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Evolution of response dynamics underlying
bacterial chemotaxis
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Abstract

Background: The ability to predict the function and structure of complex molecular mechanisms underlying
cellular behaviour is one of the main aims of systems biology. To achieve it, we need to understand the
evolutionary routes leading to a specific response dynamics that can underlie a given function and how
biophysical and environmental factors affect which route is taken. Here, we apply such an evolutionary approach
to the bacterial chemotaxis pathway, which is documented to display considerable complexity and diversity.

Results: We construct evolutionarily accessible response dynamics starting from a linear response to absolute
levels of attractant, to those observed in current-day Escherichia coli. We explicitly consider bacterial movement as
a two-state process composed of non-instantaneous tumbling and swimming modes. We find that a linear
response to attractant results in significant chemotaxis when sensitivity to attractant is low and when time spent
tumbling is large. More importantly, such linear response is optimal in a regime where signalling has low
sensitivity. As sensitivity increases, an adaptive response as seen in Escherichia coli becomes optimal and leads to
‘perfect’ chemotaxis with a low tumbling time. We find that as tumbling time decreases and sensitivity increases,
there exist a parameter regime where the chemotaxis performance of the linear and adaptive responses overlap,
suggesting that evolution of chemotaxis responses might provide an example for the principle of functional
change in structural continuity.

Conclusions: Our findings explain several results from diverse bacteria and lead to testable predictions regarding
chemotaxis responses evolved in bacteria living under different biophysical constraints and with specific motility
machinery. Further, they shed light on the potential evolutionary paths for the evolution of complex behaviours
from simpler ones in incremental fashion.

Background
Cellular behaviour is implemented at the molecular level
through interacting proteins that form a dynamical sys-
tem. This system allows the cell to process external sig-
nals so to generate an appropriate response. Towards
understanding this signal-response relationship, exten-
sive experimental and theoretical studies are undertaken
in the specific molecular systems of model organisms.
The resulting insights, however, might not be easily
transferable to other organisms where the underlying
system might display both structural and dynamical
deviations from the model system. Any such diversity
would be the result of evolution, whereby organisms

adapt their response to the environmental conditions
they experience and to the limitations of their specific
biochemistry. For achieving a broad and predictive
understanding of cellular behaviour, we need to charac-
terise the selective pressures driving the evolution of the
underlying molecular systems and the likely responses
to those pressures. Here, we undertake such an evolu-
tionary approach to study bacterial chemotaxis.
A detailed understanding of the chemotaxis pathway,

the signal-response relationship it embeds, and the
resulting chemotaxis behaviour in the model organism
Escherichia coli have resulted from the pioneering
work of several groups [1-5]. In brief, E. coli utilises
several flagella to swim, where swimming behaviour
can be approximated by straight runs separated by
tumbling events that re-orient the cell. The tumbling
probability is modulated by a negative adaptive
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response; a step increase in attractant concentration
results in a transient decrease in tumbling rate. This
response is implemented by a chemotaxis network
comprised of receptors with methylation sites, reversi-
ble and modulatable motors, and five intermediary
proteins providing signal transduction and integral
feedback control [6,7]. This detailed understanding,
however, does not permit a quantitative prediction of
chemotaxis responses in other bacteria, which harbour
structurally diverse chemotaxis networks [8]. In the
closely related Salmonella enterica both molecular
mechanisms and response dynamics are highly similar
to that seen in E. coli [9,10]. Bacillus subtilis shows
response dynamics that fits closely with E.coli [11],
even though their chemotaxis network differ structu-
rally [11,12]. In Sinorhizobium meliloti and Rhodobac-
ter sphaeroides, two species belonging to the a-
proteobacteria, chemotaxis is suggested to involve two
separate pathways [13,14]. Experiments in these species
show that such structural diversity translates to devia-
tions from E. coli response dynamics [15-17]. In parti-
cular, R. sphaeroides seems to have slower adaptation
to persistent stimuli [18] and gives an ‘inverted’ che-
motaxis response (i.e. increasing attractant concentra-
tion causes an increase in tumbling frequency), when
grown under aerobic conditions [19]. Such an inverted
response is also observed in certain Halobacteria [20]
and in certain mutant strains of E. coli that have been
‘gutted’ of some or most of the chemotaxis proteins
[21,22]. Interestingly, these natural and mutant strains
all still show the ability to chemotax.
To understand the significance of these structural and

dynamic deviations, we consider here which alternative
signal-response relationships could underlie chemotaxis
and if there exist evolutionarily plausible, incremental
paths between them. Previous studies have shown strict
limits on the types of responses that could result in
effective chemotaxis [23] and have demonstrated that an
adaptive response dynamics provides the optimal che-
motaxis performance [24,25]. These studies, however,
assumed tumbling to be instantaneous. While this
assumption is consistent with observations from E. coli
[1], it is not expected that tumbling times are or have
been always short in all bacteria. In particular, re-orien-
tation depends on the motility machinery of the bacteria
and could range from simply stopping, turning or rever-
sing [17], with each mode potentially resulting in differ-
ent time scales. To account for this, several studies have
considered the possibility of extended tumbling times
[24,26-28]. Some of these studies showed that relaxing
the assumption of instantaneous tumbling results in
diverse chemotaxis behaviors, including the possibility of
chemotaxis in the absence of biochemical memory
[27,28].

Given such wider range of possible response
dynamics, the questions arise which of these are optimal
under different circumstances, and how evolution could
result in the emergence and transitions among the
molecular mechanisms implementing different response
dynamics. Here, we develop an analytical approach to
model bacterial movement that relaxes the assumption
of tumbling being an instantaneous event. We use this
model to understand the nature and evolution of
response dynamics for achieving optimal chemotaxis. In
particular, we concentrate on the linear and adaptive
responses to stimuli and analyse the chemotactic perfor-
mance of these under a range of system parameters and
tumbling times. The resulting analyses shed light on the
role of observed diversity of chemotactic behaviour, and
suggest a relation between environmental and biochem-
ical constraints and expected response dynamics for
optimal chemotaxis. In addition, they provide insight on
potential routes in the evolution of chemotaxis as a ser-
ies of incremental advances without invoking de novo
simultaneous evolution of a multicomponent system and
the attendant problems of ‘irreducible complexity’.

Results
Bacteria navigate their environment through periods of
swimming, separated by tumbling (or stopping) events
that result in re-orientation. To model this process, we
consider a population in a one-dimensional space. This
simplification to one-dimension is necessitated from the
computational burden of the analyses we perform, how-
ever, we note that this modelling choice represents the
more complicated two and three-dimensional spaces
where the attractant concentration only varies along one
dimension. At any time, the population will have three
sub-populations; bacteria moving left or right and tum-
bling. Bacterial behaviour is characterised by the rate of
entering (a) and exiting (b) the tumble state. The for-
mer is given by a basal rate a0 modulated by the
response of the bacteria to the local attractant concen-
tration, while b is assumed to be a constant. In nature,
we expect b to relate to various biochemical features of
bacteria including the structure of their motility machin-
ery. For example, tumbling times can be longer (i.e.
smaller b) in bacteria with unidirectional motors, where
a “tumble effect” results from the stopping or slowing of
the motor(s) [29,30]. The modulation of a0 corresponds
to the signal-response relationship enabled by the
underlying chemotaxis pathway. In particular, all studied
chemotaxis networks to date seem to display negative
adaptive responses, where tumbling frequency of the cell
returns to a basal level after decreasing following a step
increase in stimuli [4,5]. Chemotaxis in the absence of
adaptation, however, is also predicted to be possible by
theoretical and computational studies [27,28] and
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several experimental studies reported positive adaptive
responses [19,31]. In addition to a and b, a key property
for determining chemotactic behaviour would be the
sensitivity of the chemotaxis pathway, which is shown to
be highly enhanced in E. coli through both receptor
clustering [32] and cooperative binding between path-
way output and the motors [33]. In the model, we
reduce such molecular mechanisms to a single para-
meter, l, which controls the level of modulation of a0

by the signal (i.e. the sensitivity of the pathway).
To measure chemotactic performance, we consider a

Gaussian attractant distribution moving at a fixed rate
(d) in the one-dimensional space. While most previous
studies have characterised chemotactic performance
with the magnitude of the drift in a gradient [34,35], we
instead considered as the chemotactic performance, CP,
the quantity that represents the broader and evolutiona-
rily more relevant goal of the chemotactic process; co-
localisation with the attractant (but also see below). We
quantified CP resulting from specific response dynamics
and parameters b, a0, and l (Table 1) over a period of
time τ. Specifically, we consider a negative adaptive and
a positive linear response with the latter representing
the simplest response in terms of molecular implemen-
tation (Figure 1) still able to mediate some form of che-
motaxis [28].
With the negative adaptive response with high b (i.e.

instantaneous tumbling), chemotaxis results from an
effective ‘gradient-climbing’ with minimal time spent in
tumbling, as is observed in E. coli [1] (Figure 2A). For
this response, CP is negligible at low l but increases to
the maximum possible at high l (Figure 3A, red line).
For the positive linear response with low b (i.e. long
tumbling episodes), chemotaxis results from extensive
tumbling with increasing attractant (Figure 2B). CP
resulting from a positive linear response is larger than
that of the negative adaptive response at low l, increases
as l gets larger, reaches a peak, and then decreases (Fig-
ure 3A, blue line); a low sensitivity results in bacteria

simply swimming over attractant regions without detect-
ing them, while high sensitivity results in bacteria tum-
bling at very low attractant concentrations never
reaching regions of high attractant.
For the positive linear response, the optimal values of

a0 and b for achieving the highest CP are low and
mostly independent of l (Figures 3B & Additional File
1, Table 2). The strategy is clear; swim unless there is
high attractant, in which case tumble for a long time.
The optimal value of a0 for the negative adaptive
response is low and does not change with l but the
optimal value of b changes from a low value to large
values in a wide range as l increases (Figures 3B &
Additional File 1, Table 2). Interestingly, at a sensitivity
level where CP resulting from positive linear and nega-
tive adaptive responses are similar, we find that optimal
values of b are comparable (close to 0.01 for both
responses). This suggests that at this level of sensitivity,
these two very different response types achieve chemo-
taxis in similar ways. Indeed, we find that at such low b,

Table 1 Implementation of various response dynamics

aL aR

Linear response
α0 + λ

A(x)
Amax

α0 + λ
A(x)
Amax

Adaptive response
α0 + λ(v + d)

A′(x)
(v + d)A′

max
α0 − λ(v − d)

A′(x)
(v + d)A′

max

Hybrid response
α0 + λLin

A(x)
Amax

+ λAdapt(v + d)
A′(x)

(v + d)A′
max

α0 + λLin
A(x)
Amax

− λAdapt(v − d)
A′(x)

(v + d)A′
max

A(x) and A’(x) are the local concentration of attractant and its spatial derivative. Response magnitudes are normalised by Amax and A’max, the maximum values of
these parameters.

Figure 1 Cartoon representation of potential molecular
implementation and response to attractant for the linear and
adaptive response. See Table 1 for mathematical implementation
of these dynamics.

Soyer and Goldstein BMC Evolutionary Biology 2011, 11:240
http://www.biomedcentral.com/1471-2148/11/240

Page 3 of 9



bacteria with an adaptive response behave much like
bacteria with a linear response; much of the attractant
co-localisation occurs through the creation of a large
tumbling population (Figure 2C). The only difference
between the two strategies is that the tumbling is caused
by moving in an attractant gradient (adaptive response)
rather than the attractant level per se (linear response).
To better understand the effect of different parameter
values on the chemotactic performance of the linear and
adaptive performance, we also considered the time it
takes for bacteria to accumulate in high attractant
regions (this measure is similar to ‘drift velocity’ consid-
ered in other works [34,35]). We find that for the linear
response, this measure is optimal at low b and low l;
increasing l results in bacteria that tumble excessively
at lower attractant concentrations, resulting in extremely
slow dynamics (Figure 4). In contrast, a bacterium with
an adaptive response and high (low) l climbs an attrac-
tant gradient faster when it has high (low) b. This find-
ing explains the observed shift in b for the adaptive
response as l increases. The best performance for the
adaptive response is achieved with a combination of
high sensitivity (large l) and short tumbling time (high

b). Additional File 2 provides a direct comparison of the
performance of linear and adaptive response with select
parameters.
To summarise, these results show that positive linear

responses outperform negative adaptive responses in
their chemotactic efficiency under low sensitivity.
Further, as system sensitivity increases there is a transi-
tion from linear to adaptive responses as mediators of
optimal chemotaxis. These findings are highly suggestive
in an evolutionary context for two reasons. Firstly, it is
highly likely that evolutionary generation of a sensing
system producing a positive linear signal-response rela-
tionship is much easier compared to one producing a
negative adaptive relation. In fact, the latter response
type can simply be achieved through coupling of the
motors to the cell metabolism as observed in several
systems [36-39]. Secondly, it is plausible that, even if
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Figure 2 Final distributions of bacteria after time interval τ =
1000 starting from a random distribution, with d = 0.001, for
various response dynamics. Represented are the left-swimming L
(blue), the right-swimming R (red), and the tumbling population S
(yellow). Only the population in -5 >x > 5 is shown. The distribution
of attractant is shown with a solid black line. A: high sensitivity
negative adaptive response, a0 = 0.01, l = 100.0, b = 100.0,
corresponding to the thick red curve in Figure 4. B: low sensitivity
positive linear response, a0 = 0.01, l = 1.7, b = 0.01, corresponding
to the thin blue curve in Figure 4; C: low sensitivity negative
adaptive response, a0 = 0.01, l = 1.7, b = 0.01, corresponding to
the thin orange curve in Figure 4; D: low sensitivity hybrid response,
a0 = 0.01, lLin = 1.1, lAdapt = 0.6, b = 0.01, corresponding to the
thin green line in Figure 4; Note the change in scale in A.
Asymmetry of the curves is due to the non-zero attractant velocity.
All three low sensitivity responses, including the adaptive response,
are characterised by a large fraction of tumbling bacteria co-
localised with the attractant, even if the tumbling population is not
large in regions far from the attractant.
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Figure 3 Optimal chemotaxis performance (CP) and b for
different chemotaxis strategies. A. CP for low b adaptive (purple),
high b adaptive (magenta), optimised adaptive (red), optimised
inverted adaptive (orange), optimised linear (blue), and optimised
hybrid (green) responses for increasing total sensitivity (l or lLin +
lAdapt). Performance is measured by attractant concentration A
averaged over a finite length of time (τ = 1000) calculated with d =
0.001, normalised by maximum attractant concentration Amax.
Hybrid performance at low (high) sensitivity matches that of a linear
(adaptive) response. At intermediate sensitivities a hybrid response
out-performs both linear and adaptive responses. B. Optimal b value
for achieving highest chemotactic performance for adaptive (red)
and linear (blue) responses at different levels of sensitivity. The
shaded region indicates where the chemotactic performance was
within 1% of the maximum for a given b value. Performance is
measured as in panel A.
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dedicated sensing for certain attractants was available,
the level of sensitivity in ancient chemotaxis systems
was low. Taken together these arguments suggest an
important evolutionary role for a linear positive
response as an evolutionary precursor to adaptive
dynamics. If this was the case, how could molecular
transitions between systems embedding the two
response types have occurred?
To address this question, we considered an inverted (i.

e. positive) adaptive response and a hybrid response
(Table 1) as potential evolutionary paths leading from

positive linear response to an adaptive response. The
former response dynamics would be needed if there was
a sequential progression of dynamics where adaptation
comes before switching from positive to negative
responses. The invention of adaptation could be
mediated by addition of new proteins in the simple sys-
tem shown in Figure 1 that could enable feedback on
the “sensor” protein. The subsequent switching from
positive to negative responses could involve only few
mutations [31,40]. As an alternative to sequential pro-
gression of response dynamics from linear to adaptive, a
hybrid response could result from combining the out-
puts of two distinct systems, one with an adaptive and
one with a linear response.
As shown in Figure 3A (orange line), we find that CP

for the inverted adaptive response depends on sensitivity
in a similar fashion as it does for linear response and
that the maximum CP is lower than that possible with
the linear response. This suggests that mutations con-
verting a system with positive linear response to positive
adaptive response would not be selected for, and there-
fore it is not likely that an inverted adaptive response
was an intermediate step in the evolutionary trajectory
(but see also Discussion below). For the hybrid response,
we consider an overall system sensitivity that results
from simple addition of the independent sensitivities of
two distinct systems one with a positive linear (i.e. lLin)
and one with negative adaptive response (i.e. lAdapt).
We then optimise both lLin and lAdapt for a fixed value
of lLin + lAdapt. By performing this optimisation under
different total sensitivities (i.e. lLin + lAdapt), we find
that CP resulting from an optimal hybrid response fol-
lows nicely from the CP resulting from a linear response
at low and intermediate sensitivity and achieves maximal
CP at high sensitivity (Figure 3A, green line). We find
that under low sensitivity, the optimal hybrid strategy is
to modulate basal tumbling rate only by the absolute
level of the attractant (i.e. lLin > >lAdapt), while at

Table 2 List of adjustable parameters, limits, and selected optimal values

a0 l lLin lAdapt b

Limits 0.01-100.0 0.0-100.0 0.0-100.0 0.0-100.0 0.01-100.0

d = 0.001, | = 1000.0

Linear response 0.01 3.6 - - 0.02

Adaptive response 0.01 100.0 - - 100.0

Inverted adaptive response 0.01 1.8** 0.01

Hybrid response:

lLin+ lAdapt = 0.1 0.01 - 0.1 0.0 0.01

lLin+ lAdapt = 1.0 0.01 0.76 0.24 0.01

lLin+ lAdapt = 100.0* 0.01 20.0 80.0 5.2

lLin+ lAdapt = 100.0* 0.01 15.0 85.0 100.0

*These solutions have nearly identical localisation with attractant. **This corresponds to a normal adaptive response with l = -1.8.
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Figure 4 The amount of attractant encountered with time,
normalised by maximum attractant concentration, for different
responses and parameter values, with d = 0.001: adaptive
response is indicated in orange (b = 0.01) or red (b = 100.0),
linear response in blue (b = 0.01). Results are presented for both
low sensitivity (l = 1.7, where adaptive and linear responses display
similar performances, thin lines) and high sensitivity (l = 100.0, thick
lines). The linear response achieves very little chemotaxis with large
values of b. The optimal hybrid mixture for lLin + lAdapt = 1.7 (lLin
= 1.1, lAdapt = 0.6) is shown as a thin green line. a0 = 0.01 for all
curves. Resultant bacteria distributions for some of these selected
responses are shown in Figure 2.
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higher sensitivities, the optimal strategy is dominated by
the adaptive response (Figure 5). As before, we find that
as the total l increases, the optimal value of a0 does not
change, but the optimal value of b changes from a low
value to large values as the optimal strategy mixture
shifts. At intermediate sensitivities with lower values of
b, the optimal strategy is dominated by the creation of a
large population of bacteria tumbling where there is
high attractant concentrations (Figure 2D).

Discussion
Understanding the evolution of specific system dynamics
as observed in bacteria is difficult due to limited avail-
ability of data on the dynamics of different systems and
the absence of a fossil record of system dynamics from
ancient bacteria. To overcome these difficulties, here we
undertook an extensive mathematical characterisation of
CP mediated by the two types of response dynamics
that can enable chemotaxis; positive linear and negative
adaptive response. These analyses revealed several new
insights regarding the potential role of these responses
in the evolution and diversity of current day chemotaxis
networks.
Firstly, we find that chemotaxis systems with a low

sensitivity (low l) could mediate effective chemotaxis by
implementing either a positive linear or a negative adap-
tive response. Optimisation of response parameters for

high CP showed that while the latter response type gives
the highest CP in such low sensitivity regime, both types
of response dynamics are characterised by long tumbling
times (high l). These results suggest that positive linear
response might be of significant importance in either
ancient or current day bacteria that are limited in their
ability to increase sensitivity and reduce tumbling time
(e.g. due to the nature of their motility machinery).
Further, we note that a positive linear mechanism is
potentially the simplest response type to be implemen-
ted at the molecular level; a system without dedicated
receptors but with direct coupling of the motors to the
cell metabolism would suffice. Such direct coupling
between chemotaxis and metabolism is observed in sev-
eral bacteria [37,38].
Secondly, we find that the CP mediated by the positive

linear response can be optimised only to a certain level
with increasing l. At an intermediary sensitivity, the CP
mediated by the positive linear response starts to
decrease, while that of the negative adaptive response
increases. Interestingly, the CP’s of the two response
types overlap at this range of intermediary sensitivity,
suggesting that there could be an evolutionary transition
between them if improving CP was a major selective
pressure. More intriguingly, we find that at this regime
of overlapping CP’s the optimal parameters (i.e. a0 and
b) for both response types are comparable. This finding
provides an intriguing example of functional continuity
with structural change [41,42]. In other words, muta-
tions leading to changes in the structure and response
dynamics of a chemotaxis system with a linear response
could be coupled to a functional continuity at the phe-
notypic level (i.e. CP).
While our analysis only considers the end effects of

such mutations, it provides suggestions about likely evo-
lutionary routes at the molecular level. In particular, we
find that sequential evolution from a positive linear to
negative adaptive response in a single system (e.g.
through introduction of methylation sites in a receptor
and additional receptor-regulated methylation proteins)
is unlikely due to lower CP of the intermediary positive
adaptive response (i.e. inverted adaptive response). We
note, however, that such an evolutionary route cannot
be ruled out as inverted adaptive responses are com-
monly observed in different chemotaxis systems and
seem to be easily accessible via mutations [31,40].
Furthermore, a recent genomic analysis of chemotaxis
systems found receptor proteins that combine methyla-
tion and sensing functions (i.e. do not have dedicated
methyltransferase and methylesterase proteins) and
kinase proteins that have an intermediary domain struc-
ture between kinases common in other signalling func-
tions and those specific to chemotaxis [8]. It is possible
that such intermediary systems had response dynamics
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Figure 5 Optimum chemotaxis performance, measured as in
Figure 3A, for the hybrid response with increasing
contribution from the linear response (lLin). The different curves
correspond to different total sensitivities (lLin + lAdapt) as indicated
on each curve. The shaded region indicates where the chemotactic
ability was within 0.1% of the optimum for a given total sensitivity
for a range of values of lLin. Note that having an adaptive response
component is optimal only above a certain level of system
sensitivity, with the optimal contribution of the adaptive response
increasing with increasing sensitivity. The red shaded region
indicates where the optimal value of b was approximately 100.0.
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as described here, e.g. adaptive dynamics with long tum-
bling times The alternative molecular route to achieving
a transition between linear and adaptive responses
would be to combine the output of two distinct systems
with such responses. Utilisation of multiple chemotaxis
networks is seen in Rhodobacter sphaeroides [43] and is
suggested also in a large number of motile bacteria
[8,44]. It is tempting to speculate that the origin of
these multiple network systems relate to the evolution
of chemotaxis as suggested by our analysis.
Finally, we find that at the high sensitivity regime the

highest CP is dominantly achieved by the negative adap-
tive response. We note that sensitivity itself could be
under selection as it provide both higher CP and the
ability to respond to a wide range of attractant gradients
(note that differing attractant levels would be equivalent
to changing the sensitivity l in our model). At such
high sensitivity regime, the optimal parameters for the
negative adaptive response leading to highest CP indi-
cate a high b. This corresponds to instantaneous tum-
bling and the gradient climbing behaviour seen in E. coli
[1,24,25]. We find, however, that at this sensitivity
regime, high b is optimal but not essential and CP for
the adaptive negative response can be 99% of the maxi-
mum possible even with b as low as 1 (Figure 3B). Such
insensitivity of CP to the exact value of b would provide
robustness to stochastic variations in tumbling rates, as
for example observed in E. coli [15,45].

Conclusions
In summary, our findings draw a crucial role for a linear
positive response in the evolution of chemotaxis, both as
an evolutionary precursor to adaptive response and as an
optimal response under low sensitivity/long tumbling
regime. The latter finding can be tested experimentally
through implementation of linear chemotaxis responses
using synthetic biology approaches or through experi-
mental evolution of chemotaxis under specific condi-
tions. The former finding suggests potential evolutionary
explanations to the observed “inverted responses” and
multiple network systems in certain bacteria. In particu-
lar, the latter could be the remnants of an evolutionary
path where chemotaxis was achieved by combining the
output of multiple networks. Even though subsequent
evolution is expected to drive these systems into one
with a dominant specialised chemotaxis network, there
might be a selective advantage in maintaining both a
highly optimised chemotactic response as well as a more
general response achieved through coupling of the tum-
bling behaviour to metabolite concentrations. The latter
mechanism could provide appropriate responses to posi-
tive and negative factors in the environment to which the
bacterium has not previously been exposed, detected
through their effect on the cell metabolism [46].

To predict biological networks in different organisms,
we need to study how specific environmental and bio-
chemical conditions alter the outcome of evolutionary
processes shaping these networks [47]. The analysis pre-
sented here provides an approximate approach towards
such understanding by considering the phenotype (in
this case CP) of specific network dynamics under differ-
ent parameter regimes (corresponding to different envir-
onmental or biochemical conditions/limitations). This
evolutionary approach is generic and could be applicable
in other networks where information on network struc-
ture is sparse. In the presented study of chemotaxis, it
provided important insights towards understanding the
significance of certain network features observed in cur-
rent day bacteria, and provided an incremental evolu-
tionary route from simple-to-implement dynamics to
more complicated ones. The latter finding extends the
demonstration of how simple evolutionary processes can
result in complex structures [48] to the domain of sys-
tem dynamics.

Methods
In order to evaluate the chemotaxis performance result-
ing from different strategies, we develop an analytical
model for bacterial movement as done previously
[23-27]. Our approach differs from these previous works
in that we explicitly consider time spent tumbling, ana-
lyse time-dependent attractant concentrations, and
implement both adaptive and non-adaptive response
dynamics.
We consider chemotaxis in a one-dimensional space.

We imagine three populations, R (moving right), L
(moving left), and S (tumbling). The rate at which the R
population starts to tumble is aR, the rate at which the
L population starts to tumble is aL, the rate at which
the S population stops tumbling and resumes swimming
is b; following the end of a tumble the tumbling bacteria
is equally-likely to start moving in either direction. Bac-
teria have swimming speed v (= 1), and the chemoat-
tractant distribution is moving to the right at velocity d.
The attractant is distributed in a Gaussian distribution
(variance = 1.0; qualitative results are robust to this
parameter) in a space that extends from -50.0 to 50.0
with periodic boundary conditions.
As a simplification, we work in the reference frame of

the attractant distribution, so that the attractant can be
considered fixed while the medium moves at velocity -d.
The bacteria swim at speed v relative to the medium,
and tumble at rest relative to the medium, so our mov-
ing frame of reference adds an extra component of
motion of velocity -d, that is, to the left at velocity mag-
nitude d. The R population moves at velocity v - d, the
L population moves at velocity -v - d, while the S popu-
lation moves at velocity -d. We assume that aR and aL
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can depend on the local attractant distribution, while b,
v and d are constant. There is no explicit time depen-
dence in the various constants. The various conservation
equations are then;

∂L
∂t

= (ν + d)
∂L
∂x

− αLL +
β

2
S

∂R
∂t

= −(ν − d)
∂R
∂x

− αRR +
β

2
S

∂S
∂t

= d
∂S
∂x

+ αRR + αLL − βS

(1)

In all three equations, the first right-hand side reflects
the difference in the number of bacteria entering and
leaving any particular infinitesimal slice of space, while
the other terms represent movement of bacteria
between the L, R, and S states. The dependence between
the local concentration of attractant (A(x)) and tumble
rate (i.e. aR and aL) is characterised by three adjustable
parameters, the basal tumbling rate a0, the signal gain
l, and the rate of exiting the tumbling state b (Table 1).
The adaptive response represents a response to the tem-
poral derivative of the attractant, which is simply given
by the spatial derivative times the velocity of the bacter-
ium relative to the attractant distribution. For the hybrid
response, lLin was maximised for a fixed value of lLin +
lAdapt so that both lLin and lAdapt are positive.
We numerically integrated Equation 1 using an adap-

tive Runga Kutta algorithm, starting with a flat distribu-
tion of bacteria, either for a length of time τ or until
convergence (corresponding to τ = ∞). The parameters
characterising the chemotactic response (a0, l, and b)
were optimised to maximise the average attractant
observed by the bacteria given fixed values of v and d.
Table 2 gives the constraints on the parameters and
optimal parameter values for selected conditions.

Additional material

Additional file 1: Chemotaxis performance for different strategies.
Figure with two panels showing chemotaxis performance for different
strategies and different b. Panel A: Chemotaxis performance (as defined
in Figure 2) for bacteria with adaptive response, as a function of b, for
various values of l as indicated on the plot, for d = 0.001 and τ =
1000.0. At higher sensitivities optimum value of b shifts to a wider range
of higher values. Panel B: Chemotaxis performance for bacteria with
linear response, as a function of b, for various values of l as indicated on
the plot, for d = 0.001 and τ = 1000.0.

Additional file 2: Alternative chemotaxis performance analyses.
Figure with two panels showing alternative analyses of chemotaxis
performance for different strategies. Panel A: Chemotaxis performance
(as defined in Figure 2) for bacteria with linear (blue) and adaptive (red)
responses, as a function of attractant drift velocity d, for infinite τ.
Response parameters are optimized for each value of d. Panel B:
Average attractant concentration, normalized by maximum attractant
concentration, experienced by bacteria with linear (blue) and adaptive
(red) responses, as a function of τ for d = 0. Response parameters are
optimized for each value of τ. Both plots indicate that linear responses
can work effectively for longer τ and smaller d, but that the adaptive

response provides superior performance, can find the attractant faster,
and is much less sensitive to attractant motion.
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CP: Chemotactic performance.
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