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Abstract

Background: Genome-wide identification of specific oligonucleotides (oligos) is a computationally-
intensive task and is a requirement for designing microarray probes, primers, and siRNAs. An artificial
neural network (ANN) is a machine learning technique that can effectively process complex and high noise
data. Here, ANNs are applied to process the unique subsequence distribution for prediction of specific
oligos.

Results: We present a novel and efficient algorithm, named the integration of ANN and BLAST (IAB)
algorithm, to identify specific oligos. We establish the unique marker database for human and rat gene
index databases using the hash table algorithm. We then create the input vectors, via the unique marker
database, to train and test the ANN. The trained ANN predicted the specific oligos with high efficiency,
and these oligos were subsequently verified by BLAST. To improve the prediction performance, the ANN
over-fitting issue was avoided by early stopping with the best observed error and a k-fold validation was
also applied. The performance of the IAB algorithm was about 5.2, 7.1, and 6.7 times faster than the BLAST
search without ANN for experimental results of 70-mer, 50-mer, and 25-mer specific oligos, respectively.
In addition, the results of polymerase chain reactions showed that the primers predicted by the |AB
algorithm could specifically amplify the corresponding genes. The IAB algorithm has been integrated into
a previously published comprehensive web server to support microarray analysis and genome-wide
iterative enrichment analysis, through which users can identify a group of desired genes and then discover
the specific oligos of these genes.

Conclusion: The IAB algorithm has been developed to construct SpecificDB, a web server that provides
a specific and valid oligo database of the probe, siRNA, and primer design for the human genome. We also
demonstrate the ability of the IAB algorithm to predict specific oligos through polymerase chain reaction
experiments. SpecificDB provides comprehensive information and a user-friendly interface.
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Background

DNA microarray is a powerful tool in functional genome
studies [1-4]. However, it usually generates false positive
data as a result of cross-hybridization between highly sim-
ilar sequences [5-7]. The design approach of polymerase
chain reaction (PCR) primer with minimal cross homol-
ogy is an important technology [8]. In addition, the recent
application of siRNAs to silence genes is dependent on the
sequence specificity, and the siRNA sequence must be
selected carefully to avoid similarity to an unrelated
mRNA [9]. Thus, the important issue is finding a way to
effectively identify specific oligonucleotides (oligos).

The early design of specific oligos was based mainly on
the use of a frequency matrix [10,11]. Subsequently, sev-
eral approaches were developed to design unique oligos,
such as an information-theoretical method based on max-
imum entropy, which has also been applied to the design
of probe sets [12]; a method based on matching the fre-
quency of sequence landscapes, which was used to select
optimal oligos for E. coli, S. cerevisiae, and C. elegans [13];
suffix trees, which has been used to select the organism-
specific signature oligos [14]; the design of genome-wide
specific oligos based on basic local alignment search tool
(BLAST) [15]; and the smart filtering technique, which
was employed to avoid redundant computation while
maintaining accuracy [16].

However, these processes still take a long time to identify
specific oligos. It is quite obvious that the high-through-
put prediction of specific oligos is important for applica-
tion in large-scale gene analysis. Recently, a method for
unique oligo discovery that was a modification of a cen-
tral pattern partitioning principle was published [17].
This method analyzed 17 complete genomes representing
a wide range of both prokaryotic and eukaryotic organ-
isms. However, huge genomes, such as the human
genome, were not processed in this report.

An artificial neural network (ANN) is a popular learning
approach that effectively handles noise and complex rela-
tionships in a robust way [18]. In previous studies, ANNs
were employed to process a broad range of input parame-
ters on sequence information, such as base composition
and binding properties, to predict anti-sense oligos target-
ing the mRNA [19,20]. In addition, ANNs have been
widely applied to various research fields in biology such
as clinical cancer research [21], protein function predic-
tion [22], protein classification [23], and cancer classifica-
tion [24].

In this study, we present a novel and efficient algorithm
that integrates ANN and BLAST, named the IAB algorithm,
to identify specific oligos from the Institute for Genomic
Research (TIGR) human gene index (HGI) and rat gene
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index (RGI) databases. Furthermore, we applied the IAB
algorithm to construct SpecificDB, a web server that pro-
vides users with the appropriate hybridization probe,
siRNA, and primer for the HGI sequences. These tools will
be of great benefit to functional genomics studies.

Results

Construction of unique marker database and the
architecture of ANN

The input vector of the ANN was derived from the density
of the unique subsequences (U,;) between 10-mer and 26-
mer (Figure 1). In our previous study, an algorithm with
15-mer U, was developed to speed up the identification of
a specific probe [1] and we extended and enhanced the
algorithm in this study. We established a unique marker
database (UMD) to store the positions of all unique sub-
sequences for the entire TIGR HGI tentative human con-
sensus (THC) database and RGI tentative consensus (TC)
database [25]. The UMD included of 10-mer ~ 26-mer
unique marker subsequences and its workflow is illus-
trated in Figure 2. Determining the appropriate weights of
10-mer ~ 26-mer U, for the specific oligo prediction was a
difficult issue, and the optimal weights depended on the
sequence constitution of the genome.

In this study, to determine the optimal weights of 10-mer
~ 26-mer U, ANN was utilized in our algorithm to predict
the oligo specificity. Table 1 shows the number of unique
markers and the average density of 10-mer ~ 26-mer
unique subsequences in the UMD of HGI and RGI. The
results reveal that if the length of the screening subse-
quence (N-mer) was less than 12-mer, most subsequences
were not unique in a large database (U, approximates to
0). On the other hand, if the N-mer was more than 24-
mer, many subsequences would be unique (U,; of HGI
approximates to 0.23 and U, of RGI approximates to
0.49). Therefore, the construction of the unique marker
subsequences with 10-mer ~ 26-mer in the UMD was rea-
sonable. The architecture of ANN's backward propagation
is shown in Figure 1b. There were 17 input nodes in the
ANN for the U, of 10-mer ~ 26-mer. The cross homology
calculated by WU-BLAST [26] for each input sequence was
as the desired output.

Over-fitting and validation

If too much training is applied to the training set, over-fit-
ting of the ANN will occur, which means that it will be fit-
ted precisely to the training set and thereby lose accuracy
in the independent test set. Over-fitting would be
expected with sufficiently large ANNs and sufficiently
"successful" training [27]. The results of over-fitting tests
in this study revealed that the over-fitting effect was
dependent on the number of hidden layer nodes (Figure
3).
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Integration of ANN and BLAST (IAB). (a) Calculation of the density of unique subsequence: the solid triangles mark the
starting position of the unique subsequences in an N-mer oligo, and the count of the solid triangles is the number of unique
subsequences. Thus, the M-mer U, can be calculated from the number of unique subsequences. (b) ANN training: there were
|7 input nodes in the ANN for the input vector (10-mer ~ 26-mer Uy) that is calculated in (a). In addition, the cross homology
identified by WU-BLAST was as the desired output. The monitor object represents the central point that contains all of the
parameters needed for other components to work properly. (c) IAB algorithm architecture: for each sliding N-mer oligo, the
input vector (10-mer ~ 26-mer Uy) calculated by the unique maker database (UMD) was delivered to the ANN for cross
homology prediction. The selected oligos were checked by BLAST after filtering by ANN scores.

Our results show that the over-fitting effect of the ANN
performance with 22 hidden nodes (Figure 3b) is more
pronounced than that with 16 hidden nodes (Figure 3a).
Furthermore, root mean square error (RMSE) [28] became
quite stable and relatively lower when the training cycle
number was between 350 and 500. The best observed
error for the test set happened when the training cycle was
450 (RMSE = 0.0767, Figure 3b). Thus, the setting of 450
cycles was applied to all future procedures. Furthermore,

k-fold validation was performed on nine training sets
[29]. Thus, nine trained ANNs were produced and tested
using the independent test set. In addition, we also evalu-
ated the ANN's performance using an independent large-
scale validation set. The results show that the RMSEs of
the test and validation sets had similar profiles and the
best RMSE occurred in the same training set (TSyy;;56) fOr
both the test and validation sets (Figure 4). The consistent
profile of both the test and validation sets indicates the
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A flowchart depicting the procedures for the creation of a UMD. The subsequences and their complementary
sequences for all of the genes in the database were encoded and placed in the hash table using the coding number of the subse-
quences as the hash key. If the subsequence appears only once, the subsequence is treated as unique, and then its location will

be stored in the marker tables of UMD.

stability of the ANN's performance. Thus, the ANN
trained by TS5 Was selected for genome-wide identifi-
cation of the specific oligos.

Performance comparison for IAB algorithm

To investigate the performance at the various lengths of
oligos, 100 THC sequences on which to perform the IAB
algorithm, the pure BLAST search, and the BLAST search

with U, were randomly selected from the HGI database.
Three performance criteria were computed and evaluated,
including success rate, average cross homology and execu-
tion time. The sensitivity factor is the maximum percent-
age of sliding oligos that should be screened by BLAST.
Thus, the sensitivity factor is used to adjust the sensitivity
of the IAB algorithm in this report. Moreover, to investi-
gate the effect of the sensitivity factor on performance, var-
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Table I: The number of unique markers and the average density of 10-mer ~ 26-mer subsequences in the database of HGI and RGI.

N-mer HGla RGP
Unique Markers Average U s Unique Markers Average U,

10-mer 0 0.000000 4 0.000000
I'l-mer 6 0.000000 9,669 0.000120
12-mer 24,164 0.000054 457,681 0.005675
13-mer 1,124,491 0.002513 4,167,009 0.051672
14-mer 9,488,257 0.021202 15,364,798 0.190527
|5-mer 35,768,666 0.079925 27,962,463 0.346742
16-mer 66,958,259 0.14%9618 34,903,375 0.43281 1
17-mer 85,694,125 0.191484 37,636,118 0.466698
18-mer 94,052,393 0.210160 38,645,904 0.479219
19-mer 97,689,916 0.218288 39,061,604 0.484374
20-mer 99,559,386 0.222466 39,276,816 0.487043
21-mer 100,781,233 0.225196 39,417,681 0.488789
22-mer 101,743,851 0.227347 39,522,956 0.490095
23-mer 102,583,079 0.229222 39,608,919 0491161
24-mer 103,348,039 0.230931 39,682,141 0.492069
25-mer 104,057,929 0.232518 39,744,826 0.492846
26-mer 104,724,128 0.234006 39,800,164 0.493532

aHGI, human gene index; PRGI, rat gene index; <U,, the density of the unique subsequences.

ious sensitivity factors were evaluated. The results reveal
that the IAB algorithm relative to other approaches had
better or equal quality with a sensitivity factor of 0.3 for
70-mer, 50-mer, and 25-mer in the success rate, average
cross homology, and execution time (see Table 2). Thus,
the sensitivity factor was set at 0.3 in all performance com-
parisons.

In HGI database, the IAB algorithm was executed about
5.2, 7.1, and 6.7 times faster than the pure BLAST search
for 70-mer, 50-mer, and 25-mer, respectively (Table 2). In
the comparison of the BLAST search with U, the IAB algo-
rithm performed about 3.0, 2.3, and 3.0 times faster for
70-mer, 50-mer, and 25-mer, respectively. In 25-mer spe-
cific oligo design, Table 2 shows that the IAB algorithm
decreased execution times by 6.2, 7.0, and 7.0 times for
word lengths of 11, 8, and 5, respectively. In RGI database,
the IAB algorithm, the pure BLAST search, and the BLAST
with U, for 70-mer specific oligos were performed. The
IAB algorithm was executed about 7.3 times faster than
the pure BLAST search and 2.0 times faster than the BLAST
with U, (Table 3). In addition, the BLAST with U, was exe-
cuted about 3.6 times faster than the pure BLAST search.
It is expectable that the BLAST with U, has better perform-
ance than the pure BLAST search and the IAB algorithm
has better performance than the BLAST with U algorithm.

Specific oligo web server (SpecificDB)

To provide a useful and powerful web server named Spe-
cificDB, the following steps were taken: (1) unique subse-
quences with 10-mer ~ 26-mer were created in UMD; (2)
training, test, and validation sets were prepared; (3) k-fold
validation was performed on training sets; (4) the IAB

algorithm was implemented; (5) specific oligos including
probe, siRNA, and primer were constructed; and (6) the
specific oligo database was incorporated into our previous
work (a comprehensive web server for the composite reg-
ulatory signature database, CRSD) [30] consisting of
microarray analysis, motif discovery, and genome-wide
iterative enrichment analysis for microRNAs, transcrip-
tion factors, pathways, and GO annotations. Users can
perform microarray data analysis and enrichment analysis
to identify a group of interesting genes, and then discover
the specific oligos for the probe, siRNA, and primer of
these genes in the SpecificDB web server. The architecture
of SpecificDB is illustrated in Figure 5, and the server is
available at our web site [31].

Application of IAB algorithm and the demonstration of
predicted primers

The IAB algorithm was applied to identify the specific
primers of Xanthomonas campestris pv. Campestris (Xcc)
strain 17 contigs that were constructed and sequenced. To
locate all of the genes in Xcc strain 17, another similar
strain, Xcc strain 33913 containing 4,181 genes [32], was
employed to perform sequence alignment. The required
information and annotation of Xcc strain 33913 genome
is available in the NCBI database.

We aligned the 4,181 gene sequences against the Xcc strain
17 contigs to obtain the annotation data of the contigs.
The results showed that the average sequence similarity
between the two strains was 94.81%. There were 3,836
genes with similarity in excess of 90% that were selected
as the predicted genes in Xcc strain 17. In order to avoid
the non-specific annealing of predicted primers, three
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The performance profiles with different training
epochs for test and validation sets. The ANNs were
trained with different numbers of hidden layer nodes as fol-
lows: (a) 16 hidden nodes, and (b) 22 hidden nodes. The
profiles show that the optimal performance for the test and
validation sets did not occur at the maximum training
epochs. RMSE became more stable and relatively lower when
the training epoch number was between 350 and 500. The
best observed error for the test set is RMSE 0.0767 at 450

().

additional genomes (A. thaliana, S. cerevisiae, and E. coli)
were merged with the Xcc strain 17 contigs to build an
integrated nucleotide sequence database that was used for
non-specific oligo filtration. A total of 3,569 primer sets
were identified from 3,836 genes by using a cross homol-
ogy threshold of 85% against the integrated nucleotide
sequence database [see Additional file 1]. More than 93%
of all the genes contained the specific and valid primer
sets.

To demonstrate the applicability of predicted primers, we
selected 18 and 29 genes related to SOS response [33] and
rpoE [34] respectively, as well as 49 randomly selected
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genes in Xcc strain 17 to perform PCR amplification using
the primers predicted by the IAB algorithm. In addition,
to verify the primer design based on the IAB algorithm for
large genomes such as human, we randomly selected 15
human primer sets from our SpecificDB database and per-
formed PCR amplification. A total of 111 PCR reactions
(96 for Xcc and 15 for human) were performed in twice
and followed by electrophoresis analysis. If a PCR product
with correct size can be found at least once, we count the
result as a success. The PCR results show that the success
rate was 95% and 93% for Xcc and human, respectively,
and all PCR products had correct size. Representative
results are shown in Figure 6. In human PCR results, there
is one gene (NM_052957) that has multiple bands but a
single dominant band with correct size.

Discussion

Several important techniques in molecular biology, such
as siRNA, microarray, and primer design, need short and
specific oligos. The prediction of short and specific oligos
is essential for these applications [9,35]. The BLAST search
can be utilized to deal with the identification of specific
oligos [36] but it requires too much computing time to
screen all sliding oligos. Thus, a fast and efficient predictor
for sequence specificity is needed [37]. In this study, ANN
is used as a predictor to filter out the oligos with high cross
homology before the BLAST search. Here, a new method
for genome-wide identification of specific oligos is devel-
oped, and it integates ANN and BLAST to optimize the
sequence analysis by using the densities of the various
length unique subsequences.

Early in this study, we investigated repeat frequencies of
subsequence (6-mer ~ 12-mer) and Shannon's entropy of
subsequence frequencies distributions [38], which are
related to the degeneracy of the subsequence coding
scheme. However, we did not discover an efficient
method to integrate these distributions (unpublished
data). In this report, we found that the integration of the
10-mer ~ 26-mer U, and ANN is an efficient approach to
predict oligo specificity.

In siRNA design, BLAST is frequently used to determine
the specificity of siRNAs. However, BLAST may lose sensi-
tivity and miss important alignment for such short oligos
as siRNAs [39,40]. On the other hand, the sensitivity of
BLAST depends on the word length parameter so that
shorter word lengths may increase sensitivity but decrease
execution speed. To investigate the impact of the word
length, several word lengths (11, 8, and 5) were employed
to evaluate the performance of our algorithm on specific
short oligo identification. Table 2 shows that the IAB algo-
rithm enjoys significant improvement in speed for various
word lengths. Thus, the shorter word length can be
applied to improve sensitivity in the IAB algorithm.
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The performance profiles of a k-fold validation. The
RMSEs of the test and validation sets have the same trend,
which signals the generality of the result. The best perform-
ance occurred in training set TSty g for both the test and
validation sets.

The combination of ANN and Uy is a part of the IAB algo-
rithm. The performance comparison of the IAB algorithm
and the BLAST search with U, revealed that ANN is an
important component in the IAB algorithm (Table 2). The
IAB algorithm with appropriate sensitivity factor had
lower cross homology and shorter execution time.
Although the IAB algorithm only screened a portion of the
sliding oligos, it still had better quality than the pure
BLAST search that may screen all sliding oligos.

It is difficult to understand the inside workings of an
ANN, where learned knowledge is contained in the weight
(coefficient) of synapse in the ANN structure. Thus, the
ANN is usually treated as a black box [41] and the biolog-
ical significance inside can not be interpreted. However,
ANNs have been applied to various research fields in bio-
informatics. In addition, the unique subsequence distri-
bution has also been utilized in various aspects of
sequence analysis [1,42]. In this study, we integrated a
wide range of unique subsequences (10-mer ~ 26-mer)
using the ANN approach to improve the identification of
specific oligos. Such a wide range of unique subsequences
has not been previously reported.

ANN training for every genome and every length of oligo
is inflexible and inconvenient for applications, but our
findings indicate that the IAB algorithm may overcome
this problem. Table 2 demonstrates the robustness of our
algorithm by applying the ANN trained for 70-mer oligos

http://www.biomedcentral.com/1471-2105/8/164

to the prediction of 50-mer and 25-mer specific oligos.
Our results show that the predictions for the 50-mer and
25-mer specific oligos have similar performance to that of
the 70-mer.

Furthermore, to understand whether the final trained
ANN from HGI could be applied to other genomes, we
derived the 70-mer training, test, and validation sets from
RGI, and performed a k-fold validation method to obtain
the best trained ANN. Then, we randomly selected 200
RGI TC sequences to carry out the specific oligo selection
by using the trained ANN of HGI and RGI with IAB, as
well as the pure BLAST search and the BLAST with U,;. The
results of the experiments show that trained ANN from
both HGI and RGI had almost the same performance in
specific oligo selection for the RGI database (Table 3).
Therefore, it may be not necessary to perform the compli-
cated procedures of training a new ANN for RGI. Thus, the
final trained ANN from HGI has robustness to other
genomes such as RGI, and the IAB algorithm can be
employed across species for specific oligo identification.

Biological researchers may obtain a list of marker genes
related to human diseases or the gene expression signa-
ture derived from microarray analysis. In order to provide
these researchers with useful bioinformatic tools to fur-
ther investigate the genes, our SpecificDB web server pro-
vides a web interface to perform microarray data analysis
and discover significant enrichment of microRNAs, tran-
scription factors, pathways, and GOs. For example, after
enrichment analysis, users can identify a panel of genes
that may have significant differential expression in micro-
array data and have significant enrichment with a path-
way. SpecificDB can bring out the specific and valid
probes, siRNAs, and primers corresponding to these
genes.

To demonstrate the applicability of our algorithm, Xcc
genome analysis and genome-wide primer design have
been carried out. S. cerevisiage and E. coli are usually the
major contaminants in the laboratory environment,
which may influence the accuracy of experiments [43,44].
To reduce the cross homology with these species, we
established an integrated nucleotide sequence database
consisting of four genomes (A. thaliana, S. cerevisiae, E.
coli, and Xcc) for non-specific oligo filtration. Neverthe-
less, the results of this primer design can not be treated as
completely species-specific primers. The results of PCR
amplification with primers predicted by the IAB algorithm
provide evidence in support of the effectiveness and accu-
racy of our novel algorithm.

Conclusion
A new algorithm, the IAB algorithm, integrates ANN and
BLAST to select specific oligos, and makes use of the
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Table 2: Performance comparison with and without an artificial neural network.

Oligo length Procedure Sensitivity factor Success rate (%)? Cross homology b Execution time (hours)
70-mer IAB © 0.2 94 0.56 0.50
0.3 95 0.56 0.71
0.4 95 0.56 0.90
BLAST with U 95 0.56 2.13
Pure BLAST 95 0.6l 3.69
50-mer IAB 0.2 9l 0.64 0.20
03 93 0.64 0.31
0.4 93 0.64 032
BLAST with U, 93 0.64 0.70
Pure BLAST 93 0.69 2.19
25-mer W = | |e IAB 0.2 94 0.79 0.19
0.3 94 0.79 0.26
0.4 94 0.79 033
BLAST with U, 94 0.79 0.78
Pure BLAST 94 0.80 1.62
25-mer W =8 IAB 0.2 93 0.80 0.36
0.3 93 0.80 0.50
0.4 93 0.80 0.64
BLAST with U, 93 0.80 1.52
Pure BLAST 93 0.81 3.51
25-mer W =5 IAB 0.2 92 0.81 1.00
0.3 92 0.81 1.39
0.4 92 0.81 1.79
BLAST with U, 92 0.8l 4.25
Pure BLAST 92 0.8l 9.69

aThe success rate is the percentage of tentative human consensus sequences on which the procedure can find the specific oligo (where the cross
homology is less than the threshold). The cross homology of a specific oligo is determined by the similarity between the specific oligo and its best
homology in the non-target sequence. <IAB, integration of artificial neural network (ANN) and basic local alignment search tool (BLAST).9BLAST
with U,, BLAST search with the density of unique subsequences. W is word length in the parameters of BLAST.

unique markers in UMD. The IAB algorithm can effec-
tively identify specific oligos that can serve as microarray
probes, siRNAs, and primers. To demonstrate the specific
oligo prediction ability of this algorithm, the whole-
genome primer sets of Xcc strain 17 and human were
designed and validated using biological PCR experiments.
SpecificDB, derived from the IAB algorithm, is not only a
comprehensive bioinformatic database but is also a useful
web server, and is useful for functional genomics and sys-
tems biology studies.

Table 3: Performance comparison for 70-mer RGI.

Methods

The construction of UMD

The subsequences, with lengths between 10 and 26 nucle-
otides, of gene sequences in the database were identified
by encoding. Figure 1a shows that a subsequence slides
the window (one nucleotide at a time) along the TC
sequence and a stack of subsequences is then collected.
Every subsequence is encoded using the following for-
mula:

Procedure Sensitivity factor rate (%)? Cross homologyb Execution time (hours)
IAB< for HGId 0.2 99 0.53 0.09
0.3 99 0.53 0.11
IAB for RGle 0.2 99 0.53 0.10
0.3 99 0.53 0.12
Pure BLAST 99 0.58 0.87
BLAST with Uf 99 0.53 0.24

9The success rate is the percentage of tentative human consensus sequences on which the procedure can find the specific oligo (where the cross
homology is less than the threshold). ®The cross homology of a specific oligo is determined by the similarity between the specific oligo and its best
homology in the non-target sequence. <|AB, integration of artificial neural network (ANN) and basic local alignment search tool (BLAST).dHGI,

human gene index.

eRGI, rat gene index. BBLAST with Uy, BLAST search with the density of unique subsequences.
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Unique marker
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Figure 5

The architecture of SpecificDB. The web server SpecificDB includes the probe, siRNA, and primer databases, and inte-
grates the IAB algorithm, microarray data analysis, and enrichment analysis. There are three initial workflows into which users
can submit data: (i) microarray data can be submitted to the microarray data analysis component; (ii) GenBank accession num-
bers or UniGene IDs of a group of genes can be submitted to the enrichment analysis component; and (jiii) GenBank accession
numbers or UniGene IDs of a group of genes can be submitted to the specific oligo discovery component.

1
code = Zci x 4171 (1)
i=1

Where ¢;is 0, 1, 2, or 3 for A, C, G or T at the i-th base of
the subsequence and [ is the length of the subsequence.
For example, a sequence such as ACGTC has the coding
number of 0x49 + 1x41+ 2x42 + 3x43 + 1x44=484 and | =
5. Using this encoding formula, subsequences of different
DNA sequences have different coding numbers.

We used the hash table algorithm to obtain the positions
of all unique subsequences that were stored in UMD. A
flowchart depicting the procedures is shown in Figure 2,
which indicates that the subsequences for all of the genes
in the database were encoded and placed in the hash table
using the coding number of the subsequences as the hash
key. Moreover, if the subsequence appears only once (fre-
quency is one), then the subsequence is unique with at

least one nucleotide mismatch to all of the other
sequences in the entire sequence database.

We created 10-mer ~ 26-mer marker tables and stored the
locations of all unique subsequences with 10-mer ~ 26-
mer for every THC sequence. The element of ANN's input
vector is the density of unique subsequences (U,) of an
oligo. The parameter U, is defined as follows:

N, .
u, = unique (2)

L
where N, is the number of unique subsequence in the

oligo (Figure 1a) and L is the length of the oligo. Accord-
ing to the previous report [1], the larger value of U, indi-
cates sequence specificity. Therefore, we used U, as the
element of ANN's input vector.
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Success no. 16 26 49 14 105
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Figure 6

PCR amplification by using the primers predicted by the IAB algorithm. 96 Xcc and |5 human primer sets were

selected for PCR amplification. (a) Electrophoretic analysis of Xcc PCR products. Representative results of PCR amplification
for 15 genes are shown. (b) Electrophoretic analysis of human PCR products. Fourteen genes with correct size of PCR prod-
ucts are shown. (c) The success rates of PCR amplification for Xcc and human are presented. The total success rate was 95%
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Table 4: The integration of ANN and BLAST (IAB algorithm).

http://www.biomedcentral.com/1471-2105/8/164

IAB= (T,N,F)b

l. size < length [T]- N

2. Oligo allOligo [size]/* the data structure Oligo includes score and sequence™/
3. for pos < | to size

4. do allOligo [pos].sequence < T.substring (pos, pos + N)

5. [* calculate the ANN score for each sliding oligo using the trained ANN */
6. allOligo [pos].score = CalScoreByNN ¢ (allOligo [pos ])

7. sort the allOligo array into non-decreasing order by ANN score

8. lowestSim < 1.0

9. for p < 0 to (size * F9)

10. do oligo < allOligo [p].sequence

1. similarity «<— CalSimByBlast © (oligo)

12. if similarity < lowestSim

13. then bestOligo < oligo

14. lowestSim <« similarity

I5. if lowestSim <TH;f

16. then return bestOligo

17. return bestOligo

3| AB, integration of artificial neural network (ANN) and basic local alignment search tool (BLAST). bThe input parameters are as follows: the THC
sequence T, the oligo length N, and the sensitivity factor F; <CalScoreByNN procedure calculates the ANN score (indicates the cross homology) by
trained ANN; 9The sensitivity factor is set as 0.2, 0.3, and 0.4; eCalSimByBlast procedure calculates the cross homology by WU-BLAST; fThe cross
homology threshold (THj;,,) used for 70-mer and 50-mer was 0.7 and that used for 25-mer was 0.8.

Calculation of input vector for ANN from UMD
The input vector X is defined as follows:

X = <U5110—mer)lut(il l—mer)’ .“’Ug26—mer) > (3)

(N—mer)

where U, is the U, of N-mer subsequence in an

oligo. In Figure 1a, the solid triangles mark the starting
position of the unique subsequences in an N-mer oligo,
and the count of the solid triangles is the number of
unique subsequences. We then used the pre-established
UMD to identify the location of a unique subsequence
(solid triangle) and calculate U, immediately without

searching the entire HGI or RGI database.

Construction of data sets for training ANN

We applied the previous calculation of input vector to cre-
ate the training set from the HGI database, and a k-fold
validation method was employed to improve the predic-
tion performance [29]. Therefore, 10 original data sets
were created according to the prefix, including the first 6
characters of the THC ID number, such as
THC180~THC189.

All of the THC sequences with the same prefix were sorted
out and put together as a data set. Then, we randomly
selected 200 THC sequences from each original data set to
create 10 data source (DS) sets, including DSpycisor
DStycigire- DSthciso- Each data source set contained 200
THC sequences with the same prefix. For example, the

data source set DSy 5, contained 200 THC sequences
randomly selected from THC1810000 to THC1819999.
In this study, without losing generality, we chose DS ;150
as the test data source and the remainder {DSpyc;s1/
DSiiciszr- DSthcise) as the training data source.

Training set

To construct the training set (TS), 100 70-mer oligos were
randomly selected from each THC sequence from the
training data source. Then, a total of nine training sets
were derived from the corresponding DS, which were
TScigr (from DSpyycig1) TStpcasy (from DSypycyg,).. and
TSthc1go(from DSppycig0)- Since every DS had 200 THC
sequences, it created a large training set containing 20,000
70-mer oligos. The training execution time and prediction
performance were considered. We then randomly selected
50 THC sequences from DS to produce 5,000 oligos in
every TS.

Test set

To construct the test set, 100 70-mer oligos were ran-
domly selected from each THC sequence of test data
source DSyjc150- Thus, the test set was an assembly of
20,000 oligos, because there were 200 THC sequences in

DSTHCISO'

Validation set

In order to understand whether the prediction has gener-
ality on large-scale databases, we randomly selected two
70-mer oligos from every THC sequence in the entire HGI
database, but skipped oligos with any base ambiguity
symbol, to construct the validation set. The validation set
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had 389,146 oligos and covered 93.6% of the HGI data-
base. The training set described above was subjected to
various conditions such as number of hidden layer nodes,
learning rate, and momentum, to obtain trained ANNs.
The trained ANNs were further applied to both the test
and validation sets and were checked to see if the results
had the same trend. If the results of test and validation sets
had inconsistent trends, these results were filtered out.
Finally, we selected the ANN with the best performance
from the trained ANNs with consistent trends for both the
test and validation sets.

ANN training

The Java Object Oriented Neural Engine [45], an open
source project that provides a highly adaptable ANN for
Java programmers, was included in our programs. The
training function we used was a batch-mode training algo-
rithm and the training procedure was terminated when
the number of iterations exceeded the maximum training
epoch.

We employed the sigmoid activation function as both an
input and output layer. The sigmoid function's output was
smoothly limited within the range of 0 to 1. The hidden
layer was the logarithmic layer, which prevented the satu-
ration of the processing elements of a layer under a lot of
connected input synapses, or under input values very
close to the limits 0 and 1. The momentum was set to 0.5
and the learning rate was set to 0.1 in this study.

An ANN with one hidden layer was selected and the
number of hidden layer nodes was determined based on
the classification performance on training data. We
trained four ANNs with different numbers of hidden layer
nodes (4, 10, 16, and 22 nodes), and then selected the
best ANN using RMSE [28]. The RMSE was defined as fol-
lows:

2()’1‘ —)71')2

i=1

(4)

RMSE =
n

where n is the number of input vectors, y; is the output
value of every input vector, and y; is the desired output

(from BLAST) of every input vector.

Integration of ANN and BLAST (IAB algorithm)

In this study, we designed an algorithm integrating ANN
and BLAST (IAB algorithm) to identify specific N-mer oli-
gos with high efficiency. The pseudo code of the IAB algo-
rithm is shown in Table 4 and the architecture of IAB is
shown in Figure 1. The cross homology of a specific oligo
was determined by the similarity between the specific

http://www.biomedcentral.com/1471-2105/8/164

oligo and its best homology in the non-target sequences,
and it was calculated by BLAST. The ANN score was the
output value of the trained ANN and could indicate the
cross homology.

A brief description of the IAB algorithm is as follows: (1)
take one THC sequence as input and calculate the ANN
score for each sliding N-mer oligo of the input using the
trained ANN (Lines 1 ~ 5); (2) calculate the cross homol-
ogy by WU-BLAST (oligo with the lowest ANN score is
evaluated first) (Lines 6 ~ 15); and (3) the procedure will
be finished when the first specific oligo is found; other-
wise, a certain percentage (sensitivity factor) of the oligos
will be screened.

The sensitivity factor was defined as the maximum per-
centage of sliding oligos in the input gene sequence that
would be screened by BLAST. In this study, we randomly
selected 100 THC sequences on which to perform our
algorithm. The cross homology threshold used for the 70-
mer and 50-mer was 70% while that for 25-mer was 80%.

To investigate the performance with and without ANN
under the same conditions (e.g. the length of oligos, test
set, and genome), we carried out BLAST search and com-
pared it with the results derived from the IAB algorithm.
The procedures for pure BLAST search are as follows: (1)
for each sliding N-mer oligo of the input THC sequence,
the cross homology is calculated by WU-BLAST; (2) if the
cross homology of any oligo is less than the threshold (i.e.
the specific oligo), the first specific oligo is found and the
procedure is finished; (3) if the procedure cannot find any
specific oligo, it will screen all sliding N-mer oligos and
then return the oligo with the lowest cross homology.
Pure BLAST is similar to the IAB algorithm (Table 4) but
skips the calculation of the ANN scores. Although calcula-
tion of the ANN scores requires extra execution time, it
could save more execution time by decreasing the number
of BLAST calculations needed because the ANN score can
help filter out non-specific oligos. Furthermore, in order
to understand the performance of BLAST search with U,
we have implemented a program that can sort the oligo
candidates based on the summation of 10-mer ~ 26-mer
U, and BLAST each oligo candidate on the sorted list until
a suitably specific oligo has been found.

Probe design procedure

The rules described by Chang and Peck [1] for probe selec-
tion were adopted in this study. Under the selection rules,
sequence sections were discarded if they met any of the
following criteria: (a) number of any single bases (As, Cs,
Ts or Gs) exceeded half of the section length; (b) the
length of any contiguous As, Cs, Ts, or Gs exceeded a quar-
ter of the section length; (c) GC content was under 40% or
over 60%; or (d) no self-complementary region within the
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sequence section. The sequence sections that do not meet
the above criteria are considered as candidate probes for
further selection by our IAB algorithm. The ANN pre-
dicted the 10 most specific oligos for each THC, for which
we then used WU-BLAST to calculate the cross homology.
Finally, we filtered the oligos having high cross homology
and displayed the top four probes.

siRNA design procedure

We used the UMD to get 19-mer unique markers for each
THC sequence. Suppose that there were N unique oligos
of 19-mer in a THC sequence, the ANN scores of these N
oligos were calculated, and the N/3 oligos with the lowest
ANN scores were selected because ANN scores indicate
cross homology. Then we used the eight criteria described
by Reynolds et al. to compute siRNA score [35]. We
selected the top two oligos by the siRNA scores to calcu-
late cross homology by WU-BLAST. Finally, we chose the
best oligo using the cross homology of each oligo.

Primer design procedure

The primer design procedure was as follows: (a) used
primer3 program [46] to produce primer candidates; (b)
calculated the ANN score for all candidates; (c) selected
top 10 primers with the highest ANN score to calculate the
cross homology by WU-BLAST; and (d) the primer with
the lowest cross homology was selected.

The polymerase chain reaction for Xcc primer sets

The PCR amplifications were carried out in a 50 ul reac-
tion mixture containing 1X buffer, 200 uM dNTP, 0.2 uM
of each primer, 2 ul DMSO, 200 ng genomic DNA tem-
plates, and 2 units of thermostable polymerase (proTag
plus; Protech Technology Enterprise Co., Taiwan). The
PCR conditions were as follows: the 1st cycle, 94°C for 5
min, 60°C for 1 min then 72°C for 1 min; the 2nd - 30th
cycle: 94°C for 1 min, 60°C for 1 min then 72°C for 1
min, and a final extension for 10 min at 72°C. The PCR
products were then subjected to 1% of agarose gel electro-
phoresis.

The polymerase chain reaction for human primer sets
The PCR amplifications were carried out in a 20 pl reac-
tion mixture containing 1X GI buffer (Takara), 200 uM
dNTP, 0.2 uM of each primer, 100 ng cDNA templates of
lung cancer CL1-0 cell line, and 1 units of thermostable
polymerase (proTag plus; Protech Technology Enterprise
Co., Taiwan). The PCR conditions were as follows: the 1st
cycle, 94°C for 5 min; the 2nd - 30th cycle: 94°C for 1
min, 58°C for 1 min then 72°C for 1 min, and a final
extension for 10 min at 72°C. The PCR products were
then subjected to 2% of agarose gel electrophoresis.
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