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Abstract

Background: Single Nucleotide Polymorphisms (SNPs) are the most abundant form of genomic
variation and can cause phenotypic differences between individuals, including diseases. Bases are
subject to various levels of selection pressure, reflected in their inter-species conservation.

Results: We propose a method that is not dependant on transcription information to score each
coding base in the human genome reflecting the disease probability associated with its mutation.
Twelve factors likely to be associated with disease alleles were chosen as the input for a support
vector machine prediction algorithm. The analysis yielded 83% sensitivity and 84% specificity in
segregating disease like alleles as found in the Human Gene Mutation Database from non-disease
like alleles as found in the Database of Single Nucleotide Polymorphisms. This algorithm was
subsequently applied to each base within all known human genes, exhaustively confirming that
interspecies conservation is the strongest factor for disease association. For each gene, the length
normalized average disease potential score was calculated. Out of the 30 genes with the highest
scores, 2| are directly associated with a disease. In contrast, out of the 30 genes with the lowest
scores, only one is associated with a disease as found in published literature. The results strongly
suggest that the highest scoring genes are enriched for those that might contribute to disease, if
mutated.

Conclusion: This method provides valuable information to researchers to identify sensitive
positions in genes that have a high disease probability, enabling them to optimize experimental
designs and interpret data emerging from genetic and epidemiological studies.
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Background

The Human Genome Project [1] was driven by the hope
that characterization of the human genome would eluci-
date the molecular etiology of human disease. This
resulted into an abundant amount of data regarding the
genetic variation across the human genome as amended
by the HapMap project [2], which catalogs the location
and linkage information for many human genetic vari-
ants. The most common variations are single nucleotide
polymorphisms (SNPs), single base pair positions in the
genome at which different sequence alternatives (alleles)
exist. They occur approximately once every 1,000 bases
unevenly distributed across the human genome, princi-
pally in non-coding regions presumably due to higher
selection pressure in coding regions [3]. While approxi-
mately half of the SNPs in coding regions are silent [4,5],
the other half result in missense mutations (change in the
encoded protein sequence) that may be neutral or
involved in a disease or phenotype.

SNPs like other genetic variations may be indicators of
susceptibility to polygenic diseases [6,7] and could pro-
vide a basis for diagnostic and optimal therapeutic
choices. A major challenge in realizing these expectations
is to identify variants likely to be disease related. While the
characterization of all SNPs through disease association
studies is economically and practically unrealistic, com-
putational methods to rank SNPs based on their potential
impact would help to select and focus on those base posi-
tions predicted to be strongly associated with disease. To
this end, a variety of approaches with different philoso-
phies have been proposed. Some are purely based on
sequence information including conservation in inter-
species homologous proteins (orthologs), natural selec-
tive pressure at the residue level and the nature of the res-
idue change [8-11]. Other methods combine protein
sequence with other physico-chemical properties includ-
ing protein thermodynamic stability and structure, adding
more functionally-relevant knowledge but restricting the
applicability of those algorithms to particular cases
(known proteins, known structures...) [9,12-16]. An inter-
esting example has been proposed by Fleming et al. [17]
where the authors categorize missense mutations in the
exon 11 of the BRAC1 gene by assigning a probabilistic
score representing their likelihood to disrupt the gene
function, potentially resulting in breast cancer. The
authors used the SIFT (Separating Intolerant from Toler-
ant) method, considered a gold standard for the predic-
tion of functional effects of mutations [9]. However, this
effort has limitations. For instance, SIFT is based on
amino acid substitutions and cannot be directly applied
to sequences that are transcribed but not translated also
called non-coding RNA (ncRNA). These ncRNAs, have
been shown to play diverse functions (mRNA splicing,
RNA modification, translational regulation etc...) and rep-
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resent the majority of the transcriptional output in higher
eukaryotes [18]. Futhermore, most methods including
SIFT, predict effects of non-synonymous substitutions
while recent studies have shown that synonymous substi-
tutions, although not resulting in a change in the encoded
transcripts may none-the-less cause a measurable pheno-
typic change and sometimes disease [19].

In this study we propose a predictive method primarily
based on sequence and phylogenic information with the
aim to apply it to the entire human genome. This method
like others hinges on the assertion that evolutionarily con-
served nucleotide bases are important for gene function
and that single base mutations at these conserved posi-
tions are likely to represent disease alleles [20]. Our goal
is to predict the impact of a mutation appearing in any
gene and at any position, including transcribed but not
translated genes, and provide the disease likelihood asso-
ciated with such a change. Along with the level of interspe-
cies conservation and residue change, we also investigated
several factors known or suspected to be disease markers
in other published studies such as the location in the pro-
tein and nucleotide position in the triplet type of substitu-
tion. We have incorporated all these factors into the
design of a Support Vector Machine (SVM) classifier that
was trained on disease related mutations as found in
Human Gene Mutation Database (HGMD) [21] and
mutations found in dbSNP [22] for the vast majority of
which no disease linkage has been established and are
likely to be neutral or of minor phenotypic impact. The
SVM classifier appropriately scales these factors relative to
their importance and quantifies probable disease-causing
substitutions within the human genome regardless of
whether they have been previously observed and anno-
tated as such.

Results and discussion

Inter-species conservation as a measure of disease
susceptibility

Using the process detailed in Figure 1, we have exhaus-
tively confirmed that known disease mutations in HGMD
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are disproportionately distributed in the most conserved
nucleotide positions within genes (Figure 2). The average
normalized conservation score calculated for HGMD
mutations is 0.88 + 0.24. Importantly, 87% of HGMD
mutations score higher than the gene (average of all posi-
tions) in which they occur. Conversely, and as antici-
pated, dbSNPs mutations tend to occur in the least
conserved positions (0.57 + 0.40, and 0.63 + 0.40 if syn-
onymous mutations are excluded). Only half of the muta-
tions in dbSNP score higher than the gene in which they
occur (57% if synonymous mutations are not consid-
ered). The conservation score distribution for randomly
selected positions is similar to dbSNPs mutations: the
average score is 0.61 + 0.38 and the fraction of positions
scoring higher than the gene is 56%. Since dbSNP and
HGMD databases are not cross referenced, it is unknown
if the mutations in dbSNP are entirely unique or were co-
deposited in both databases. While it seems counter-intu-
itive that random position have a slightly higher score
than dbSNP mutations, the difference is minor compared
to what is seen with HGMD mutations or the common set
of mutations. The average conservation score calculated
for the 998 mutations that were found in both sets (0.80
+ 0.32) confirms the relationship between conservation
and sensitivity of a position.

As an interesting aside, we discovered by inspection that
the conservation score decreased in the base positions on
either side of the nucleotides that were annotated as dis-
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Figure 2

Distribution of mutations by dataset and conserva-
tion score. The bins represent the normalized con-
servation score levels. The bins were set in to order to
best simplify the figure. The random pools were position
selected from that alignments obtained with each pool. For
instance for random HGMD: for each HGMD mutation, a
position was randomly selected within the same gene (to
avoid an alignment bias) leading to a same number of random
positions (20094). The common group represents mutations
that were found in both datasets dbSNP and HGMD.
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ease-causing in HMGD. This trend was observed for 83%
of HMGD SNPs for up to 5 bases (the maximum number
inspected) on either side of the disease-causing base. This
suggests that disease-causing alleles have stronger selec-
tion pressure relative to the surrounding sequence space.

Finally and as a limitation, under the scoring scheme
used, we do not take into account positions in distant spe-
cies that appear to be conserved, but were in fact mutated
multiple times to ultimately revert back to the same
nucleotide base. In this particular case, our scoring
method doesn't factor in such 'back and forth' mutations.

Translation information as a measure of disease
susceptibility

This study was predominantly aimed at identifying
genome-wide factors that could be used to predict disease-
like mutations across all genes. Factors associated with
mutation position in the codon, residue-change effects,
such as alteration of the shape, size or charge of the resi-
due were found to be very weak predictors. However these
factors may be of interest in certain subsets of genes. For
instance, hydrophobic to hydrophilic substitutions cap-
tured in the PHAT matrix [23] constructed specifically to
study membrane proteins would presumably be more
appropriate to study genes coding for membrane proteins
[24].

The BLOSUM and PAM matrices computed from genome-
wide alignments of different families of proteins were also
found to be useful to segregate sensitive from insensitive
base positions. The BLOSUMS80 matrix was found to be
the most efficient at identifying disease-causing muta-
tions. 94% of HGMD mutations had a non-favorable sub-
stitution versus only 45% for dbSNP. This is consistent
with the assumption that non-favorable changes may sig-
nificantly impact the protein function.

Important predictors and SVM performance

Inter-species conservation information was found to be
the strongest predictor among the ones that were selected
to identify disease allele. This information was provided
to the SVM via 7 different metrics (see Methods). We eval-
uated the relative importance of these factors using the
"leave one factor out technique" (Figure 3). Removal of
these factors individually did not significantly affect the
classifier performance due to redundant information in
the factors. However, removing all of them resulted in a
significant decrease in performance. Despite their redun-
dancy, the use of these factors in concert produced the
strongest SVM classifier, confirming that inter-species
conservation is a crucial parameter for identifying single
base mutations that correlate with phenotype alteration.
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Leave one factor technique to identify the important
factors in the SVM classifier. Abbreviations include Nt =
nucleotide and cons = conservation. Bottom left square:
Receiving operating characteristic (ROC) graph. The number
next to each point represents the parameter left out from
the SVM.

The other factors found to be good predictors are the BLO-
SUM 80 substitution matrix, the number of orthologs
found for a gene, and the position of the base within the
codon (Figure 3). Several random factors were incorpo-
rated into the design of the SVM as control parameters
(length of the gene, location within the gene). The insig-
nificance of these random factors was confirmed when
their removal from the SVM model did not impact its per-
formance.

The final classifier yielded 83% sensitivity and 84% specif-
icity in segregating the HGMD-like mutations from the
dbSNP-like mutations. If parameters not related to trans-
lation information are removed (codon position, substi-
tution type, substitution matrix) the classifier still
achieves 64% sensitivity and 72% specificity. For the
majority of misclassified HGMD mutations, we observed
that although they had high normalized conservation
scores, they were located in genes with few orthologs (less
than 3). The classifier is likely to achieve better perform-
ance as the number of sequenced genomes and identified
orthologs increase. Another set of misclassified HGMD
mutations was the 49 synonymous mutations, presuma-
bly due to the low number of such mutations in the
HGMD training sets. Classification of synonymous muta-
tions will likely improve as more become available in the
HGMD.

Unfortunately and although HGMD has now doubled to
over 40,782 mutations, it is no longer openly available
http://www.hgmd.cf.ac.uk/ac/index.php limiting us to
the last edition publicly available (2005). Finally, when
applied to dbSNP, 16% of the SNPs (12,393) were found
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to have HGMD-like signatures. While these are technically
misclassified, they nonetheless remain potential candi-
dates for further investigation. Due to the absence of dis-
ease linkage information in dbSNP, we have assumed that
most mutations in dbSNPs may not have a significant
phenotypic impact. However absence of evidence is not
evidence of absence and dbSNP very likely contains a
number of disease causing mutations that have as yet to
be identified. Identifying them and refining the training
sets could also significantly improve the algorithm effec-
tiveness.

Comparison with SIFT

To assess the performance of the SVM classifier, we com-
pared it with SIFT, a popular method to predict mutations
impacts. The last public version of SIFT predictions on
dbSNP mutations was downloaded and predictions com-
pared with ours. Out of the 27,279 mutations present in
SIFT, only 19,276 were common between the two ver-
sions of the database. We also compared the predictions
of SIFT for the subset of SNPs present in HGMD, to eval-
uate the sensitivity and specificity of both methods.

Our SVM, complete and with conservation only were
compared to SIFT. Mutations used for testing were differ-
ent from those used to train our SVMs (Table 1). On these
sets, the complete SVM achieves the highest Sensitivity
(71% versus 39% for SIFT), at the expense of a lower spe-
cificity (62% versus 73%). Overall the best balance of spe-
cificity and specificity as measured with the F-measure
appears to be achieved when using our SVM, although
under these experimental conditions, SIFT achieves the
best accuracy (71.9% versus 62.7%). A combination of
the SVM-complete and the SIFT method may represent the
best alternative. The SVM with conservation only per-
forms at the lowest level.

Reasons for the diminished performance for our SVM
when applied to the specific subset of mutations present
in both our data set and that used in the SIFT study is
unclear. One contributing factor is the very small overlap
in the data for the disease causing mutations, i.e. those
found in HGMD, common to both SIFT and our SVM.
Since SIFT is computed only on dbSNP mutations, only
that small subset of mutations (998 out of 21,946) that
appear in both databases can be used for testing and com-
parison. We specifically excluded these common muta-
tions while training our SVM so that we could best
differentiate between and classify mutations that are dis-
ease causing (HGMD) and those presumed to be non-dis-
ease causing (dbSNP). When compared to the results
obtained during the testing of our SVM, the SVM complete
achieves an accuracy of 83.5%, with a testing set that con-
tained many more mutations and presumably more illus-
trative of the actual performance of our SVM (Figure 4).
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Table I: SVM performance during testing (labeled with the keyword 'Max') and comparison with SIFT predictions.

HGMD dbSNP
TP FN TN FP Sensitivity Specificity Accuracy F-measure
Testing set created using random mutations not used for training
SVM Complete ; Max 16527 3567 64378 12454 82.2 83.8 83.5 67.4
SVM Conservation Only ; Max 14467 5627 49178 27659 72.0 64.0 65.7 46.5
Testing set created to allow comparison with SIFT
SIFT 159 245 13995 5281 394 72.6 719 54
SVM Complete 287 17 12049 7227 71.0 62.5 62.7 7.2
SVM Conservation Only 230 174 10216 9060 56.9 53.0 53.1 4.7

Abbreviations: TP = True Positives; FP False Positives; TN = True Negatives; FN = False Negatives.

Genome wide application and validation

In its present form, the SVM, through the use parameters
like BLOSUMSO0 substitution scores or the base position
in the codon, partially depends on translation informa-
tion limiting its application to genes with well defined
expressed sequences (introns/exons, coding frames etc...).
Furthermore, the use of BLOSUMS80 requires prior knowl-
edge of mutation transitions from their wild type state to
their mutated states. Finally, for the 5,073 out of the
39,218 known RefSeq genes that do not encode proteins,
it would be inconsistent and unreliable to use codon tran-
sitions for predictions.

Parameters depending on translation information have
been removed from a second version of our SVM that has
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Figure 4

ROC graph for the comparison of our SVM perform-
ance during testing (empty shapes) and during com-
parison with SIFT (full shapes). The points labeled 'Max'
represent the performances obtained during testing of our
SVM on larger samples of mutations that were not used dur-
ing training.

been applied to all the coding regions within the human
genome. Each base position has been scored in accord-
ance to the disease likelihood associated with a mutation
occurring at this particular position. The calculated score
provides a quantitative measure scaled from 0 to 100
instead of a qualitative prediction (disease/non-disease).
Figure 5 shows the cumulative frequency distribution for
all HGMD and dbSNP mutations as a function of HGMD
like score (with 100% being the more HGMD like). The
distribution for all coding bases in the human genome is
also shown for comparison. The similarity between the
dbSNP accumulated distribution and all coding bases,
suggest that most bases, if altered, will not result in disease
causation (i.e. are not HGMD-like). The HGMD distribu-
tion curve was used to identify a threshold corresponding
to the inflection point with maximum slope (maxima of
the derivative). This threshold was found to be 94%. This
6% range of conservation (from 94% to 100%) is
enriched with over half of the mutations in HGMD, while
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Figure 5

Cumulative frequency distribution as a function of the
HGMD-like probability score, with 100% being the most
HGMD-like.
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it includes only 13% of nucleotide bases (or 12,038,565
bases) in the entire coding genome that could potentially
play a causative role in disease/phenotype alteration.
Mutations and SNPs occurring within this range of conser-
vation score, and for which no disease linkage has been
established, have the highest potential value for research-
ers designing disease association studies.

Using our methodology 26,874 gene transcripts in the
human genome found at least one ortholog in compara-
ble genomes. These genes were then ranked according to
their likelihood of being associated with disease if
mutated, based on our disease probability score obtained
with our SVM based on conservation information only.
Out of the 30 top scoring genes, which are very sensitive
to variation, 21 are known to be directly associated with a
disease from published literature (Additional file 1). Con-
versely, only one gene out of the 30 with the lowest scores
were found to be associated with disease in the published
literature. Many of those genes with lower scores are
hypothetical, likely due to the low similarity with known
genes (consistently with low conservation and low
scores). The results strongly suggest that the highest scor-
ing genes are indeed enriched with those that might con-
tribute to disease if mutated.

Conclusion

We have developed a comparative genomic analysis
method for genome-wide identification of genome posi-
tions with a greater likelihood of being important to gene
function. Mutations occurring at these sites have a higher
probability of representing disease alleles. New single
base mutations or SNPs can then be scored for their
potential to cause a disease, helping direct SNP discovery
efforts.

There is an underlying signature for disease mutations, as
evidenced by their occurrence in the most conserved
nucleotide positions, the favorability of residue substitu-
tion observed from BLOSUM scores, codon bias and other
factors. This signature was exploited to identify and flag
putative disease-causing mutations in all coding human
bases, including some in dbSNP, irrespective of the exist-
ence of annotation as causing a disease or clinical pheno-
type. Additional genetic (or other) factors, if discovered in
the future to be causative of disease, can be easily incorpo-
rated in the prediction algorithm, i.e. the SVM classifier.
This makes this tool and approach versatile, enabling one
to quantitatively test the strength of new factors or metrics
for their potential for disease causation.

Methods

Overview and basic data sets

Our predictive method is based on a Support Vector
Machine (SVM) algorithm that one can easily implement
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using the popular 'R' statistical software tool http://
www.R-project.org and more importantly that satisfacto-
rily addresses the non parametric nature of the data distri-
bution for a number of individual input factors [25].
Those factors, including different inter-species conserva-
tion parameters, were chosen for their ability to identify
positions in the genome where mutations may have a sig-
nificant phenotypic impact (i.e. disease). Figure 1 repre-
sents the process established to calculate the conservation
score for every nucleotide in the human genome.

Genes were obtained from the Reference Sequence (Ref-
Seq) Database (Release 21) [26]. Single base mutations
were obtained from Human Gene Mutation Database
(HGMD)|27], forming a set of disease causing mutations
(last available public version, June 2005, 21,964 muta-
tions) and from dbSNP [22] (build 126, 97,102 muta-
tions in the coding regions) that is assumed to contain for
the vast majority neutral mutations. The mutations were

extracted from  ENTREZ SNPs page  http://
www.ncbi.nlm.nih.gov/sites/entrez setting the limits

parameters to {Organism : Homo Sapiens, Functional
class : coding non synonymous, coding synonymous,
mRNA UTR and only reference SNPs, SNP class : SNP}. A
subset of 998 redundant mutations between both was
separated into the 'Common SNPs' set and later used as
one of the tests of the SVM classifier. Mutations in dbSNP
were partitioned into synonymous (33,871 mutations)
and non-synonymous (42,961 mutations).

Inter-species alignment and conservation score

Finding putative human gene orthologs in other species for optimal
alignment

For every human RefSeq entry, its corresponding ortholog
was identified using megaBLAST [28] in a reciprocal man-
ner http://www.ncbi.nlm.nih.gov/Homology/. Briefly,
each human RefSeq was BLASTed against eight compara-
ble vertebrate genomes Table 2, and the highest scoring
similar sequence for each genome was reverse-BLASTed
against the human RefSeq database. Only those non-
human sequences for which the original human sequence
was the highest scoring match were retained as putative
orthologs (Table 2). Each human RefSeq was subse-
quently aligned with its putative orthologs using CLUS-
TALW [29].

Evaluating nucleotide conservation

Ideally, a conservation scoring method would result in
significantly higher scores at 'sensitive' positions where
disease causing mutations occur comparatively to random
positions. For each position in each gene, a score was cal-
culated as the weighted average of the conservation
obtained from the alignment of this gene and its
orthologs. The weighting parameters were the UCSC
browser phylogenetic distances [30] for the genomes
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Table 2: Human RefSeq orthologs found in other species using reciprocal MegaBLAST. The number of orthologs found are roughly
inversely proportional to the phylogenetic distances (from Human), imported from the UCSC browser.

Organism Total number of Reference Putative Orthologs found in Phylogenetic distance from
Sequences Human Humans

Homo sapiens 39,218 - 0

Pan troglodytes 57,924 22,743 1.4

Macaca mulatta 43,198 19,907 6.4

Canis familaris 33,644 15,783 335

Bos taurus 26,501 15,519 342

Mus musculus 50,569 14,665 453

Rattus norvegicus 40,672 14,168 46.1

Gallus gallus 19,131 5,191 108.7

Danio rerio 35,695 1,789 182.9

where the given nucleotide is conserved and were kindly
provided by the UCSC genome browser group (Table 2).
In this way, a nucleotide conserved in a distant genome
weighs more than the same nucleotide conserved only in
closely related species. This score has also been normal-
ized to allow comparisons between genes (for each gene,
the number of orthologs will be different) (Figure 6).

To ensure that conservation scores significantly correlate
with disease alleles, normalized conservation scores were
also computed for randomly selected base positions in
genes containing mutations listed in HGMD or dbSNP
databases (1,260 and 14,449 genes, respectively, Table 3).
As shown in Figure 2, disease-causing mutations occur at
highly conserved positions and usually are the most con-
served positions within the gene. Conversely, and as antic-
ipated, dbSNPs mutations tend to occur in the least
conserved positions.

Chimp + Mouse + Rat +
Dog + Chicken + Zebrafish

Chimp=1.4

Chimp + Mouse +
Rat + Dog = 126.3

il Phylogenic
| L, distance
Human A T C G T A 0
Chimp AT C G T A 1.4
Mouse A T C G T T 45.3
Rat AT C G T T 46.1
Dog AT C G T T 33.5
Chicken AT C c c C 108.7
Zebrafish AT C c c C 182.9
Normalized Conservation 1 0.30 0.003

(=cons/417.9)

Figure 6
Conservation score calculated as the weighted average of
phylogenic distances in conserved genomes.

Mapping SNPs from HGMD and dbSNP to their gene
location

Each and every mutation in the two datasets HGMD and
dbSNP, were mapped to their gene location in three steps.
1) For each mutation, 50 base flanking regions upstream
and downstream were BLASTed against the human
genome. Only hits with 100% identity and no gaps were
kept. 2) The BLAST coordinates were used to map the
exact location of the given mutation nucleotide within the
gene. 3) In order to ensure accurate mapping of mutation
positions to the genes, mutations obtained from dbSNP
were cross-validated using the Genbank XML flat file and
mutations obtained from HGMD were cross-validated
using upstream and downstream flanking regions. Using
this procedure, a total of 20,094 and 76,832 unique muta-
tions from HGMD and dbSNP, respectively, were accu-
rately mapped, as shown in Table 3.

SVM design

A number of factors that we hypothesized may quantify
the effect of a mutation, including conservation, location
of the mutation within the gene, substitution type (synon-
ymous or non-synonymous), type of residue change in
terms of charge, mass, volume, hydrophobicity, and favo-
rability of a substitution as represented in the BLOSUM
and PAM matrices were used in the SVM. For these SVMs,
the radial kernel function was used to design the classifier
due to the non-linear nature of the parameters with cost
and gamma parameters set as 1 and 0.125 respectively to
enhance the classifier performance.

Table 3: Total mutations mapped and genes represented in both
datasets.

HGMD  dbSNP
Total coding mutations in the database 21,964 97,102
Total mutations correctly mapped 20,094 76,832
Genes represented 1,260 14,449
Page 7 of 10
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Conservation

The conservation information used in the SVM is based on
seven different metrics: (1) nucleotide raw conservation
score, (2) normalized conservation score to the maximum
possible score per position, (3) maximum conservation
score per gene, (4) average conservation score per gene (5)
percentage of bases with conservation scores below or (6)
equal to the nucleotide position of interest, and (7) com-
parison of nucleotide conservation score with the average
conservation score within the gene. Figure 7 shows that in
contrast to dbSNP mutations or random positions,
HGMD mutations tend to occur at positions that are sig-
nificantly more conserved than the gene itself (as meas-
ured by the conservation averaged over all its positions).
Although these different conservation metrics have redun-
dancy, analysis using the 'leave one out' technique will
identify which of these metrics provide the best ability to
separate disease causing base variants (from HGMD) from
those base positions unlikely to be associated with disease
(from dbSNP).

Parameters relying on availability of translation information
Although the method we propose is not dependent upon
translation information, various parameters including
amino-acid substitution matrixes were considered in
order to assess their relative importance in predicting
mutations impact at various positions. Furthermore, the
use of translation information (when available) facilitates
the comparison of at least a portion our method with
SIFT.

Two sets of widely used matrixes, BLOSUM [31] and PAM
[32] matrices (BLOSUM30, BLOSUM60, BLOSUMG2,
BLOSUMS80, BLOSUM90, BLOSUM100 PAM10, PAM50,
PAM100, PAM250, and PAM500) were tested for every
mutation in both dbSNP and HGMD datasets to deter-
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Figure 7
Proportion of mutations with a conservation score higher
than the average score of the gene in which they occur.
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mine whether distant or close relationship-based matrixes
are more appropriate for identification of base positions
likely to cause a disease if mutated. Again, it is reasonable
to expect that disease-causing mutations found in HGMD
would more often result in unfavorable substitutions than
mutations in dbSNP.

A number of physico-chemical matrixes have been used to
take into account possible aberrant changes in the vol-
ume, mass or charge of the original amino acid that could
potentially disrupt the protein structure. Any extreme
change in any of the above factors could have a dispropor-
tionately high impact and therefore be overrepresented in
disease causing alleles (i.e., mutations in HGMD relative
to mutations in dbSNP).

Each individual mutation was also annotated for its loca-
tion within the codon. Mutations at the first position are
more likely to modify the protein sequence than muta-
tions occurring at the second and third positions. Conse-
quently mutations at the first codon position were
expected to occur more often in HGMD than in dbSNP.

SVM training and testing

All the above-mentioned factors were individually evalu-
ated for their potential to identify diseased alleles and sta-
tistically segregate HGMD from dbSNP mutations. The set
of 19,096 HGMD mutations (20,094 minus the 998
redundant) was randomly split in two subsets for training
(80% or 15,277 mutations) and testing (20% or 3,819
mutations). An equal number of mutations from dbSNP
were also randomly chosen and mixed with the corre-
sponding HGMD subset. This 80-20 proportion has been
chosen as a good comprise between the size of the testing
and training sets, and to allow us to obtain a testing set big
enough for comparison with SIFT. The obtained accuracy
with these proportions is 84.3% (Figure 8).

100
90
80
70
60
50
40

Accuacy (%)

10 20 30 40 50 60 70 80 90
Fraction of HGMD used for training (%)

Figure 8
SVM accuracy as a function of the training set size.
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The importance of each factor was weighed individually
against the final prediction outcome by employing the
'leave one factor out' method (Figure 3). Only factors that
significantly contributed to the prediction outcome were
kept to establish a final SVM classifier.

SVM validation

The final classifier was applied to all coding bases within
the human genome to identify high impact positions,
where mutations might have a higher probability for dis-
ease-causation. Literature, ontologies and pathway rela-
tionships for genes with highest and lowest base-averaged
SVM scores were further inspected. GeneSifter (VizX Labs,
Seattle, WA), a software program typically applied to the
analysis and interpretation of gene expression data, was
used to generate GO Ontology information. Pathways
analysis reports were obtained from the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) [33]. Disease associa-
tions were also based on annotations provided by the
NCBI, the Stanford SOURCE database [34], the Compar-
ative Toxicogenomic database [35] and published litera-
ture. Similar analyses were performed with genes
randomly selected as a control, thus allowing the calcula-
tion of a z-score.
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