption of a
CA dimer with a T). It is extremely complicated to
define and compare imperfect repeats, so for our analy-
sis we identified SSR loci that are perfect repeats in the
assembly, and subsequently looked for the existence of
NRUPs in the reads aligned to each locus.

Examination of the NRUPs at HP loci (Figure 4c)
reveals that as repeat number increases, the proportion
of polymorphisms per nucleotide increases (C/G r* =
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0.905, p < le-12; A/T r* = 0.446, p < .01). The rate of
increase is particularly pronounced between 6 and 12
bases at HPs. We further evaluated the positions of
NRUPs in a locus by comparing the site of polymorph-
ism to the random expectation (Table 2). The result
shows that at HP loci, point mutations occur at the
beginning or end nucleotides at a higher frequency than
expected, and the proportion increases with increasing
repeat number, effectively shortening or lengthening the
HP loci by a single unit. At smaller and more abundant
repeat numbers (from 3-12 nucleotides), the number of
end-point polymorphisms is substantial when compared
to length variation, and point mutations may have a sig-
nificant influence on homopolymer equilibrium.

Similar to homopolymers, a significant end bias is
found for NRUPs within dimer repeats (Table 2). At
dimer loci with few repeats (less than 5), NRUPs out-
number unit length indels, while at loci with 6 or more
repeats, unit length indels contribute to the majority of
variation (Table 2). This pattern matches results found
in a microsatellite study of the chicken genome, which
also shows an end bias NRUP distribution within repeat
arrays [18]. The propensity for end nucleotide poly-
morphisms at short repeats can lead to a SSR distribu-
tion characterized by species-specific mutation biases.
Our analysis does not allow us to distinguish which of
the heterozygous alleles is ancestral or derived and it
would be interesting to understand if the rate of single
nucleotide gains and losses are equivalent. A genome-
wide SSR study involving two closely related populations
with a recent out group would be required to determine
how NRUPs effect the equilibrium of SSR length distri-
bution in an organism.

For at least chicken and D. pulex, these observations
suggest that the specific abundance of specific types of
microsatellites within a genome reflects a dynamic bal-
ance between changes in repeat number and base sub-
stitution. When combined with unequal patterns of base
substitution, these observations can explain the overa-
bundance of specific starting and ending nucleotides in
SSR loci (Table 1).

Multi-step variation

Recent human microsatellite studies suggest that multi-
step variation is a significant component of variation at
larger SSR loci [25], deviating from the SSM model.
Furthermore, researchers have shown that the direction-
ality of multi-step mutations is length-dependent with a
critical repeat number at which contractions are more
frequent than expansions [26], while others suggest that
a critical number does not exist [27]. In this experiment,
we required that each multistep variant displayed a
minimum of at least two full perfect repeats. Our analy-
sis revealed two patterns. First, for all motif sizes, the
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proportion of heterozygotes that are multi-step increases
with the number of repeats at a locus (Figure 5). Sec-
ond, the rate of multi-step variation increases with
increased motif size. Further analysis of individual
homopolymer motif types showed that the fraction of
multistep variation at A/T HP is much lower (12.14% or
2129/17544) than that of G/C HPs (27.4% or 972/3547)
(Figure 5). Dimer loci also show a high frequency
(~21.3% or 288/1353) of multistep polymorphisms, with
AC motif showing the highest proportion multistep
increase (0.0423) followed by AG (0.036) and AT
(0.0301) (Figure 5). Direct estimates of dimer SSR loci
in D. pulex and C. elegans show that 73% (173 of 237)
of the variation at AC and AG loci larger than 13

repeats was multi-step variants [26]. A similar partition
of our data reveals that 52% (12/23) of AC and AG
dimer loci with greater than 13 repeats are multi-step
differences. Although the experiments described above
show that most of these multi-step changes are repeat
length increases, our method of analysis does not allow
us to polarize the differences between alleles. In any
event, there appears to be a motif dependant correlation
between repeat length and multi-step mutation change
for SSR loci.

Density of SSR Loci
Although the factors that affect the density of SSR loci
within a genome remain to be clearly defined, the
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Table 2 Position of the interruption in imperfect SSR.

Homopolymers

Repeat End Middle End Middle p-
Size (obs) (obs) (exp) (exp) value

3 15,005 50 10,037 5018 0

4 5,793 1,392 3,593 3,593 0
5 2,549 1,168 1,487 2,230 5.E-277
6 1,309 735 681 1,363 1.E-190
7 810 492 372 930 5.E-159
8 447 294 185 556 3.E-109
9 459 253 158 554 7.E-162
10 350 285 127 508 2.E-108
1 178 191 67 302 1.E-50
12 119 167 48 238 1.E-29
13 65 121 29 157 1E13
14 45 107 22 130 7.E-08
15 34 77 15 96 8.E-08
16 18 43 8 53 6.E-05
17 12 40 6 46 1.E-02
18 6 28 4 30 2.E-01
19 3 23 3 23 9.E-01
20 6 15 2 19 5.E-03

Dimers

Repeat Size End (obs) Middle (obs) End (exp) Middle (exp) p-value
3 1,588 641 1,486 743 5.E-06
4 332 208 270 270 9.E-08
5 121 83 82 122 2.E-08
6 65 61 42 84 1.E-05
7 58 53 32 79 3.E-08
8 47 29 19 57 1.E-13
9 39 30 15 54 7.E-12
10 17 10 5 22 2.E-08
1 1 7 3 15 2.E-06
12 9 7 3 13 2.E-05
13 7 4 2 9 9.E-06

This table shows the position of interruptions in simple sequence repeats.
“End” indicates polymorphism at beginning or end of SSR loci, while middle
variation indicates polymorphism occurs at interior positions (eg.
Homopolymer with repeat length of three has two possible end nucleotide
positions and one possible middle position. P-value is determined using
Pearson'’s chi-square test for random expectation.

density of SSRs within genomes has been positively cor-
related with regional rates of recombination in Droso-
phila melanogaster [27], Saccharomyces cerevisiae [28],
and C. elegans [2]. To evaluate the density of SSR loci
in the Daphnia genome, we ranked the density of SSRs
in each of the top 100 scaffolds ranging in size from
4.19 Mb to 0.47 Mb (Table 3a). Several scaffolds (68, 81,
83, 89) show a dearth of HP loci and scaffolds 66 and 98
have a paucity of SSRs with five and six base motifs
respectively. While no scaffolds showed an overabun-
dance of homopolymers, several scaffolds showed signif-
icantly high numbers of SSRs, in particular scaffolds 43,
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Figure 5 Percentage of repeat heterozygosity that involves
more than a single unit. Homopolymers r’ = 0.896, p < le-§;
Dimers 1’ = 0927, p < 1e-7; Trimers = 0927, p < le-4.

74, and 76, which have an overabundance of repeats of
motif sizes greater than 1 bp. Simple sequence repeats
have been shown to play a role in gene regulation [1]
and consequently would be in close proximity to genes.
To test if these patterns are correlated with gene den-
sity, we compared SSR scaffold abundance to Daphnia
gene predictions [15], and show that none of the overa-
bundant scaffolds listed previously are either gene poor
or gene rich (Table 3a). Results found in C. elegans [6]
also show little correlation between gene density and
SSR density.

We then used a preliminary genetic map for Daphnia
pulex [29] to test for correlations between SSR density
and heterozygosity with rates of recombination within
scaffolds. Based on 61 intervals in the genetic map that
could be assigned to physical intervals in the top 100
scaffolds, we find that the density of microsatellite loci
with motif sizes greater than 1bp show a significant
positive correlation with the rate of recombination (Fig-
ure 6). This result is consistent with a yeast study show-
ing a high frequency of microsatellite repeats near
meiotic hotspots [28], and further supports role for SSR
loci in the regulation of recombination. Both microsatel-
lite repeats (repeats of motif size 2-6), and homopoly-
mer repeats (single nucleotide repeats) correlate
positively with recombination rate (Figure 7). Homopo-
lymers have array sizes that are considerably larger than
microsatellites, giving them properties that may influ-
ence recombination frequency.

Within the same intervals, no correlation was
observed between microsatellite heterozygosity and
recombination in Daphnia pulex (Figure 8). A previous
microsatellite survey in humans [30] also showed no sig-
nificant correlation between microsatellite heterozygosity
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Table 3 Gene content vs SSR abundance, and G/C
content vs SSR heterozygosity

Table 3a: Gene content vs SSR abundance

Motif Size

Abundance 1 2 3 4 5 6 2to6 Gene Content

scaffold_18 +
scaffold_32 + +

scaffold_43 + +

scaffold_58 +

scaffold_59 +

scaffold_62 +

scaffold_66 -

scaffold_67 + +
scaffold_68 +

scaffold_74 + + -
scaffold_76 + + +

scaffold_81

scaffold_82 + + -
scaffold_84 -
scaffold_85 +

scaffold_88 +

scaffold_90 + 4+

scaffold_98 -

Table 3b: G/C content vs SSR heterozygosity

Motif Size

Heterozygosity 1 2 3 4 5 6 2to6 G/C Content

scaffold_7 +
scaffold_18 +
scaffold_19 +
scaffold_20 +
scaffold_24 + +
scaffold_30 + + + +
scaffold_32 +
scaffold_33 +
scaffold_43 +
scaffold_63
scaffold_69 +
scaffold_75 +
scaffold_76 + +
scaffold_77 + +
scaffold_82 -
scaffold_90 + + + +
scaffold_94 +

This table shows motif sizes that are significantly greater than (+) or less than
(-) the overall scaffold mean.

Motif Sizes that are significantly different (2 standard deviations) from the
overall scaffold mean using Generalized Extreme Studentized Deviate (ESD)
are bolded (p < 0.05, df = 98). Column 2 to 6 is the cumulative sum of motif
sizes 2 to 6 (homopolymers excluded).

and recombination rate, however, the scale of the
recombination intervals and their measurement often
make such observations difficult. Although SSRs of all
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types are correlated with recombination rates, the level
of SSR heterozygosity seems uninfluenced by
recombination.

The distribution of heterozygosity at SSR loci can be
shaped by selective sweeps, background selection and
locus-specific differences in mutation rates. Many of
these patterns may themselves be correlated. Based on
our analysis, scaffolds 24, 30, 76, and 90 have multiple
motif classes that are significantly more heterozygous
than expected (Table 3b). Scaffold 90 also shows signifi-
cantly higher G/C content (44%; average G/C = 41%),
which is contradictory to suggestions of an evolved effi-
ciency of MMR in G/C rich regions of eukaryotes [31].
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represent the blue line, 95% confidence interval represent the green
line (¥ = 0.030, p > .1).
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Conclusions

The Daphnia pulex genome sequence provides us with a
unique opportunity to study genome-wide SSR patterns
using whole genome shotgun reads. Although recent
sequencing technologies have greatly improved sequen-
cing throughput, these new technologies introduce mul-
tiple errors that are absent from WGS sequencing.
Furthermore, the large read size of WGS sequencing
allows for alignment to larger motif types that smaller
read lengths cannot span. Daphnia pulex has undergone
a minimal amount of inbreeding prior to sequencing,
retaining high relative levels of assayable SSR heterozyg-
osity that may be removed from heavily inbred genome
sequencing projects.

SSRs, primarily microsatellites, are used commonly as
genetic markers for population level studies. Our results
show that in Daphnia pulex, levels of genome-wide SSR
heterozygosity can not only vary with the length of
motifs, but also by motif type in agreement with the stu-
dies of other organisms [18,22,27]. Our genome-wide
results show that microsatellite loci with less than 6
repeats accumulate non-repeat unit polymorphisms at a
greater rate than repeat length differences. In addition,
AC/AG microsatellites accumulate repeat length differ-
ences at a greater rate than AT/GC microsatellites.
Taken together, for Daphnia pulex, AC/AG repeats with
a minimum of 6 repeats will provide the most resolution
when used as genetic markers in Daphnia specific popu-
lation level studies. Although the two available genome-
wide microsatellite studies of fruit-fly [27] and chicken
[18] display similar patterns of heterozygosity (highest
AC/AG heterozygosity), microsatellites studies from
additional taxa must be made before a broad
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recommendation for genetic marker motif type and
repeat length can be made.

In our analysis of SSR loci in the genome of Daphnia
pulex we describe both the catalogue of SSR sequences
and several aspects of abundance and variation that are
motif specific. Patterns that are motif specific include
levels of heterozygosity, motif specific rates of repeat
length variation, and motif specific patterns of NRUPs.
Current models of simple sequence repeat evolution
suggest that the abundance and variation at SSRs results
from a balance of two opposing mutational forces. SSRs
have a repeat number dependant rate of evolution
resulting in the loss and gain of perfect repeat units. By
contrast NRUPs disrupt repeat patterns and break down
larger repeats into smaller ones. We also find a propen-
sity for end nucleotide base substitution in SSRs, which
was also reported in the chicken genome [18], suggest-
ing that end nucleotide base substitution shapes the spe-
cific patterns of SSR abundance in multiple genomes. In
addition to nucleotide end bias, we identify a significant
difference in nucleotide starting preference for dimer
and trimer classes.

Methods

Sequence data

The fasta sequences used in this study are from the
Daphnia pulex genome project. The DOE Joint Genome
Institute (JGI) and the Daphnia Genome Consortium
(DGC) have sequenced 2,729,325 shotgun clones that
result in 8.7 x coverage of the Daphnia pulex genome.
This sequence has been assembled using the JAZZ
assembler, and consists of 9,080 scaffolds, containing a
total of 1,591,853 reads, and 227.1 Mb. In this assembly,
103 scaffolds represent the N50. The sequences can be
downloaded at JGI http://www.jgi.doe.gov/Daphnia/)
and the DGC http://wfleabase.org/. The fasta sequences
used in Figure 2 were taken from http://www.flybase.org
(Drosophila melanogaster), http://www.wormbase.org
(Caenorhabditis elegans), and http://www.yeastgenome.
org (Saccharomyces cerevisiae).

Detection of simple sequence repeats

Programs written in PERL (available upon request) are
used to count the number, length, location, and motif of
all repeating motif size 1-100 bps in the Daphnia n50
scaffolds, with a minimum repeat number of 3 repeats.
A greedy algorithm is applied to finding the repeats.
Once the first repeat is found, the location is noted and
back matching of the repeat is used to determine the
length of the repeated motif. The program allows for no
mismatches (all repeats are perfect repeats). Only the
smallest motif in the repeat is counted, larger nested
motifs are counted as the lowest common repeating
motif (eg. GAGAGAGA is counted as 4 repeats of GA,


http://www.jgi.doe.gov/Daphnia/
http://wfleabase.org/
http://www.flybase.org
http://www.wormbase.org
http://www.yeastgenome.org
http://www.yeastgenome.org

Sung et al. BMC Genomics 2010, 11:691
http://www.biomedcentral.com/1471-2164/11/691

not one repeat of GAGAGAGA or two repeats of
GAGA). Each motif is defined by the first occurrence of
a repeating nucleotide (eg. GA and AG are unique
motifs). Because this is a greedy algorithm, motifs of the
largest size are identified, regardless of sequence identity
(eg. AAAGAGAAAGAG is counted as two repeats of
AAAGAG, not two homopolymeric runs of AAA).

Measuring Heterozygosity

To assay variation at SSR loci we used the AMOS refer-
ence assembler [32] to assemble the 8.7 x sequences
(average read length = 774) to the JAZZ assembly at
90% identity to allow for an estimated 2-4% average
sequence heterozygosity. This allows for heterozygous
differences of between 6-8% (46-62 nucleotides). In
order to remove paralogy, coverage depth at each posi-
tion was limited to a maximum of 16 and a minimum
of 4 inclusive. Loci that met these criteria through the
entire repeat were extracted from the AMOS output
and analyzed for indels of perfect repeats and point
mutations. Variants that are greater than 1 repeat unit
in length were categorized as multi-step variations. In
order to make a heterozygous call, we required a mini-
mum of 2 consensus reads showing the variation. There
were 966758 sites that only had one variant read for
repeat differences and 1675976 sites that only had one
variant read for SNP differences. The total number of
reads covering these sites were 9468378 and 15642919
reads respectively, leading to a read error rate of ~0.1
for both types. Loci that had more than two alleles were
thrown out of the analysis. There were 1220 loci that
displayed two or more heterozygotes SNP calls, and 277
loci that displayed more than two or more heterozygous
repeat calls. (1497/6,062,268). The estimated frequency
of paralogous loci in the dataset is 2.47e"-4.
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