
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
CMA – a comprehensive Bioconductor package for supervised
classification with high dimensional data
M Slawski1, M Daumer1 and A-L Boulesteix*1,2

Address: 1Sylvia Lawry Centre for Multiple Sclerosis Research, Hohenlindenerstr. 1, D-81677 Munich, Germany and 2Department of Statistics,
University of Munich, Ludwigstr. 33, D-80539 Munich, Germany

Email: M Slawski - martin.slawski@campus.lmu.de; M Daumer - daumer@slcmsr.org; A-L Boulesteix* - boulesteix@stat.uni-muenchen.de

* Corresponding author

Abstract
Background: For the last eight years, microarray-based classification has been a major topic in
statistics, bioinformatics and biomedicine research. Traditional methods often yield unsatisfactory
results or may even be inapplicable in the so-called "p Ŭ n" setting where the number of predictors
p by far exceeds the number of observations n, hence the term "ill-posed-problem". Careful model
selection and evaluation satisfying accepted good-practice standards is a very complex task for
statisticians without experience in this area or for scientists with limited statistical background. The
multiplicity of available methods for class prediction based on high-dimensional data is an additional
practical challenge for inexperienced researchers.

Results: In this article, we introduce a new Bioconductor package called CMA (standing for
"Classification for MicroArrays") for automatically performing variable selection, parameter tuning,
classifier construction, and unbiased evaluation of the constructed classifiers using a large number
of usual methods. Without much time and effort, users are provided with an overview of the
unbiased accuracy of most top-performing classifiers. Furthermore, the standardized evaluation
framework underlying CMA can also be beneficial in statistical research for comparison purposes,
for instance if a new classifier has to be compared to existing approaches.

Conclusion: CMA is a user-friendly comprehensive package for classifier construction and
evaluation implementing most usual approaches. It is freely available from the Bioconductor
website at http://bioconductor.org/packages/2.3/bioc/html/CMA.html.

1 Background
Conventional class prediction methods often yield poor
results or may even be inapplicable in the context of high-
dimensional data with more predictors than observations
like microarray data. Microarray studies have thus stimu-
lated the development of new approaches and motivated
the adaptation of known traditional methods to the high-
dimensional setting. Most of them are implemented in
the R language [1] and freely available at http://cran.r-

project.org or from the bioinformatics platform http://
www.bioconductor.org. Meanwhile, the latter has estab-
lished itself as a standard tool for analyzing various types
of high-throughput genomic data including microarray
data [2]. Throughout this article, the focus is on microar-
ray data, but the presented package can be applied to any
supervised classification problem involving a large
number of continuous predictors such as, e.g. proteomic,
metabolomic, or signal data. Model selection and evalua-

Published: 16 October 2008

BMC Bioinformatics 2008, 9:439 doi:10.1186/1471-2105-9-439

Received: 3 June 2008
Accepted: 16 October 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/439

© 2008 Slawski et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 17
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/439
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18925941
http://bioconductor.org/packages/2.3/bioc/html/CMA.html
http://cran.r-project.org
http://cran.r-project.org
http://www.bioconductor.org
http://www.bioconductor.org
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9:439 http://www.biomedcentral.com/1471-2105/9/439
tion of prediction rules turn out to be highly difficult in
the p Ŭ n setting for several reasons: i) the hazard of over-
fitting, which is common to all prediction problems, is
considerably increased by high dimensionality, ii) the
usual evaluation scheme based on the splitting into learn-
ing and test data sets often applies only partially in the
case of small samples, iii) modern classification tech-
niques rely on the proper choice of hyperparameters
whose optimization is highly computer-intensive, espe-
cially with high-dimensional data.

The multiplicity of available methods for class prediction
based on high-dimensional data is an additional practical
challenge for inexperienced researchers. Whereas logistic
regression is well-established as the standard method to
be used when analyzing classical data sets with much
more observations than variables (n > p), there is no
unique reference standard method for the n << p case.
Moreover, the programs implementing well-known pop-
ular methods such as penalized logistic regression, nearest
shrunken centroids [3], random forests [4], or partial least
squares [5] are characterized by a high heterogeneity as far
as input format, output format, and tuning procedures are
concerned. Inexperienced users have thus to spend much
effort understanding each of the programs and modifying
the data formats, while potentially introducing severe
errors which may considerably affect the final results. Fur-
thermore, the users may overlook important tuning
parameters or detail settings that sometimes noticeably
contribute to the success of the classifier. Note that cir-
cumventing the problem of the multiplicity of methods
by always using a single "favorite method" (usually the
method in the user's expertise area or a method which has
been identified as top-performing method in a seminal
comparison study) potentially leads to poor results, espe-
cially when the considered method involves strong
assumptions on the data structure.

From the difficulties outlined above, we conclude that
careful model selection and evaluation satisfying accepted
good-practice standards [6] is a very complex task for inex-
perienced users with limited statistical background. In this
article, we introduce a new Bioconductor package called
CMA (standing for "Classification for MicroArrays") for
automatically performing variable selection, parameter
tuning, classifier construction, and unbiased evaluation of
the constructed classifiers. The primary goal of CMA is to
enable statisticians with limited experience on high-
dimensional class prediction or biologists and bioinfor-
maticians with statistical background to achieve such a
demanding task on their own. Without much time and
effort, users are provided with an overview of the unbi-
ased accuracy of most top-performing classifiers. Further-
more, the standardized evaluation framework underlying
CMA involving variable selection and hyperparameter

tuning can also be beneficial for comparison purposes, for
instance if a new classifier has to be compared to existing
approaches.

In a nutshell, CMA offers an interface to a total of more
than twenty different classifiers, seven univariate and mul-
tivariate variable selection methods, different evaluation
schemes (such as, e.g. cross-validation or bootstrap), and
different measures of classification accuracy. A particular
attention is devoted to preliminary variable selection and
hyperparameter tuning, issues that are often neglected in
current literature and software. More specifically, variable
selection is always performed using the training data only,
i.e. for each iteration successively in the case of cross-vali-
dation, following well-established good-practice guide-
lines [6-9]. Hyperparameter tuning is performed through
an inner cross-validation loop, as usually recommended
[10]. This feature is intended to prevent users from trying
several hyperparameter values on their own and selecting
the best results a posteriori, a strategy which would obvi-
ously lead to severe bias [11].

The CMA package is freely available from the Bioconduc-
tor website at http://bioconductor.org/packages/2.3/bioc/
html/CMA.html

Overview of existing packages
The idea of an R interface for the integration of microar-
ray-based classification methods is not new. The CMA
package shows similarities to the Bioconductor package
'MLInterfaces' standing for "An interface to various
machine learning methods" [12], see also the Bioconduc-
tor textbook [13] for a presentation of an older version.
The MLInterfaces package includes numerous facilities
such as the unified MLearn interface, the flexible learner-
Schema design enabling the introduction of new proce-
dures on the y, and the xvalSpec interface that allows
arbitrary types of resampling and cross-validation to be
employed. MLearn also returns the native R object from
the learner for further interrogation. The package architec-
ture of MLInterfaces is similar the CMA structure in the
sense that wrapper functions are used to call classification
methods from other packages.

However, CMA includes additional predefined features as
far as variable selection, hyperparameter tuning, classifier
evaluation and comparison are concerned. While the
method xval is flexible for experienced users, it provides
only cross-validation (including leave-one-out) as prede-
fined option. As the CMA package also addresses inexpe-
rienced users, it includes the most common validation
schemes in a standardized manner. In the current version
of MLInterfaces, variable selection can also be carried out
separately for each different learning set, but it does not
seem to be a standard procedure. In the examples pre-
Page 2 of 17
(page number not for citation purposes)

http://bioconductor.org/packages/2.3/bioc/html/CMA.html
http://bioconductor.org/packages/2.3/bioc/html/CMA.html

BMC Bioinformatics 2008, 9:439 http://www.biomedcentral.com/1471-2105/9/439
sented in the Bioconductor textbook [13], variable selec-
tion is only performed once using the complete sample. In
contrast, CMA performs variable selection separately for
each learning set by default. Further, CMA includes addi-
tional features for hyperparameter tuning, thus allowing
an objective comparison of different class prediction
methods. If tuning is ignored, simpler methods without
(or with few) tuning parameters tend to perform seem-
ingly better than more complex algorithms. CMA also
implements additional measures of prediction accuracy
and user-friendly visualization tools.

The package 'MCRestimate' [14,15] emphasizes very sim-
ilar aspects as CMA, focussing on the estimation of mis-
classification rates and cross-validation for model
selection and evaluation. It is (to our knowledge) the only
Bioconductor package beside ours supporting hyperpa-
rameter tuning and the workflow is fully compatible with
good practice standards. The advances of CMA compared
to MCRestimate are summarized below. CMA includes
much more classifiers (21 in the current version), which
allows a comfortable extensive comparison without much
effort. In particular, it provides an interface to recent
machine learning methods, including two highly compet-
itive boosting methods (tree-based and componentwise
boosting). CMA also allows to pass arguments to the clas-
sifier, which may be useful in some cases, for instance to
reduce the number of trees in a random forest for compu-
tational reasons. Furthermore, all the methods included
in CMA support multi-class response variables, even the
methods based on logistic regression (which can only be
applied to binary response variables in MCRestimate). A
very wide range of variable selection methods are availa-
ble from CMA, e.g. fast implementations of important
univariate test statistics including typical multi-class
approach (Kruskal-Wallis/F-test). Moreover, CMA offers
the possibility of constructing classifiers in a hybrid way:
variable selection can be performed via the lasso and sub-
sequently plugged into another algorithm. In addition to
cross-validation, evaluation can be performed based on
several most often used schemes such as bootstrap (and
the associated '0.632' or '0.632+' estimators) or repeated
subsampling. The definition of the learning sets can also
be customized, which may be an advantage when, e.g. one
wants to evaluate a classifier based on a single split learn-
ing/test data, as usual in the context of validation. CMA
also includes additional accuracy measures which are
commonly used in medical research. Convivial visualiza-
tion tools are provided at the intention of either statisti-
cians or practitioners. When several classifiers are run, the
compare function produces ready-to-use tables listing dif-
ferent performance measures for several classifiers.

From the technical point of view, an additional advance is
that CMA's implementation is fully organized in S4

classes, which bears advantages for both experienced users
(who may easily incorporate their own functions) and
inexperienced users (who have access to convenient visu-
alization tools without entering much code). As a conse-
quence, CMA has a clear inherent modular structure. The
use of S4 classes is highly beneficial when adding new fea-
tures, because it requires at most changes in one 'building
block'. Furthermore, S4 classes offer the advantage of
specifying the input data in manifold ways, depending on
the user's needs. For example, the CMA users can enter
their gene expression data as matrices, data frames com-
bined with formulae, or ExpressionSets.

Overview of class prediction with high-dimensional data
and notations
Settings and Notation

The classification problem can be briefly outlined as fol-

lows. We have a predictor space , here ⊆ �p (for
instance, the predictors may be gene expression levels, but
the scope of CMA is not limited to this case). The finite set
of class labels is denoted as = {0, ..., K - 1}, with K
standing for the total number of classes, and P(x, y)
denotes the joint probability distribution on . We
are given a finite sample S = {(x1, y1),...,(xn, yn)} of n pre-

dictor-class pairs. The considered task is to construct a
decision function

such that the generalization error

is minimized, where L(·,·) is a suitable loss function,
usually taken to be the indicator loss (L(u, v) = 1 if u ≠ v,
L(u, v) = 0 otherwise). Other loss functions and perform-
ances measures are discussed extensively in section 3.1.5.
The symbol ̂ indicates that the function is estimated from
the given sample S.

Estimation of the generalization error
As we are only equipped with a finite sample S and the
underlying distribution is unknown, approximations to
Eq. (1) have to be found. The empirical counterpart to R
[f]

 



 ×

ˆ :

ˆ()

f

f

 →

x x

R f L f y L y f dP yP[] [((),)] (, ()) (,)= =
×∫E x x x

 
(1)

R f n L y fi i

i

n

emp[] (, ())= −

=
∑1

1

x (2)
Page 3 of 17
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:439 http://www.biomedcentral.com/1471-2105/9/439
has a (usually large) negative bias, i.e. prediction error is
underestimated. Moreover, choosing the best classifier
based on Eq. (2) potentially leads to the selection of a
classifier overfitting the sample S which may show poor
performance on independent data. More details can be
found in recent overview articles [16-18]. A better strategy
consists of splitting S into distinct subsets (learning

sample) and (test sample) with the intention to sepa-
rate model selection and model evaluation. The classifier

(·) is constructed using only and evaluated using

only, as depicted in Figure 1 (top).

In microarray data, the sample size n is usually very small,
leading to serious problems for both the construction of
the classifier and the estimation of its prediction accuracy.

Increasing the size of the learning set (→ n) typically

improves the constructed prediction rule (·), but

decreases the reliability of its evaluation. Conversely,

increasing the size of the test set (→ n) improves the

accuracy estimation, but leads to poor classifiers, since
these are based on fewer observations. While a compro-
mise can be found if the sample size is large enough, alter-
native designs are needed for the case of small sizes. The




f̂  

n

f̂

n

Evaluation schemesFigure 1
Evaluation schemes. The top panel illustrates the splitting into learning and test data sets. The whole sample S is split into a
learning set and a test set . The classifier f(·) is constructed using the learning set and subsequently applied to the
test set . The bottom panel displays schematically k-fold cross-validation (left), Monte-Carlo cross-validation with n = 5 and
ntrain = 3 (middle), and bootstrap sampling (with replacement) with n = 5 and ntrain = 3 (right).

S

L

f(·)

T

S

S1
. Sk

L1 T1
...

S1
. Sk

LkTk

1 2 3

S

4 5

1 2
L1

3 4
T1

5

1 4
L2

2 3
T2

5

...

5 4
Lb

2 3
Tb

1

1 2 3

S

4 5

1 2
L1

2 3 4
T1

5

4 4
L2

4 1
T2

2 3 5

...

3 1
Lb

2 4
Tb

5

  


Page 4 of 17
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:439 http://www.biomedcentral.com/1471-2105/9/439
CMA package implements several approaches which are
all based on the following scheme.

1. Generate B learning sets (b = 1, ..., B) from S and

define the corresponding test set as

2. Obtain (·) from , for b = 1, ..., B.

3. The quantity

is then used as an estimator of the error rate, where |·|
stands for the cardinality of the considered set.

The underlying idea is to reduce the variance of the error
estimator by averaging, in the spirit of the bagging princi-
ple introduced by Breiman [19]. The function Generate-
Learningsets from the package CMA implements several

methods for generating and in step 1, which are

described below.

LOOCV Leaving-one-out cross-validation

For the b-th iteration, consists of the b-th observation

only. This is repeated for each observation in S, so that B
= n.

CV k-fold cross-validation (method = "CV", fold, niter)

S is split into fold non-overlapping subsets of approxi-
mately equal size. For each iteration b, the b-th subset is

used as and the union of the remaining subsets as

, such that B = fold. Setting fold = n is equivalent to

method = "LOOCV". For fold <n, the splitting is not
uniquely determined. It is thus recommended to repeat
the whole procedure niter times [16] (for instance niter =
5 or niter = 10) to partly average out random variations.

MCCV Monte-Carlo-cross-validation (method =
"MCCV", fold, ntrain, niter)

Each of the B = niter learning sets of cardinality ntrain is
drawn randomly from S without replacement. The argu-
ment ntrain specifies the number of observations to be
included in each learning set.

boot Bootstrap (method = "bootstrap", ntrain, niter)

B = niter bootstrap samples (drawn with replacement)
[20] of cardinality ntrain are used as learning sets. In prac-
tice, ntrain is usually set to the total sample size n.

A schematic representation of CV, MCCV and bootstrap
sampling is provided in Figure 1 (bottom). "Stratified
sampling" is possible by setting strat = TRUE. This implies

that, in each learning set , the proportion of the classes

{0, ..., K - 1} is approximately the same as in S. This
option is very useful (and sometimes even necessary) in
order to guarantee that each class is sufficiently repre-

sented in each , in particular if there are classes of

small size. For more details on the evaluation of classifi-
ers, readers may refer to recent overview articles discussing
the respective drawbacks and advantages of these meth-
ods in [16,17].

Note that, if one employs a method to impute missing val-
ues making use of class label information, imputation
should be performed for each learning set separately. This
procedure is not supported by CMA. Instead, we recom-
mend to impute missing values before beginning the anal-
yses with CMA using a package like 'impute' [21] that does
not involve class label information.

In CMA, cross-validation is also used for hyperparameter
tuning. The optimal value(s) of the method parameter(s)
is(are) determined within an inner cross-validation, as
commonly recommended [10,11]. If cross-validation is
used for both tuning parameters and evaluating a classifi-
ers, the whole procedure is denoted as nested cross-valida-
tion. See Figure 2 for a schematic representation and
Section 3.1.4 for more details on hyperparameter tuning.

2 Implementation
The Bioconductor package CMA is user-friendly in the
sense that (i) the methods automatically adapt to the data
format provided by the user; (ii) convenient functions
take over frequent tasks such as automatic visualization of
results; (iii) reasonable default settings for hyperparame-
ter tuning and other parameters requiring expert knowl-
edge of particular classifiers are provided; (iv) it works
with uniform data structures. To do so, CMA exploits the
rich possibilities of object-oriented programming as real-
ized by S4 classes of the methods package [22] which
make it easy to incorporate new features into an existing
framework. For instance, with some basic knowledge of
the S4 class system (which is standard for bioconductor
packages), users can easily embed new classification
methods in addition to the 21 currently available in CMA.
Moreover, the process of classifier building described in
more detail in section 3.1.2 can either be partitioned into
several transparent small steps (variable selection, hyper-

 b

 b bS= \

f̂b  b

ˆ (, ())∈=
= ∈

∑ ∑1 1

1
B b

L y f
b

B

i b i

i b
 

x (3)

 b  b

 b

 b

 b

 b

 b
Page 5 of 17
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:439 http://www.biomedcentral.com/1471-2105/9/439
parameter tuning, etc) or executed by only one compact
function call. The last feature is beneficial for users who
are not very familiar with R commands.

3 Results
3.1 CMA features
3.1.1 Overview
The package offers a uniform, user-friendly interface to a
total of more than twenty classification methods (see
Table 1) comprising classical approaches as well as more
sophisticated methods. User-friendliness means that the
input formats are the same for all implemented methods,
that the user may choose between three different input
formats and that the output is self-explicable and inform-
ative. The implementation is fully organized in S4 classes,
thus making the extension of CMA very easy. In particular,
own classification methods can easily be integrated if they
return a proper object of class cloutput. In addition to the
packages listed in Table 1, CMA only requires the package
'limma' for full functionality. For all other features, no
code of foreign packages is used. Like most R packages,
CMA is more flexible than, e.g., web-based tools. Experi-
enced users can easily modify the programs or add new
methods.

Moreover, CMA automatically performs all important
steps towards the construction and evaluation of classifi-
ers. It can generate learning samples as explained in sec-
tion 1, including the generation of stratified samples.
Different schemes for generating learning sets and test sets
are displayed schematically in Figure 1 (bottom). The
method GeneSelection provides optional variable selec-
tion preceding classification for each iteration b = 1, ..., B
separately, based on various ranking procedures, whereas
the method tune carries out hyperparameter tuning for a
fixed (sub-)set of variables. It can be performed in a fully
automatic manner using pre-defined grids. Alternatively,
it can be completely customized by the experienced user.
Performance can be assessed using the method evaluation
for several performance measures commonly used in
practice. Comparison of the performance of several classi-
fiers can be quickly tabulated and visualized using the
method comparison. Moreover, estimations of condi-
tional class probabilities for predicted observations are
provided by most of the classifiers, with only a few excep-
tions. This is more informative than only returning class
labels and allows a more precise comparison of different
classifiers. Last but not least, most results can conven-
iently be summarized and visualized using pre-defined
convenience methods as demonstrated in section 3.2. For
example, plot, cloutput-method produces probability
plots, also known as "voting plot", plot, genesel-method
visualizes variable importance as derived from one of the
ranking procedures via a barplot, roc, cloutput-method
draws empirical ROC curves, toplist, genesel-method lists

Hyperparameter tuningFigure 2
Hyperparameter tuning. Schematic display of nested
cross-validation. In the procedure displayed above, k-fold
cross-validation is used for evaluation purposes, whereas
tuning is performed within each iteration using inner (l-fold)
cross-validation.

S

S1
. Sk

first outer loop

L1 f(·) T1

S11
. S1l

L11
T11

first inner iteration

...

S11
. S1l

L1l −→ λ
opt
1

T1l

...

last inner iteration

...

S

S1
. Sk

last outer loop

Lk f(·) Tk

Sk1
. Skl

Lk1
Tk1

first inner iteration

...

Sk1
. Skl

Lkl −→ λ
opt

k
Tkl

...

last inner iteration
Page 6 of 17
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:439 http://www.biomedcentral.com/1471-2105/9/439
the most relevant variables, and summary, evaloutput-
method makes a summary out of iteration- or observa-
tionwise performance measures.

3.1.2 Classification methods
This subsection gives a brief summarizing overview of the
classifiers implemented in CMA. We have tried to com-
pose a balanced mixture of methods from several fields
although we do not claim our selection to be representa-
tive, taking into account the large amount of literature on
this subject. For more detailed information on the single
methods, readers are referred to the references given in
Table 1 and the references therein. All classifiers can be
constructed using the CMA method classification, where
the argument classifier specifies the classification method
to be used.

Discriminant Analysis
Discriminant analysis is the (Bayes-)optimal classifier if
the conditional distributions of the predictors given the
classes are Gaussian. Diagonal, linear and quadratic dis-
criminant analysis differ only by their assumptions for the
(conditional) covariance matrices Σk = Cov(x|y = k), k = 0,
..., K - 1.

(a) Diagonal linear discriminant analysis (classifier =
"dldaCMA") assumes that the within-class covariance

matrices Σk are diagonal and equal for all classes, i.e.

, k = 1, ..., K - 1, thus requiring

the estimation of only p covariance parameters.

(b) Linear discriminant analysis (classifier = "ldaCMA")
assumes Σk = Σ, k = 1, ..., K - 1 without further restrictions
for Σ so that p(p + 1)/2 parameters have to be estimated.

(c) Quadratic discriminant analysis (classifier =
"qdaCMA") does not impose any particular restriction on
Σk, k = 1, ..., K - 1.

While (a) turns out to be still practicable for microarray
data, linear and quadratic discriminant analysis are not
competitive in this setting, at least not without dimension
reduction or excessive variable selection (see below).

The so-called PAM method (standing for "Prediction
Analysis for Microarrays"), which is also commonly
denoted as "shrunken centroids discriminant analysis"
can be viewed as a modification of diagonal discriminant
analysis (also referred to as "naive Bayes" classifier) using
univariate soft thresholding [23] to perform variable
selection and yield stabilized estimates of the variance
parameters (classifier = "scdaCMA").

Fisher's discriminant analysis (FDA) (classifier =
"fdaCMA") has a different motivation, but can be shown
to be equivalent to linear discriminant analysis under cer-
tain assumptions. It looks for projections aTx such that the

ΣΣ ΣΣk p= = diag(,...,)σ σ1
2 2

Table 1: Overview of the classification methods in CMA.

Method name CMA function name Package Reference

Componentwise boosting compBoostCMA CMA [39]
Diagonal discriminant analysis dldaCMA CMA [56]
Elastic net ElasticNetCMA 'glmpath' [29]
Fisher's discriminant analysis fdaCMA CMA [24]
Flexible discriminant analysis flexdaCMA 'mgcv' [24]
Tree-based boosting gbmCMA 'gbm' [33]
k-nearest neighbors knnCMA 'class' [24]
Linear discriminant analysis * ldaCMA 'MASS' [56]
Lasso LassoCMA 'glmpath' [57]
Feed-forward neural networks nnetCMA 'nnet' [24]
Probalistic nearest neighbors pknnCMA CMA -
Penalized logistic regression plrCMA CMA [58]
Partial Least Squares + * pls_ldaCMA 'plsgenomics' [5]
 + logistic regression pls_lrCMA 'plsgenomics' [5]
 + random forest pls_rfCMA 'plsgenomics' [5]
Probabilistic neural networks pnnCMA CMA [59]
Quadratic discriminant analysis qdaCMA 'MASS' [56]
Random forest rfCMA 'randomForest' [4]
PAM scdaCMA CMA [44]
Shrinkage discriminant analysis shrinkldaCMA CMA -
Support vector machines svmCMA 'e1071' [60]

The first column gives the method name, whereas the name of the classifier in the CMA package is given in the second column. For each classifier,
CMA uses either own code or code borrowed from another package, as specified in the third column.
Page 7 of 17
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:439 http://www.biomedcentral.com/1471-2105/9/439
ratio of between-class and within-class variance is maxi-
mized, leading to a linear decision function in a lower
dimensional space. Flexible discriminant analysis (classi-
fier = "flexdaCMA") can be interpreted as FDA in a higher-
dimensional space generated by basis functions, also
allowing nonlinear decision functions [24]. In CMA, the
basis functions are given by penalized splines as imple-
mented in the R package 'mgcv' [25].

Shrinkage discriminant analysis [26,27] (classifier =
"shrinkldaCMA") tries to stabilize covariance estimation
by shrinking the unrestricted covariance matrix from lin-
ear discriminant analysis to a more simply structured tar-
get covariance matrix, e.g. a diagonal matrix.

Partial Least Squares

Partial Least Squares is a dimension reduction method

that looks for directions maximizing

 (r = 1, ..., R) subject to the constraints

 and for r ≠ s, where R << p. Instead

of working with the original predictors, one then plugs the
projections living in a lower dimensional space into other
classification methods, for example linear discriminant
analysis (classifier = "pls_ldaCMA"), logistic regression
(classifier = "pls_lrCMA") or random forest (classifier =
"pls_rfCMA"). See Boulesteix and Strimmer [9] for an
overview of partial least squares applications to genomic
data analysis.

Regularization and shrinkage methods

In both penalized logistic regression and support vector

machines, (·) is constructed such that it minimizes an

expression of the form

where L(·,·) is a loss function as outlined above and J [f]
is a regularizer preventing overfitting. The trade-off
between the two terms is known as bias-variance trade-off

and governed via the tuning parameter λ. For �2 penalized

logistic regression (classifier = "plrCMA"), f(x) = xTβ is lin-

ear and depends only on the vector β of regression coeffi-

cients, J [f] is the �2 norm J [f] = βTβ and L(·,·) is the
negative log-likelihood of a binomial distribution. Setting

 yields the Lasso [28] (classifier =

"LassoCMA"), while combining both regularizers yields
the elastic net [29] (classifier = "ElasticNetCMA"). CMA
also implements a multi-class version of �2 penalized

logistic regression, replacing the binomial negative likeli-
hood by its multinomial counterpart.

For Support Vector Machines (classifier = "svmCMA"), we
have

where ⊂ {1, ..., n} is the set of the so-called "support

vectors", αi are coefficients and k(·,·) is a positive definite

kernel. Frequently used kernels are the linear kernel �·,·�,
the polynomial kernel �·,·�d or the Gaussian kernel k(xi,

xj) = exp((xi - xj)T(xi - xj)/σ2). The function J [f] is given as

 and L(.,.) is the so-

called hinge loss [30].

Random Forests
The random forest method [4] aggregates an ensemble of
binary decision-tree classifiers [31] constructed based on
bootstrap samples drawn from the learning set (classifier
= "rfCMA"). The "bootstrap aggregating" strategy (abbre-
viated as "bagging") turns out to be particularly successful
in combination with unstable classifiers such as decision
trees. In order to make the obtained trees even more dif-
ferent and thus increase their stability and to reduce the
computation time, random forests have an additional fea-
ture. At each split, a subset of candidate predictors is
selected out of the available predictors. The random forest
method also performs implicit variable selection and can
be used to assess variable importance (see section 3.1.3).

Boosting
Similarly to random forests, boosting is based on a
weighted ensemble of "weak learners" for classification,
i.e. f(·) = ∑αmfweak(·), where αm > 0 (m = 1, ..., M) are ade-
quately chosen coefficients. The term weak learner which
stems from the machine learning community [32],
denotes a method with poor performance (but still signif-
icantly better performance than random guessing) and
low complexity. Famous examples for weak learners are
binary decision trees with few (one or two) splits or linear
functions in one predictor which is termed component-
wise boosting. Friedman [33] reformulates boosting as a
functional gradient descent combined with appropriate
loss functions. The CMA package implements decision
tree-based (classifier = "gbmCMA") and componentwise
(classifier = "compBoostCMA") boosting with exponen-
tial, binomial and squared loss in the two-class case, and
multinomial loss in the multi-class case.

{ }w r r
R
=1

| (,) |Cov y rw xT

w wT
r r = 1 w wT

r s = 0

f̂

L y f J fi i

i

n

(, ()) [],x +
=
∑ λ

1

(4)

J f jj

p
[] | | | |= = =∑ββ β

1

f ki i

i

() (,),x x x=
∈
∑α




J f ki j i jji
[] (,)= ∈∈ ∑∑ α α x x
Page 8 of 17
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:439 http://www.biomedcentral.com/1471-2105/9/439
Feed-Forward Neural Networks

CMA implements one-hidden-layer feed-forward neural
networks (classifier = "nnetCMA"). Starting with a vector

of covariates x, one forms projections , r = 1, ..., R,

that are then transformed using an activation function
h(·), usually sigmoidal, in order to obtain a hidden layer

consisting of units that are subsequently

used for prediction. Training of neural networks tends to
be rather complicated and unstable. For large p, CMA
works in the space of "eigengenes", following the sugges-
tion of [34] by applying the singular value decomposition
[35] to the predictor matrix.

Probabilistic Neural Networks

Although termed "Neural Networks", probabilistic neural
networks (classifier = "pnnCMA") are actually a Parzen-
Windows type classifier [36] related to the nearest neigh-

bors approach. For x ∈ from the test set and each class
k = 0, ..., K - 1, one computes

where nk denotes the number of observations from class k

in the learning set and σ2 > 0 is a parameter. The quotient

 is then considered as an estimate of

the class probability, for k = 0, ..., K - 1.

Nearest Neighbors and Probabilistic Nearest Neighbors

CMA implements one of the variants of the ordinary near-
est neighbors approach using the euclidean distance as
distance measure (classifier = "knnCMA") and another
variant called "probabilistic" that additionally provides
estimates for class probabilities by using distances as
weights, however without a genuine underlying probabil-
ity model (classifier = "pknnCMA"). Given a learning set

 and a test set , respectively, the probabilistic nearest

neighbors method determines for each element in the

k > 1 nearest neighbors and then estimates class
probabilities as

where β > 0 is a method parameter and d(·,·) a distance
measure.

Note that users can easily incorporate their own classifiers
into the CMA framework. To do this, they have to define

a classifier with the same structure as those already imple-
mented in CMA. For illustrative purposes, we consider a
simple classifier assigning observations to two classes. The
code defining this classifier is given below. Once the clas-
sifier is defined, it can be used in the method classification
in place of the CMA classifiers enumerated above.

myclassifier <- function(X, y, learnind,
hyperpar = 1) {

Xlearn <- X [learnind, ,drop = F]; yearn
<- y [learnind]

Xtest <- X [-learnind, ,drop = F]; ytest
<- y [-learnind]

w <- hyperpar * t(ylearn %*% Xlearn)

pred <- (sign(drop(Xtest %*% w))+1)/2

new("cloutput", learnind = learnind, y
= ylearn,

yhat = pred, prob = NA,

method="myclassifier", mode =
"binary")

}

3.1.3 Variable selection methods

This section addresses the variable ranking- and selection
procedures available in CMA. We distinguish three types
of methods: pure filter methods (f) based on parametric
or nonparametric statistical tests not directly related to the
prediction task, methods which rank variables according
to their discriminatory power (r), and classification meth-
ods selecting sparse sets of variables that can be used for
other classification methods in a hybrid way (s). The
multi-class case is fully supported by all the methods.
Methods that are defined for binary responses only are
applied within a "one-vs-all" or "pairwise" scheme. The
former means that for each class k = 0, ..., K - 1, one

recodes the class label y into K pseudo class labels = I(y

= k) for k = 0,..., K - 1, while the latter considers all

possible pairs of classes successively. The variable selec-

tion procedure is run K times or times, respectively,

and the same number of genes are selected for each run.
The final subset of selected genes consists of the union of
the subsets obtained in the different runs.

a xT
r

{ ()}z hr r r
R= =a xT

1



w n I y k k Kk k i i i

i

= = ⋅ − − = −−

∈
∑1 2 0 1() exp(() () /), ,...,x x x xT

x

σ


{ / }w wk kk

K
k
K

=
−

=
−∑ 0

1
0
1

 


 ⊂

P y k
d i I yi ki
d i I yi k

(|)
exp((,) ())

exp((,) ())
= =

− =∈∑
+ − =

x
x xx
x x

β

β


1 xxi
k K

∈∑
= − ∈


, , ..., ,0 1 x

yk

K

2

⎛

⎝
⎜

⎞

⎠
⎟

K

2

⎛

⎝
⎜

⎞

⎠
⎟

Page 9 of 17
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:439 http://www.biomedcentral.com/1471-2105/9/439
In the CMA package, variable selection can be performed
(for each learning set separately) using the method gen-
eselection, with the argument method specifying the pro-
cedure and the argument scheme indicating which
scheme (one-vs-all or pairwise) should be used in the K >
2 case. The implemented methods are:

(f) ordinary two-sample t.test (method = "t.test")

(f) Welch modification of the t.test (method =
"welch.test")

(f) Wilcoxon rank sum test (method = "wilcox.test")

(f) F test (method = "f.test")

(f) Kruskal-Wallis test (method = "kruskal.test")

(f) "moderated" t and F test, respectively, using the pack-
age 'limma' [37] (method = "limma")

(r) one-step Recursive Feature Elimination (RFE) in com-
bination with the linear SVM [38] (method = "rfe")

(r) random forest variable importance measure [4]
(method = "rf")

(s) Lasso [28] (method = "lasso")

(s) elastic net [29] (method = "elasticnet")

(s) componentwise boosting (method = "boosting") [39]

(f) ad-hoc "Golub" criterion [40]

Each method can be interpreted as a function (·) on

the set of predictor indices: : {1,..., p} → �+ where

(·) increases with discriminating power. (·) is the
absolute value of the test statistic for the (f) methods and
the absolute value of the corresponding regression coeffi-
cient for the (s)-methods, while the (r)-methods are
already variable importance measures per definition. Pre-
dictor j is said to be more important than predictor l if

(l) < (j). It should be noted that the variable ordering
is not necessarily determined uniquely, especially for the
(s)-methods where variable importances are non-zero for
few predictors only and for the (f) methods based on
ranks. After variable ranking, variable selection is then
completed by choosing a suitable number of variables (as
defined by the user) that should be used by the classifier.
For the multi-class case with one-vs-all or pairwise

schemes, one obtains K and separate rankings,

respectively, and the union of them forms the set of pre-
dictor variables. We again emphasize that the variable
importance assignment is based on learning data only,
which means that the procedure is repeated for each learn-
ing/test set splitting successively.

Note that the method GeneSelection may be used to order
any kind of variables, not only genes. For example, if one
uses CMA to classify genes based on samples instead of
classifying samples based on genes, the function GeneSe-
lection is used to select samples instead of selecting genes
in spite of its name.

3.1.4 Hyperparameter tuning

The function tune of the CMA package implements inner
cross-validation for hyperparameter tuning, as repre-
sented schematically in Figure 2. The following procedure

is repeated for each learning set defined by the argu-

ment learningsets. The learning set is partitioned into l
subsets of approximately equal size. For different values of
the hyperparameters, the error rate is estimated based on

 within a l-fold cross-validation scheme. The hyperpa-

rameter values yielding the smallest cross-validated error
rate are then selected and used for the construction of the

classifier based on . Hence, the test data set is not

used for hyperparameter tuning. This procedure is often
denoted as inner or internal cross-validation, yielding a
so-called nested cross-validation procedure if cross-valida-
tion is also used to evaluate the error rate of the classifica-
tion method of interest.

Examples of tuning parameters for the classifiers included
in CMA are given in Table 2. Note that one could also con-
sider the number of genes as an hyperparameter to be
tuned in nested cross-validation, although this is still not
standard practice. We plan to do this extension in future
work.

It is crucial to perform hyperparameter tuning properly,
for instance within an inner cross-validation as imple-
mented in CMA. On the one hand, by using a complicated
classifier involving many parameters without tuning
them, one implicitly favors simpler classifiers which do
not involve any hyperparameters. On the other hand, it
would be completely incorrect to tune the parameters a
posteriori, i.e. to try several values of the tuning parame-
ters successively and to show only the best results [11].
Such a design would artificially favor complicated classifi-
ers with many tuning parameters, and one would expect
the obtained optimal classifier to generalize poorly on an
independent validation data set. This problem is con-
nected to Occam's Razor.




 

 

K

2

⎛

⎝
⎜

⎞

⎠
⎟

 b

 b

 b  b
Page 10 of 17
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:439 http://www.biomedcentral.com/1471-2105/9/439
For example, let us consider diagonal discriminant analy-
sis (DLDA), which is also known as Naive Bayes classifier
due to its simplicity, and on the other hand a SVM with a
Gaussian kernel, which depends on at least two hyperpa-
rameters: the first one is the width of the Gaussian kernel
and the second one is the cost parameter that governs the
amount of regularization. While there are rules of thumb
for choosing the width of the Gaussian kernel, this does
not apply to the cost. Setting the cost to an arbitrary value
can cause both over- and underfitting. In contrast, DLDA
does not overfit due to its simplicity, but may tend to
underfit.

Note that the hyperparameter tuning procedure may yield
sub-optimal values for the hyperparameters if used in
combination with the gene selection procedure. That is
because, in the present version of the CMA package, the
set of genes remains fixed for all iterations of the inner
cross-validation. This may affect the performance of the
tuning procedure in the following way. Since in the inner
cross-validation procedure variable selection is based on
both the training sets and the test sets, the selected gene
subset fits the test sets artificially well, which may affect
the selection of the optimal hyperparameter values. For
example, hyperparameter values corresponding to too
complex models (for instance a too low penalty in penal-
ized logistic regression) might yield small cross-validation
error rates and get selected by the inner cross-validation
procedure. Thus, using the tuning procedure in combina-
tion with gene selection tends to yield sub-optimal hyper-
parameter values. This may result in overestimated error
rates in outer cross-validation, but not in "false positive
research findings" [41], in the sense that in this case CMA
will rather underestimate the association between predic-
tors and response than find an association when there is
none.

That is why we recommend to use the tuning procedure of
CMA only with methods that do not require any prelimi-
nary variable selection. Note that most of the classifica-
tion methods needing tuning do not require any

preliminary variable selection (like, e.g., support vector
machines, shrunken centroids discriminant analysis,
penalized logistic regression). Hence, this recommenda-
tion is not very restrictive in practice. However, we plan to
modify the tuning procedure of CMA in a future version
in order to allow the combination of tuning and gene
selection. This can be done by re-performing gene selec-
tion in each inner cross-validation iteration successively,
as already correctly implemented in the existing package
'MCRestimate' [14,15].

3.1.5 Performance measures
Once the classification step has been performed for all B
iterations using the method classification, the method
evaluation offers a variety of possibilities for evaluating
the results. As accuracy measures, the user may choose
among the following criteria.

• Misclassification rate

This is the simplest and most commonly used perform-
ance measure, corresponding to the indicator loss func-
tion in Eq. (1). From B iterations, one obtains a total of

 predictions. It implies that, with most proce-

dures, the class label of each predictor-class pair in the
sample S is predicted several times. The method evalua-
tion can be applied in two directions: one can compute
the misclassification rate either iterationwise, i.e. for each
iteration separately (scheme="iterationwise"), yielding

 or observationwise, i.e. for each observa-

tion separately (scheme = "observationwise"), yielding

. The latter can be aggregated by classes

which is useful in the frequent case where some classes
can be discriminated better than the other. Furthermore,
observationwise evaluation can help identifying outliers
which are often characterized by high misclassification

error rates. Although or can be further averaged,
the whole vectors are preferred to their less informative

 bb∑

ˆ (ˆ)∈ = ∈ =
iter

b b
B

1

ˆ (ˆ)∈ = ∈ =
obs

i i
n

1

∈̂iter ∈̂obs

Table 2: Overview of hyperparameter tuning in CMA.

Method Name in CMA Range Signification

gbmCMA n.trees 1, 2,... number of base learners (decision trees)
LassoCMA norm.fraction [0;1] relative bound imposed on the �1 norm on the weight vector
knnCMA k 1, 2,...,| | number of nearest neighbours

nnetCMA size 1, 2, ... number of units in the hidden layer
scdaCMA delta �+ shrinkage towards zero applied to the centroids
svmCMA cost �+ cost: controls the violations of the margin of the hyperplane

gamma �+ controls the width of the Gaussian kernel (if used)

The first column gives the method name, whereas the name of the hyperparameter in the CMA package is given in the second column. The third
column gives the range of the parameter and the fourth column its signification.



Page 11 of 17
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:439 http://www.biomedcentral.com/1471-2105/9/439
average, in order to reflect uncertainty more appropri-
ately. A second advantage is that graphical summaries in
the form of boxplots can be obtained.

• Cost-based evaluation
Cost-based evaluation is a generalization of the misclassi-
fication error rate. The loss function is defined on the dis-
crete set {0, ..., K - 1} × {0, ..., K - 1}, associating a specific
cost to each possible combination of predicted and true
classes. It can be represented as a matrix L = (lrs), r, s =
0,...,(K - 1) where lrs is the cost or loss caused by assigning
an observation of class r to class s. A usual convention is
lrr = 0 and lrs > 0 for r ≠ s. As for the misclassification rate,
both iteration- and observationwise evaluation are possi-
ble.

• Sensitivity, specificity and area under the curve (AUC)
These three performance measures are standard measures
in medical diagnosis, see [18] for an overview. They are
computed for binary classification only.

• Brier Score and average probability of correct classification
In classification settings, the Brier Score is defined as

where (y = k|x) stands for the estimated probability for
class k, conditional on x. Zero is the optimal value of the
Brier Score.

A similar measure is the average probability of correct
classification which is defined as

and equals 1 in the optimal case. Both measures have the
advantage that they are based on the continuous scale of
probabilities, thus yielding more precise results. As a
drawback, however, they cannot be applied to all classifi-
ers but only to those associated with a probabilistic back-
ground (e.g. penalized regression). For other methods,
they can either not be computed at all (e.g. nearest neigh-
bors) or their application is questionable (e.g. support
vector machines).

• 0.632 and 0.632+ estimators
The ordinary misclassification error rate estimates result-
ing from working with learning sets of size <n tend to
overestimate the true prediction error. A simple correction
proposed for learning sets generated from bootstrapping
(argument method="bootstrap" in the function Generate-
Learningsets) uses a convex combination of the re-substi-

tution error -which has a bias in the other direction
(weight: 0.368) and the bootstrap error estimation
(weight: 0.632). A further refinement of this idea is the
0.632+ estimator [42] which is approximately unbiased
and seems to be particularly appropriate in the case of
overfitting classifiers.

The method compare can be used as a shortcut if several
measures have to be computed for several classifiers. The
function obsinfo can be used for outlier detection: given a
vector of observationwise performance measures, it filters
out observations for which the classifier fits poorly on
average (i.e. high misclassification rate or low Brier Score,
for example).

3.2 A real-life data example
3.2.1 Application to the SRBCT data
This section gives a demonstration of the CMA package
through an application to real life microarray data. It illus-
trates the typical workflow comprising learning set gener-
ation, variable selection, hyperparameter tuning, classifier
training, and evaluation. The small blue round cell tumor
data set was first analyzed by Khan et al [43] and is avail-
able from the R package 'pamr' [44]. It comprises n = 65
samples from four tumor classes and expression levels
from p = 2308 genes. In general, good classification results
can be obtained with this data set, even with relatively
simple methods [45]. The main difficulty arises from the
two classes with small size (8 and 12 observations, respec-
tively).

CMA implements a large number of classifiers and varia-
ble selection methods. In this demonstrating example, we
compare the performance of seven of them, which are rep-
resentative of the CMA functionalities: i) diagonal linear
discriminant without variable selection and tuning, ii)
linear discriminant analysis with variable selection, iii)
quadratic discriminant analysis with variable selection,
iv) Partial Least Squares followed by linear discriminant
analysis with tuning of the number of components, v)
shrunken centroids discriminant analysis with tuning of
the shrinkage parameter, vi) support vector machines with
radial kernel without tuning (i.e. with the default param-
eter values of the package 'e1071'), and vii) support vector
machines with radial kernel and with tuning of the cost
parameter and the width of the Gaussian kernel.

We choose to work with stratified five-fold cross-valida-
tion, repeated ten times in order to achieve more stable
results [16]. For linear discriminant analysis we decide to
work with ten and for quadratic discriminant analysis
with only two variables. These numbers are chosen arbi-
trarily without any deeper motivation, which we consider
legitimate for the purpose of illustration. In practice, this

n I y k P y ki i i

k

K

i

n
−

=

−

=

= − =∑∑1 2

0

1

1

(() (|)) ,x

P̂

n I y k P y ki i

k

K

i

n
−

=

−

=

= =∑∑1

0

1

1

(() (|),x
Page 12 of 17
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:439 http://www.biomedcentral.com/1471-2105/9/439
choice should be given more attention. We start by pre-
paring the data and generating learning sets:

> data(khan)

> khanY <- khan [, 1]

> khanX <- as.matrix(khan [, -1])

> set.seed(27611)

> fiveCV10iter <- GenerateLearningsets(y = khanY, method =
"CV", fold = 5, niter = 10, strat = TRUE)

khanY is an n-vector of class labels coded as 1,2,3,4, for
the number of transcripts. fiveCV10iter is an object of
class learningsets that stores for each of the niter = 10 iter-
ations which observations belong to the learning sets as
generated by the chosen method specified through the
arguments method, fold and strat. For reproducibility
purposes, it is crucial to set the random seed.

As a preliminary step to classification, we then perform
variable selection for those methods requiring it (linear
and quadratic discriminant analysis). For illustrative pur-
poses, we first try several variable selection methods and
display a part of their results for comparison.

> genesel_f <- GeneSelection(X = khanX, y = khanY, learning-
sets = fiveCV10iter, method = "f.test")

> genesel_kru <- GeneSelection(X = khanX, y = khanY, learn-
ingsets = fiveCV10iter, method = "kruskal.test")

> genesel_lim <- GeneSelection(X = khanX, y = khanY, learn-
ingsets = fiveCV10iter, method = "limma")

> genesel_rf <- GeneSelection(X = khanX, y = khanY, learning-
sets = fiveCV10iter, method = "rf", seed = 100)

For comparing these four variable selection methods, one
can now use the toplist method on the objects genesel_f,
genesel_kru, genesel_wil, genesel_rf to show, e.g. their
top-10 genes. Genes are referred to by their column index
in X. The commands given below display the 10 top-rank-
ing genes found based on the first learning set using each
of the four methods.

> tab <- cbind(f.test = toplist(genesel_f, s = F) [, 1], kru.test =
toplist(genesel_kru, s = F) [, 1], lim.test = toplist(genesel_lim,
s = F) [, 1], rf.imp = toplist(genesel_rf, s = F) [, 1])

> rownames(tab) <- paste("top", 1:10, sep = ".")

> print(tab)

The object tab indicates how many methods selected each
gene in the top-10 list. We observe a moderate overlap of
the four lists, with some genes appearing in three out of
four lists:

> table(drop(tab))

We now turn to hyperparameter tuning, which is per-
formed via nested cross-validation. For Partial Least
Squares, we optimize the number of latent components R
over the grid {1,..., 5}. For the nearest shrunken centroids
approach, the shrinkage intensity Δ is optimized over the
grid {0.1, 0.25, 0.5, 1, 2, 5} (default). For the SVM with
Gaussian kernel, one has to tune two hyperparameters:
the cost for violating the margin in the primal formulation
of the SVM and the width of the Gaussian kernel (see sec-
tion tuning) which are optimized over {0.1, 1, 5, 10, 50,
100, 500} × {1/(4p), 1/(2p), 1/p, 2/p, 4/p} (also default).

> tune_pls <- tune(X = khanX, y = khanY, learningsets =
fiveCV10iter, classifier = pls_ldaCMA, grids = list(comp =
1:5))

> tune_scda <- tune(X = khanX, y = khanY, learningsets =
fiveCV10iter, classifier = scdaCMA, grids = list())

> tune_svm <- tune(X = khanX, y = khanY, learningsets =
fiveCV10iter, classifier = svmCMA, grids = list(), kernel =
"radial")

In the second and third function calls to tune, the argu-
ment grids() is an empty list, which means that the
default settings are used. The objects created in the steps
described above are now passed to the function classifica-
tion. The object genesel_f is passed to the classifiers
ldaCMA and qdaCMA, since the F-test is the standard
approach for variable selection in the multi-class setting.
The argument nbgene indicates that only the "best"
nbgene genes are used, where "best" is understood in
terms of the F ratio.

Table 3:

f.test kru.test lim.test rf.imp

top.1 1954 1194 22 545
top.2 1389 545 26 1954
top.3 1003 1389 723 2050
top.4 129 2050 1897 1003
top.5 1955 1954 148 246
top.6 246 246 428 1389
top.7 1194 1003 1065 187
top.8 2050 554 11 554
top.9 2046 1708 735 2046
top.10 545 1158 62 1896
Page 13 of 17
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:439 http://www.biomedcentral.com/1471-2105/9/439
> class_dlda <- classification(X = khanX, y = khanY, learning-
sets = fiveCV10iter, classifier = dldaCMA)

> class_lda <- classification(X = khanX, y = khanY, learning-
sets = fiveCV10iter, classifier = ldaCMA, genesel = genesel_f,
nbgene = 10)

> class_qda <- classification(X = khanX, y = khanY, learning-
sets = fiveCV10iter, classifier = qdaCMA, genesel = genesel_f,
nbgene = 2)

> class_plsda <- classification(X = khanX, y = khanY, learning-
sets = fiveCV10iter, classifier = pls_ldaCMA, tuneres =
tune_pls)

> class_scda <- classification(X = khanX, y = khanY, learning-
sets = fiveCV10iter, classifier = scdaCMA, tuneres =
tune_scda)

> class_svm <- classification(X = khanX, y = khanY, learning-
sets = fiveCV10iter, classifier = svmCMA, kernel = "radial")

> class_svm_t <- classification(X = khanX, y = khanY, learn-
ingsets = fiveCV10iter, classifier = svmCMA, tuneres =
tune_svm, kernel = "radial")

The classification results can now be visualized using the
function comparison, which takes a list of classifier out-
puts as input. For instance, the results may be tabulated
and visualized in the form of boxplots, as displayed in Fig-
ure 3:

> classifierlist <- list(class_dlda, class_lda, class_qda,
class_scda, class_plsda, class_svm, class_svm_t)

> par(mfrow = c(3, 1))

> comparison <- compare(classifierlist, plot = TRUE, measure
= c("misclassification", "brier score", "average probability"))

> print(comparison)

The tuned SVM labeled svm2 performs slightly better than
it is untuned version, though the difference is not substan-
tial. Compared with the performance of the other classifi-
ers applied to this dataset, it seems that the additional

complexity of the SVM does not pay out in a setting where
even simple methods perform well.

3.2.2 Running times
Table 6 shows the running times corresponding to the
classifiers and variable selection methods outlined above,
where * indicates that other programming languages than
R are called, e.g. C/C++, Fortran. All computations were
executed with a Pentium IV workstation, 2.8 Ghz, 1 GB
main memory. The operating system was Windows XP.

4 Conclusion
CMA is a new user-friendly Bioconductor package for con-
structing and evaluating classifiers based on a high
number of predictors in a unified framework. It was orig-
inally motivated by microarray-based classification, but
can also be used for prediction based on other types of
high-dimensional data such as, e.g. proteomic, metabo-
lomic data, or signal data. CMA combines user-friendli-
ness (simple and intuitive syntax, visualization tools) and
methodological strength (especially in respect to variable
selection and tuning procedures). We plan to further
develop CMA and include additional features. Some
potential extensions are outlined below.

In the context of clinical bioinformatics, researchers often
focus their attention on the additional predictive value of
high-dimensional molecular data given that good clinical
predictors are already available. In this context, combined
classifiers using both clinical and high-dimensional
molecular data have been recently developed [18,46].
Such methods could be integrated into the CMA frame-
work by defining an additional argument corresponding
to (mandatory) clinical variables.

Another potential extension is the development of proce-
dures for measuring the stability of classifiers, following
the scheme of our Bioconductor package 'GeneSelector'
[47] which implements resampling methods in the con-
text of univariate ranking for the detection of differential
expression. In our opinion, it is important to check the
stability of predictive rules with respect to perturbations
of the original data. This last aspect refers to the issue of
'noise discovery' and 'random findings' from microarray
data [41,48]. In future research, one could also work on
the inclusion of additional information about predictor
variables in the form of gene ontologies or pathway maps

Table 4:

11 22 26 62 129 148 187 246 428 545 554 723 735 1003 1065 1158
1 1 1 1 1 1 1 3 1 3 2 1 1 3 1 1

1194 1389 1708 1896 1897 1954 1955 2046 2050
2 3 1 1 1 3 1 2 3
Page 14 of 17
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:439 http://www.biomedcentral.com/1471-2105/9/439
as available from KEGG [49] or cMAP http://
pid.nci.nih.gov/ with the intention to stabilize variable
selection and to simultaneously select groups of predic-
tors, in the vein of the so-called "gene set enrichment
analysis" [50].

As kindly suggested by a reviewer, it could also be interest-
ing to combine several classifiers into an ensemble. Such
aggregated classifiers may be more robust and thus per-
form better than each single classifier. As a standardized

Classification accuracy with Khan's SRBCT dataFigure 3
Classification accuracy with Khan's SRBCT data. Boxplots representing the misclassification rate (top), the Brier score
(middle), and the average probability of correct classification (bottom) for Khan's SRBCT data, using seven classifiers: diagonal
linear discriminant analysis, linear discriminant analysis, quadratic discriminant analysis, shrunken centroids discriminant analysis
(PAM), PLS followed by linear discriminant analysis, SVM without tuning, and SVM with tuning.

D
LD

A

LD
A

Q
D

A

sc
D

A

pl
s_

ld
a

sv
m

sv
m

2

0.0
0.1
0.2
0.3
0.4
0.5
0.6

misclassification

D
LD

A

LD
A

Q
D

A

sc
D

A

pl
s_

ld
a

sv
m

sv
m

2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

brier score

D
LD

A

LD
A

Q
D

A

sc
D

A

pl
s_

ld
a

sv
m

sv
m

2

0.5
0.6
0.7
0.8
0.9
1.0

average probability
Page 15 of 17
(page number not for citation purposes)

http://pid.nci.nih.gov/
http://pid.nci.nih.gov/

BMC Bioinformatics 2008, 9:439 http://www.biomedcentral.com/1471-2105/9/439
interface to a large number of classifiers, CMA offers the
opportunity to combine their results with very little effort.

Lastly, CMA currently deals only with classification. The
framework could be extended to other forms of high-
dimensional regression, for instance high-dimensional
survival analysis [51-54].

In conclusion, we would like to outline in which situa-
tions CMA may help and warn against potential wrong
use. CMA provides a unified interface to a large number of
classifiers and allows a fair evaluation and comparison of
the considered methods. Hence, CMA is a step towards
reproducibility and standardization of research in the
field of microarray-based outcome prediction. In particu-
lar, CMA users do not favor a given method or overesti-
mate prediction accuracy due to wrong variable selection/
tuning schemes. However, they should be cautious while
interpreting and presenting their results. Trying all availa-
ble classifiers successively and reporting only the best
results would be a wrong approach [6] potentially leading
to severe "optimistic bias". In this spirit, Ioannidis [41]

points out that many results obtained with microarray
data are nothing but "noise discovery" and Daumer et al
[55] recommend to try to validate findings in an inde-
pendent data set, whenever possible and feasible. In sum-
mary, instead of fishing for low prediction errors using all
available methods, one should rather report all the
obtained results or validate the best classifier using inde-
pendent fresh validation data. Note that both procedures
can be performed using CMA.

5 Availability and requirements
• Project name: CMA

• Project homepage: http://bioconductor.org/packages/
2.3/bioc/html/CMA.html

• Operating system: Windows, Linux, Mac

• Programming language: R

• Other requirements: Installation of the R software for
statistical computing, release 2.7.0 or higher. For full func-
tionality, the add-on packages 'MASS', 'class', 'nnet', 'glm-
path', 'e1071', 'randomForest', 'plsgenomics', 'gbm',
'mgcv', 'corpcor', 'limma' are also required.

• License: None for usage

• Any restrictions to use by non-academics: None

6 Authors' contributions
MS implemented the CMA package and wrote the manu-
script. ALB had the initial idea and supervised the project.
ALB and MD contributed to the concept and to the man-
uscript.

7 Acknowledgements
We thank the four referees for their very constructive comments which
helped us to improve this manuscript. This work was partially supported by
the Porticus Foundation in the context of the International School for
Technical Medicine and Clinical Bioinformatics.

References
1. Ihaka R, Gentleman R: R: A language for data analysis and

graphics. Journal of Computational and Graphical Statistics 1996,
5:299-314.

2. Gentleman R, Carey J, Bates D, Bolstad B, Dettling M, Dudoit S, Ellis
B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus
S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith
C, Smyth G, Tierney L, Yang JYH, Zhang J: Bioconductor: Open
software development for computational biology and bioin-
formatics. Genome Biology 2004, 5:R80.

3. Tibshirani R, Hastie T, Narasimhan B, Chu G: Diagnosis of multiple
cancer types by shrunken centroids of gene expression. Pro-
ceedings of the National Academy of Sciences 2002, 99:6567-6572.

4. Breiman L: Random Forests. Machine Learning 2001, 45:5-32.
5. Boulesteix AL, Strimmer K: Partial Least Squares: A versatile

tool for the analysis of high-dimensional genomic data. Brief-
ings in Bioinformatics 2007, 8:32-44.

6. Dupuy A, Simon R: Critical Review of Published Microarray
Studies for Cancer Outcome and Guidelines on Statistical

Table 5:

misclassification brier.score average.probability

DLDA 0.06807692 0.13420913 0.9310332
LDA 0.04269231 0.07254283 0.9556106
QDA 0.24000000 0.34247861 0.7362778
scDA 0.01910256 0.03264544 0.9754012
pls_lda 0.01743590 0.02608426 0.9819003
svm 0.06076923 0.12077855 0.7872984
svm2 0.04461538 0.10296755 0.8014135

Table 6: Running times.

Variable selection methods
Method Running time per learningset

Multiclass F-Test 3.1 s
Krusal-Wallis test 3.5 s
Limma* 0.16s
Random Forest†,* 4.1 s

Classification methods
Method # variables Running time per 50 learningsets

DLDA all (2308) 2.7 s
LDA 10 1.4 s
QDA 2 1.0 s
Partial Least Squares all (2308) 4.2 s
Shrunken Centroids all (2308) 2.8 s
SVM* all (2308) 88s

Running times of the different variable selection and classification
methods used in the real life example. †: 500 bootstrap trees per run.
Page 16 of 17
(page number not for citation purposes)

http://bioconductor.org/packages/2.3/bioc/html/CMA.html
http://bioconductor.org/packages/2.3/bioc/html/CMA.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16772269
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16772269
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17227998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17227998

BMC Bioinformatics 2008, 9:439 http://www.biomedcentral.com/1471-2105/9/439
Analysis and Reporting. Journal of the National Cancer Institute
2007, 99:147-157.

7. Ambroise C, McLachlan GJ: Selection bias in gene extraction in
tumour classification on basis of microarray gene expression
data. Proceedings of the National Academy of Science 2002,
99:6562-6566.

8. Berrar D, Bradbury I, Dubitzky W: Avoiding model selection bias
in small-sample genomic datasets. Bioinformatics 2006,
22(10):1245-1250.

9. Boulesteix AL: WilcoxCV: An R package for fast variable selec-
tion in cross-validation. Bioinformatics 2007, 23:1702-1704.

10. Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S: A compre-
hensive evaluation of multicategory classification methods
for microarray gene expression cancer diagnosis. Bioinformat-
ics 2005, 21:631-643.

11. Varma S, Simon R: Bias in error estimation when using cross-
validation for model selection. BMC Bioinformatics 2006, 7:91.

12. Mar J, Gentleman R, Carey V: MLInterfaces: Uniform interfaces to R
machine learning procedures for data in Bioconductor containers 2007.

13. Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S: Bioinformatics
and Computational Biology Solutions Using R and Bioconductor New York:
Springer; 2005.

14. Ruschhaupt M, Mansmann U, Warnat P, Huber W, Benner A:
MCRestimate: Misclassification error estimation with cross-validation 2007.

15. Ruschhaupt M, Huber W, Poustka A, Mansmann U: A compendium
to ensure computational reproducibility in high-dimensional
classification tasks. Statistical Applications in Genetics and Molecular
Biology 2004, 3:37.

16. Braga-Neto U, Dougherty ER: Is cross-validation valid for small-
sample microarray classification? Bioinformatics 2004,
20:374-380.

17. Molinaro A, Simon R, Pfeiffer RM: Prediction error estimation: a
comparison of resampling methods. Bioinformatics 2005,
21:3301-3307.

18. Boulesteix AL, Porzelius C, Daumer M: Microarray-based classifi-
cation and clinical predictors: On combined classifiers and
additional predictive value. Bioinformatics 2008, 24:1698-1706.

19. Breiman L: Bagging predictors. Machine Learning 1996,
24:123-140.

20. Efron B, Tibshirani R: An introduction to the bootstrap Chapman and
Hall; 1993.

21. Hastie T, Tibshirani R, Narasimhan B, Chu G: Imputation for microarray
data (currently KNN only) 2008.

22. Chambers J: Programming with Data Springer, N.Y; 1998.
23. Donoho D, Johnstone I: Ideal spatial adaption by wavelet

shrinkage. Biometrika 1994, 81:425-455.
24. Ripley B: Pattern Recognition and Neural Networks Cambridge Univer-

sity Press; 1996.
25. Wood S: Generalized Additive Models: An Introduction with R Chapman

and Hall/CRC; 2006.
26. Friedman J: Regularized discriminant analysis. Journal of the

American Statistical Association 1989, 84(405):165-175.
27. Guo Y, Hastie T, Tibshirani R: Regularized Discriminant Analysis

and its Application in Microarrays. Biostatistics 2007, 8:86-100.
28. Tibshirani R: Regression shrinkage and selection via the

LASSO. Journal of the Royal Statistical Society B 1996, 58:267-288.
29. Zou H, Hastie T: Regularization and variable selection via the

elastic net. Journal of the Royal Statistical Society B 2005, 67:301-320.
30. Hastie T, Tibshirani R, Friedman JH: The elements of statistical learning

New York: Springer-Verlag; 2001.
31. Breiman L, Friedman JH, Olshen RA, Stone JC: Classification and

Regression Trees Monterey, CA: Wadsworth; 1984.
32. Freund Y, Schapire RE: A Decision-Theoretic Generalization of

On-Line Learning and an Application to Boosting. Journal of
Computer and System Sciences 1997, 55:119-139.

33. Friedman J: Greedy Function Approximation: A Gradient
Boosting Machine. Annals of Statistics 2001, 29:1189-1232.

34. Hastie T, Tibshirani R: Efficient quadratic regularization for
expression arrays. Biostatistics 2004, 5:329-340.

35. Golub G, Loan CV: Matrix Computations Johns Hopkins University
Press; 1983.

36. Parzen E: On estimation of a probability density function and
mode. Annals of Mathematical Statistics 1962, 33:1065-1076.

37. Smyth G: Linear models and empirical Bayes methods for
assessing differential expression in microarray experiments.
Statistical Applications in Genetics and Molecular Biology 2004, 3:3.

38. Guyon I, Weston J, Barnhill S, Vapnik V: Gene Selection for Can-
cer Classification using support vector machines. Journal of
Machine Learning Research 2002, 46:389-422.

39. Bühlmann P, Yu B: Boosting with the L2 loss: Regression and
Classification. Journal of the American Statistical Association 2003,
98:324-339.

40. Golub T, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP,
Coller H, Loh ML, Downing J, Caligiuri MA, Bloomfield CD, Lander
ES: Molecular classification of cancer: class discovery and
class prediction by gene expression monitoring. Science 1999,
286:531-537.

41. Ioannidis JP: Microarrays and molecular research: noise dis-
covery. The Lancet 2005, 365:488-492.

42. Efron B, Tibshirani R: Improvements on cross-validation: The
.632+ bootstrap method. Journal of the American Statistical Associa-
tion 1997, 92:548-560.

43. Khan J, Wei J, Ringner M, Saal L, Ladanyi M, Westermann F, Berthold
F, Schwab M, Antonescu C, Peterson C, Meltzer P: Classification
and diagnostic prediction of cancers using gene expression
profiling and artificial neural networks. Nature Medicine 2001,
7:673-679.

44. Tibshirani R, Hastie T, Narasimhan B, Chu G: Class prediction by
nearest shrunken centroids, with applications to DNA
microarrays. Statistical Science 2002, 18:104-117.

45. Boulesteix AL: PLS dimension reduction for classification with
microarray data. Statistical Applications in Genetics and Molecular
Biology 2004, 3:33.

46. Binder H, Schumacher M: Allowing for mandatory covariates in
boosting estimation of sparse high-dimensional survival
models. BMC Bioinformatics 2008, 9:14.

47. Slawski M, Boulesteix AL: GeneSelector. Bioconductor 2008
[httwww.bioconductor.org/packages/devel/bioc/html/GeneSelec
tor.html].

48. Davis C, Gerick F, Hintermair V, Friedel C, Fundel K, Kueffner R,
Zimmer R: Reliable gene signatures for microarray classifica-
tion: assessment of stability and performance. Bioinformatics
2006, 22:2356-2363.

49. Kanehisa M, Goto S: KEGG: Kyoto encyclopedia of genes and
genomes. Nucleic Acids Research 2000, 28:27-30.

50. Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gilette
M, Paulovich A, Pomeroy S, Golub T, Lander E, Mesirov J: Gene set
enrichment analysis: A knowledge-based approach for inter-
preting genome-wide expression profiles. Proceedings of the
National Academy of Science 2005, 102:15545-15550.

51. Bovelstad HM, Nygard S, Storvold HL, Aldrin M, Borgan O, Frigessi
A, Lingjaerde OC: Predicting survival from microarray data a
comparative study. Bioinformatics 2007, 23:2080-2087.

52. Schumacher M, Binder H, Gerds T: Assessment of survival pre-
diction models based on microarray data. Bioinformatics 2007,
23:1768-1774.

53. Diaz-Uriarte R: SignS: a parallelized, open-source, freely avail-
able, web-based tool for gene selection and molecular signa-
tures for survival and censored data. BMC Bioinformatics 2008,
9:30.

54. van Wieringen W, Kun D, Hampel R, Boulesteix AL: Survival pre-
diction using gene expression data: a review and compari-
son. Computational Statistics Data Analysis 2008 in press.

55. Daumer M, Held U, Ickstadt K, Heinz M, Schach S, Ebers G: Reduc-
ing the probability of false positive research findings by pre-
publication validation: Experience with a large multiple scle-
rosis database. BMC Medical Research Methodology 2008, 8:18.

56. McLachlan G: Discriminant Analysis and Statistical Pattern Recognition
Wiley, New York; 1992.

57. Young-Park M, Hastie T: L1-regularization path algorithm for
generalized linear models. Journal of the Royal Statistical Society B
2007, 69:659-677.

58. Zhu J: Classification of gene expression microarrays by penal-
ized logistic regression. Biostatistics 2004, 5:427-443.

59. Specht D: Probabilistic Neural Networks. Neural Networks 1990,
3:109-118.

60. Scholkopf B, Smola A: Learning with Kernels Cambridge, MA, USA: MIT
Press; 2002.
Page 17 of 17
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17227998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16500931
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16500931
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17495999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17495999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15374862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15374862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15374862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16504092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16504092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15905277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15905277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18544547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18544547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18544547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16603682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16603682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15208198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15208198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11385503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11385503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11385503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18186927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18186927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18186927
http://www.bioconductor.org/packages/devel/bioc/html/GeneSelector.html
http://www.bioconductor.org/packages/devel/bioc/html/GeneSelector.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16882647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16882647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17553857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17553857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17485430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17485430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18208605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18208605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18208605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18402689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18402689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18402689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15208204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15208204

	Abstract
	Background
	Results
	Conclusion

	1 Background
	Overview of existing packages
	Overview of class prediction with high-dimensional data and notations
	Settings and Notation
	Estimation of the generalization error

	2 Implementation
	3 Results
	3.1 CMA features
	3.1.1 Overview
	3.1.2 Classification methods
	Discriminant Analysis
	Partial Least Squares
	Regularization and shrinkage methods
	Random Forests
	Boosting
	Feed-Forward Neural Networks
	Probabilistic Neural Networks
	Nearest Neighbors and Probabilistic Nearest Neighbors

	3.1.3 Variable selection methods
	3.1.4 Hyperparameter tuning
	3.1.5 Performance measures
	• Misclassification rate
	• Cost-based evaluation
	• Sensitivity, specificity and area under the curve (AUC)
	• Brier Score and average probability of correct classification
	• 0.632 and 0.632+ estimators

	3.2 A real-life data example
	3.2.1 Application to the SRBCT data
	3.2.2 Running times

	4 Conclusion
	5 Availability and requirements
	6 Authors' contributions
	7 Acknowledgements
	References

