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Abstract
Background: Structural analysis of cellular interaction networks contributes to a deeper understanding
of network-wide interdependencies, causal relationships, and basic functional capabilities. While the
structural analysis of metabolic networks is a well-established field, similar methodologies have been
scarcely developed and applied to signaling and regulatory networks.

Results: We propose formalisms and methods, relying on adapted and partially newly introduced
approaches, which facilitate a structural analysis of signaling and regulatory networks with focus on
functional aspects. We use two different formalisms to represent and analyze interaction networks:
interaction graphs and (logical) interaction hypergraphs. We show that, in interaction graphs, the
determination of feedback cycles and of all the signaling paths between any pair of species is equivalent to
the computation of elementary modes known from metabolic networks. Knowledge on the set of signaling
paths and feedback loops facilitates the computation of intervention strategies and the classification of
compounds into activators, inhibitors, ambivalent factors, and non-affecting factors with respect to a
certain species. In some cases, qualitative effects induced by perturbations can be unambiguously predicted
from the network scheme. Interaction graphs however, are not able to capture AND relationships which
do frequently occur in interaction networks. The consequent logical concatenation of all the arcs pointing
into a species leads to Boolean networks. For a Boolean representation of cellular interaction networks
we propose a formalism based on logical (or signed) interaction hypergraphs, which facilitates in particular
a logical steady state analysis (LSSA). LSSA enables studies on the logical processing of signals and the
identification of optimal intervention points (targets) in cellular networks. LSSA also reveals network
regions whose parametrization and initial states are crucial for the dynamic behavior.

We have implemented these methods in our software tool CellNetAnalyzer (successor of FluxAnalyzer) and
illustrate their applicability using a logical model of T-Cell receptor signaling providing non-intuitive results
regarding feedback loops, essential elements, and (logical) signal processing upon different stimuli.

Conclusion: The methods and formalisms we propose herein are another step towards the
comprehensive functional analysis of cellular interaction networks. Their potential, shown on a realistic T-
cell signaling model, makes them a promising tool.
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Background
Evolution has equipped cells with exquisite signaling sys-
tems which allow them to sense their environment,
receive and process signals in a hierarchically organized
manner and to react accordingly [1]. The complexity of
the corresponding molecular machineries, in accordance
with the complicated tasks they have to perform, is over-
whelming. In the last few years, as a key element to the
growing popularity of systems biology, mathematical
tools have been applied to the analysis of signaling data
[2]. Ordinary differential equations relying on kinetic
descriptions of the underlying molecular interactions are
arguably the most used approach for modeling signaling
networks (e.g. [3-6]). A number of theoretical methods
have been devised and employed for the reconstruction
(reverse engineering) of signaling or, more generally,
interaction networks (which may represent signaling but
also other types or abstractions of cellular networks such
as genetic regulatory networks) based on perturbation
experiments [7]. The approaches rely on methods ranging
from Bayesian networks (e.g. [8]) to metabolic control
analysis [9,10].

Relatively few methods have been proposed so far for ana-
lyzing the structure of a given signaling (or any interac-
tion) network. This is somewhat surprising since
structural analysis of metabolic networks is a well-estab-
lished field and proved to be successful to recognize rela-
tionships between structure, function, and regulation of
metabolic networks [11]. Structural analysis will be partic-
ularly useful in large signaling networks, where a simple
visual inspection is not possible and at the same time the
construction of precise quantitative models is practically
infeasible due to the huge amount of required, but gener-
ally unknown, kinetic parameters and concentration val-
ues. However, the reconstruction of large signaling
networks is still in its first stages [2,12].

Structural or qualitative approaches that have been
employed for interaction networks include statistical
large-scale analyses in protein-protein networks (e.g.
[13]). These studies are important for examining statisti-
cal properties of the interaction graph and for understand-
ing its global organization but they provide relatively few
insights into the function of the network. Papin and co-
workers [14,15] were the first to adapt methods from the
constraint-based approach (frequently used for structural
analysis of metabolic networks [11]) to analyze stoichio-
metric models of signaling pathways. Recently, graph-the-
oretical descriptions of signaling networks have been
examined [16-18]. Finally, Boolean networks as discrete
approximations of quantitative models have been used
for logical analyses of small signaling networks e.g. [19].
However, the majority of studies relying on the Boolean
approach deal with genetic interaction networks, many of

which have a relatively small size (ca. 10 species; e.g.
[20,21]), however, recently more complicated networks
have also been investigated [22,23].

In this contribution, we propose formalisms for represent-
ing signaling and other interaction networks mathemati-
cally and present a collection of methods facilitating
structural analysis of the respective network models.
Rather than introducing completely new concepts, we will
systematize and adapt existing formalisms and methods,
often motivated from structural analyses of metabolic net-
works, towards a functional analysis of the structure of a
signaling network. Issues that can be addressed with the
proposed methods include:

• check of the plausibility and consistency of the network
structure

• identification of all or particular signaling pathways,
feedback loops and crosstalks

• network-wide functional interdependencies between
network elements

• identification of the different modes of (logical) input/
output behavior

• predicting responses (phenotypes) after changes in net-
work structure

• finding targets and intervention points in the network
for repressing or provoking a certain behavior or response

• analysis of structural network properties like redun-
dancy and robustness

Structural analysis is not based on quantitative and
dynamic properties and can thus only provide qualitative
answers. However, some insights into the dynamic prop-
erties can nevertheless often be obtained, because funda-
mental properties of the dynamic behavior are often
governed by the network structure [24]. While we will
focus on signaling networks, the methods can be easily
applied to any kind of interaction network, including
gene regulatory systems. Apart from a toy model, we will
exemplify our methods on a model of signaling pathways
in T-cells.

Results and discussion
Mass and signal flows in cellular interaction networks
The reader familiar to the structural analysis of stoichio-
metric networks may notice that, in the case of metabolic
networks, many of the issues in the task list of the previ-
ous section have been handled by the constraint-based
approach [11]. For example, the identification of func-
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tional pathways and studying the input (substrates)/out-
put (products) behavior of stoichiometric reaction
networks is facilitated by elementary-modes analysis
[25,26]. Flux Balance Analysis is another related tech-
nique often used for phenotype predictions of metabolic
mutants [11,27]. Recently, the concept of minimal cut sets
has been introduced for identifying targets in metabolic
networks [28,29]. Therefore, it seems reasonable to apply
these methods to signaling networks. However, some fun-
damental differences in the way the network elements
interact may complicate a direct transfer:

(1) The constraint-based framework assumes steady-state,
while in signaling networks a transient behavior can often
be observed. (However, as will be discussed below, many
useful insights of signaling networks can be obtained
from using a static approach.)

(2) In stoichiometric networks, any arrow (reaction) lead-
ing from educts to products can be seen as an "activating"
(producing) connection for the products. Therefore,
employing stoichiometric framework it is difficult or only
indirectly possible to express an inhibitory action of a spe-
cies onto another.

(3) Probably the most significant difference is that the
edges (i.e. the connections between the species) in meta-
bolic networks carry flows of mass whereas edges in sign-
aling networks may carry mass and/or information
(signal) flow. Of course, at the molecular level, any inter-
action between species in the cell can be written as a stoi-
chiometric equation. However, whereas mass flow is
connected to a real consumption of participating com-
pounds, signal flow is usually characterized by a recycling
of certain species (e.g. enzymes) so that these species can
mediate the signal transfer continuously (until they are
degraded).

A typical example, namely the activation of a receptor
tyrosine kinase (Figure 1(a)) [30], illustrates the simulta-
neous occurrence of mass and signal flow. A ligand (Lig)
binds to the extracellular domain of a receptor (Rec) yield-
ing a receptor-ligand complex which can undergo further
changes (e.g. by autophosphorylation or/and dimeriza-
tion). We denote the outcome by RecLig*. This complex is
now able to phosphorylate another molecule (M).
Accordingly, M binds to RecLig* and becomes phosphor-
ylated (M-P) by the expense of ATP. At the end, M-P is
released, recycling also the activated receptor-ligand com-
plex RecLig*.

The first step in this scheme can be considered as a mass
flow. However, the cycle in which RecLig* phosphorylates
M, is a mass flow with respect to M and ATP, but a signal-
ing flow with respect to RecLig*, as the latter is indeed

required for driving this cycle but not consumed (because
recycled) in the overall stoichiometry.

In performing a structural analysis we are interested in
extracting signaling paths from the network scheme.
Therefore, it may seem reasonable to compute elementary
modes, which typically represent pathways in reaction
networks with mass flow [25]. A basic property of elemen-
tary modes is that the (relative) mass flow represented by
an elementary mode keeps the "internal" species in a bal-
anced state. Internal species (here: RecLig*, RecLig*-M,
RecLig*-M-P) are within the system's boundary, whereas
the external species (here: Rec, Lig, M, M-P, ADP, ATP) are
considered as pools which are balanced by processes lying
outside the system's boundaries. Computing the elemen-
tary modes from the respective stoichiometric model of
Figure 1(a) gives exactly one mode which reflects the dis-
cussed role of RecLig* as a kinase (Figure 1(b)): in its net
stoichiometry, this elementary mode converts the external
species M and ATP into M-P and ADP, whereas RecLig* is
recycled. Since RecLig* is neither consumed nor produced
in the overall process, the first step (building the receptor-
ligand complex) is not involved in this mode simply
because a continuous synthesis of RecLig* would lead to
an accumulation of this species, which is inconsistent
with the steady-state assumption of elementary modes.
Thus, the causal dependency of M-P from the availability
of Rec and Lig is not reflected by the mass flow concept of
elementary modes. Note that exactly the same conceptual
problem would arise when enzymes and enzyme synthe-

(a) Example of a typical signaling pathway where mass and signal flow occur simultaneosly (Rec = receptor; Lig = ligand; RecLig* = (active) receptor-ligand-complex; M = molecule; M-P = phosphorylated molecule M)Figure 1
(a) Example of a typical signaling pathway where mass and 
signal flow occur simultaneosly (Rec = receptor; Lig = ligand; 
RecLig* = (active) receptor-ligand-complex; M = molecule; 
M-P = phosphorylated molecule M). (b) The (only) elemen-
tary mode in this example which follows when M, M-P, ADP, 
ATP, Rec and Lig are considered as external (boundary) spe-
cies. The involved reactions are indicated by green, thick 
arrows. In its net stoichiometry, this elementary mode con-
verts M and ATP into M-P and ADP, whereas RecLig* is recy-
cled in the overall process. Importantly, the mandatory 
process of building the receptor-ligand-complex RecLig* 
(hence, the causal dependeny of M-P from the availability of 
Rec and Lig) is not reflected by this mode.
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sis would be considered explicitly in stoichiometric stud-
ies of metabolic networks.

The example demonstrates that we require a framework
with the ability to account for mass and signal flows. Han-
dling both mass and signal flows formally equivalent as
interactions could be a suitable approach. Interpreting Fig-
ure 1(a)) as a diagram of interactions we could redraw it
as depicted in Figure 2(a). The dashed arrow indicates that
RecLig* catalyzes the phosphorylation of M to M-P. If we
assume that ADP, ATP, and M are always present, we get
the simple chain shown in Figure 2(b) expressing that Rec
and Lig are required to obtain RecLig* (or to activate
RecLig*), and that RecLig* is required to get M-P. If we do
not further distinguish between the two types of arrows
and thus consider mass and signal flows as formally
equivalent, the causal connections between the species
would, nevertheless, still be captured correctly. This
abstract representation of different types of interactions
will thus be used herein.

The following two sections will deal first with interaction
graphs and later with the more general (logical) interac-
tion hypergraphs. The basic difference between these two
related approaches can be illustrated by how they deal
with a connection such as "Rec + Lig" in Figure 2(b). If we
interpret it as "Rec activates RecLig* and Lig activates
RecLig*" then the concept of interaction graphs is applica-
ble (discussed in the following section). However, it
would be more accurate to say that "Rec AND Lig are
required simultaneously for building RecLig*", and it is this
more refined approach that leads to the concept of inter-
action hypergraphs, which will be discussed in further
details later on.

Analyzing interaction graphs
Definition of interaction graphs
Interaction (or causal influence) graphs are frequently
used to show direct dependencies between species in sig-
naling, genetic, or protein-protein interaction networks.
The nodes in these graphs may represent, depending on
the network type and the level of abstraction, receptors,
ligands, effectors, kinases, genes, transcription factors,
metabolites, proteins, and other compounds, while each
edge describes a relation between two of these species. In
signaling and gene regulatory networks, two further char-
acteristics are usually specified for each edge: a direction
(which species influences which) and a sign ("+" or "- ",
depending on whether the influence is activating (level
increasing) or inhibiting (level decreasing)). Formally, we
represent a directed interaction or causal influence graph
as a signed directed graph G = (V, A), where V is the set of
vertices or nodes (species) and A the set of labeled
directed edges [31,32]. Directed edges are usually called

arcs and an arc from vertex i (tail) to j (head) is denoted by
an ordered tuple {i,j,s} with i, j ∈ V and s ∈ {+,- }.

Sometimes, for example in protein-protein interaction
networks, the directions of the edges remain unspecified.
We will not consider such undirected interaction graphs
explicitly, however, many of the issues discussed in the
following can be transferred to undirected graphs (e.g. by
representing an undirected edge by two (forward and
backward) arcs).

The structure of a signed graph can be stored conveniently
by an m x q incidence matrix B in which the columns cor-
respond to the q arcs (interactions) and the rows to the m
nodes (species), similar as in stoichiometric matrices of
metabolic reaction networks [33]. For the k-th arc {i, j, s}
a (-1) is stored in the k-th column of B for the tail vertex
(i) and (+1) for the head vertex (j) of arc k. Hence, Bi,k = -
1 and Bj,k = 1 and Bl,k = 0 (l≠ i, j). For storing the signs, a q-
vector s is introduced whose k-th element is (+1) if arc k is
positive and (-1) if k is negative.

Self-loops (arcs connecting a species with itself) are not
considered here but could be stored in a separate list since
they would appear as a zero column in the incidence
matrix.

Note that, as far as the memory requirement is concerned,
the structure of a graph can be stored more efficiently than
by an incidence matrix, e.g. by using adjacency lists [34].
However, since we will present methods directly operat-
ing on the incidence matrix, we refer herein to this repre-
sentation.

Signal transduction networks are usually characterized by
an input, intermediate, and output layer (cf. [16]). The
input domain consists only of species having no predeces-

Interpretation of Figure 1 as an interaction networkFigure 2
Interpretation of Figure 1 as an interaction network.
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sor, which can thus not be activated from other species in
the graph. Such sources (typical representatives are recep-
tors and ligands) are starting points of signal transduction
pathways and can easily be identified from the incidence
matrix since their corresponding row contains no positive
entry. In contrast, the output layer consists only of nodes
having no successor. These sinks, usually corresponding to
transcription factors or genes, are identifiable as rows in B
which have no negative entry. The set of source and sink
nodes define the boundaries of the network under inves-
tigation. They play here a similar role as the external
metabolites in stoichiometric studies [33]. The intermedi-
ate layer functions as the actual signal transduction and
processing unit. It consists of the intermediate species, all
of which have at least one predecessor and at least one
successor, i.e. they are influenced and they influence other
elements. Such species contain both -1 and +1 entries in
the incidence matrix. In reconstructed signaling networks,
the detection of all sink and source species may help to
detect gaps in the network, e.g. when a species should be
an intermediate but is classified as a sink or source.

The presence of sinks and sources are a consequence of
setting borders to the system of interest. Sometimes there
are no sinks or/and no sources, especially in models of
gene regulatory networks (see e.g. the networks studied in
[21]), but this does not impose limitations to the
approaches presented here.

A toy example of a (directed) interaction graph that will
serve for illustrations throughout this paper is given in
Figure 3. This interaction graph, called TOYNET, consists
of two sources (I1, I2), two sinks (O1, O2), 7 intermediate
species (A,..., G), two inhibiting (arcs 2 and 7) and 11 acti-
vating interactions. Incidence matrix B of TOYNET reads
(the sign vector s is given on the top of B):

 

Identification of feedback loops
Even though some analysis methods (e.g. Bayesian net-
works) rely on acyclic networks where feedbacks are not
allowed, one of the most important features of signaling

and regulatory networks are their feedback loops
[3,5,18,21,35-38]. Positive feedbacks are responsible and
even required [39] for multiple steady state behavior in
dynamical systems. In biological systems, multistationar-
ity plays a central role in differentiation processes and for
epigenetic and switch-like behavior. In contrast, negative
feedback loops are essential for homeostatic mechanisms
(i.e. for adjusting and maintaining levels of system varia-
bles) or for generating oscillatory behavior [35].

Most reports demonstrating the role and consequences of
feedback loops analyze relatively small networks where
the cycles can be easily recognized from the network
scheme but rather few works address the question of how
feedback cycles can be identified systematically. This is
particularly important in large interaction graphs, where a
detection by simple visual inspection is impossible, espe-
cially when feedback loops overlap.

A feedback loop is, in graph theory, a directed cycle or cir-
cuit. A circuit is defined as a sequence C = {a1,...,aw} of arcs
that starts and ends at the same vertex k and visits (with
the exception of k) no vertex twice, i.e. C = {a1,...,aw} =
{{k, l1}, {l1,l2},..., {lw-1,k}} such that all nodes k, l1, l2 ...
lw-1 are distinct. The parity of the number of negative signs
of the arcs in C determines whether the feedback loop is
negative (odd number of negative signs) or positive
(even). In the example TOYNET two feedback loops can
be found: (i) the arc sequence {4,5,6,7} which is negative
(since one negative arc (7) is involved), and (ii) the
sequence {10,11}, which is positive (because the signs of
both arcs in this circuit are positive). Obviously, sinks and
sources (and all arcs connected to these nodes) can never
be involved in any circuit.

B =

+ − + + + + − + + + + + +
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−
−
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0 0 1 0 0 0 0 0 0 0 0 0 0
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−
− − 00
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Example of a directed interaction graph (TOYNET)Figure 3
Example of a directed interaction graph (TOYNET). Arcs 2 
and 7 indicate inhibiting interactions, while all others are acti-
vating.
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Computing all directed cycles in large graphs is computa-
tionally a difficult task. Algorithms that can be found in
the literature usually rely on backtracking strategies (e.g.
[16,40]). Here, we introduce a different approach where
the circuits are identified as elementary modes establish-
ing a direct link to metabolic network analysis. Circuits
can be formally represented by a q-vector c in which ci = 1
if arc i is involved in the circuit and ci = 0 otherwise. A cir-
cuit vector fulfills the equation

B c = 0 (2)

and hence, lies in the null space of the incidence matrix of
the graph [32,41]. Generally, any vector c obeying (2) ful-
fills a so-called conservation law and is called a circulation
which may be envisioned as a flow cycling around in the
network [42]. Eq. (2) is strongly related to the mass bal-
ance equation of metabolic networks in steady state. In
fact, considering the graph as a reaction network with the
arcs being irreversible mono-molecular reactions, the inci-
dence matrix would be equivalent to the stoichiometric
matrix and any circulation would be equivalent to a sta-
tionary flux distribution. Note that not all circulations are
circuits: the linear combinations of circuit vectors do also
yield circulations but are not (elementary) circuits. Pre-
cisely, circuits are special circulations having two addi-
tional properties. First, they must be admissible with
respect to the directions of the involved arcs, i.e. only non-
negative values are allowed for c:

ci≥ 0 for all i.  (3)

Second, circuits are non-decomposable circulations, i.e. the
set of arcs building up the circuit c, expressed by P(c) = {i:
ci > 0}, is irreducible:

There is no non-zero vector d fulfilling eqs. (2) and (3)
and P(d)⊂ P(c) (4)

Eqs. (2) and (3) and condition (4) close the complete
analogy to elementary modes. In fact, cycles or circuits are
the elementary modes in the special case of graphs (ele-
mentary modes are defined for any matrix in eq. (2), not
only for the very special shape of incidence matrices
related to graphs). Any feasible stationary flux vector in a
metabolic network can be obtained by non-negative lin-
ear combinations of elementary modes. Equivalently, any
circulation vector can be decomposed into a non-negative
linear combination of circuit vectors. Note that, multiply-
ing a (circuit) vector c, that fulfills (2)-(4), by a scalar b>0
yields another vector v = bc which represents the same cir-
cuit because the same arcs compose it (are unequal to
zero). Moreover, all non-zero components in a circuit vec-
tor are equal to each other. Therefore we can always nor-
malize the vector in such a way that we obtain the binary

representative of this circuit where all components are
either "1" or "0".

In metabolic networks, elementary modes reveal not only
internal cycles but also, even with higher relevance, meta-
bolic pathways connecting input and output species. Con-
tinuing with the analogy to interaction graphs, in the next
subsection we will see that elementary modes can be used
to identify not only feedback loops but also signaling
paths.

Signaling (influence) paths between two species
When the interaction graph is very large it becomes diffi-
cult to see whether a species S1 can influence (activate or
inhibit) another species S2 and via which distinct path-
ways this can happen. Computing the complete set of
directed paths between a given pair (S1, S2) of species is
therefore often desirable. A path P = {a1,...,aw} is, similarly
to a feedback circuit, a sequence of arcs where none of the
nodes is visited more than once, but in the case of a sign-
aling path the start node S1 is distinct from the end node
S2, i.e. P = {a1,...,aw} = {{S1,l1}, {l1,l2}, ..., {lw-1,S2}} such
that all nodes S1, S2, l1, l2 ... lw-1 are distinct.

To obtain the signaling pathways from S1 to S2 we pro-
ceed as follows (Figure 4(a)): we add an "input arc" for S1
(i.e. a new column in the incidence matrix B containing
only zeros except a (+1) for S1) and an "output arc" for S2
(another new column in B containing only zeros except a
(-1) for S2. Then, computation of the elementary modes
in this network will provide the original feedback loops
without participation of the input and the output arc (as
shown above) and additionally all paths starting with the
input arc at S1 and ending with the output arc at S2, with
the latter revealing all possible routes between S1 and S2.

Computation of all signaling paths between two species (here: between I1 and O1)Figure 4
Computation of all signaling paths between two species 
(here: between I1 and O1). (a) via the incorporation of a 
"simplified" input and output arc; (b) with explicit introduc-
tion of an ENV („environment") node. Computing the ele-
mentary modes from the respective incidence matrix for (a) 
and (b) yields basically the same result, namely all paths 
between I1 and O1, as well as the two feedback circuits in 
the intermediate layer.
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Admittedly, the introduced input and output arcs have no
tail or no head, respectively, and would therefore not be
edges in the graph-theoretical sense, but this has no con-
sequence for the analysis described within this contribu-
tion. In fact, this procedure is equivalent to adding in the
incidence matrix a "dummy" node representing the envi-
ronment (ENV), an "input arc" from ENV to S1 and an
"output arc" from S2 to ENV (Figure 4(b)). Computing
the elementary modes from the resulting incidence matrix
would produce the feedback circuits as well as the circuits
running over ENV. The latter represent the paths leading
from S1 to S2. In the procedure described above ENV is
simply removed from the incidence matrix leading to the
same results.

In order to obtain only the paths from S1 to S2 (without
the feedback loops), one can enforce the input and output
arc to be involved by using an extension of the algorithm
for computing elementary modes [43].

Furthermore, we may also add several input and output
edges simultaneously. For example, if we are interested in
all the paths connecting the input layer with the output
layer, i.e. all routes leading from a source to a sink node,
we add to each source an input edge and to each sink an
output edge and compute the elementary modes (and,
optionally, discard the feedback circuits where neither a
source nor a sink participates). In this way we obtain the
same set of signaling paths as if the elementary modes
would be computed separately for each possible pair of
source and sink nodes. Figure 5 shows the complete set of
signaling paths connecting the input with the output layer
of TOYNET.

Analogously to the feedback loops, we assign to each sig-
naling path an "overall sign" indicating whether A acti-
vates (+) or inhibts (-) B along this path. Again, the parity
of the signs of the arcs in the path determine whether the
influence is positive (even number of negative signs) or
negative (odd number of signs).

To sum up, feedback loops and influence paths in interac-
tion graphs can be identified as elementary modes (or,

equivalently, as extreme rays of convex cones [44]) from
the respective incidence matrix. Similar conclusions have
recently been drawn by Xiong et al. [45], albeit the authors
computed paths only between sink and source nodes and
only within unsigned graphs (i.e. they did not consider
inhibitory effects). Feedback circuits were also not consid-
ered. Hence, here we extend and generalize those results.

The equivalence of signaling paths and loops to elemen-
tary modes allows one the advantage to use the highly
optimized algorithms for computing elementary modes
[43,44,46].

Combinatorial studies on signaling paths
The computation of all paths between a pair of species
helps us to recognize all the different ways in which a sig-
nal can propagate between two nodes. In metabolic path-
way analysis, a statistical or combinatorial analysis of the
participation and co-occurrences of reactions in elemen-
tary modes proved to be useful for obtaining system-wide
properties, such as the detection of essential reactions/
enzymes or correlated reaction sets (enzyme subsets)
[11,26,47].

In principle, similar features are of interest also for signal-
ing paths and feedback loops. However, two important
issues arise in interaction graphs that require a special
treatment. First, we have two different types of pathways,
positives and negatives. Owing to their opposite mean-
ings we often need to analyze them separately in statistical
assessments. Second, in metabolic networks we are partic-
ularly interested in the reactions (edges), because they cor-
respond to enzymes that are subject to regulatory
processes and can be knocked-out in experiments. In con-
trast, in interaction graphs we are usually more interested
in the nodes, since they are often knocked-out in experi-
ments or medical treatments, either via mutations, siRNA
or by specific inhibitors. An edge in signaling networks
represents mostly a direct interaction between a pair of
species and has therefore no mediator. In some cases, an
edge can directly be targeted by e.g. a mutation at the cor-
responding binding site of one of the two nodes species

All signaling paths linking the input layer (source species) with the output layer (sink species) in TOYNETFigure 5
All signaling paths linking the input layer (source species) with the output layer (sink species) in TOYNET.
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involved. Here, we will focus on species participation,
albeit similar computations can be made for the edges.

As mentioned several times, in signaling networks we are
often interested in all the different ways by which a certain
transcription factor (or any other species from the output
layer) can be activated or inhibited by signals arriving the
input layer. For this purpose, we compute all signaling
paths leading from source nodes located in the input layer
down to a certain sink species s of interest. We denote the
set of all these paths by Is, which can be dissected in the

two disjoint subsets of activating and inhibiting paths: I =

 ∫ . Each source species i can then be classified into

one of the following four influence classes with respect to
s:

(1) activator of s (i is involved in at least one path of 

and in no path of )

(2) inhibitor of s (i is involved in at least one path of 

and in no path of )

(3) ambivalent factor for s (i is involved in at least one

(inhibiting) path of  and in at least one (activating)

path of )

(4) without any influence on s (i is not involved in any
path of Is)

In TOYNET, we see from Figure 5 that I2 is a pure activator
and I1 an ambivalent factor for O1. With respect to O2, I1
is an inhibitor and I2 again an activator. The qualitative
response of s after perturbing the level of a non-affecting
species, or of an inhibitor or activator can be predicted
unambiguously (namely unchanged or decreasing or
increasing, respectively) as long as the network has no
negative feedback loop. Negative feedback loops limit
such qualitative predictions for activators (or inhibitors):
if there is any path from an activator (inhibitor) to s that
touches a negative feedback loop (i.e. at least one species
on the path is involved in a negative feedback) then the
resulting effect in perturbation experiments can not be
predicted uniquely (cf. [36]). This case occurs in TOYNET
for I2 with respect to O1: I2 is an activator of O1 but the
only connecting path (P5 in Figure 5) goes through spe-
cies C which participates in the negative feedback circuit.
Thus, although at least a transient increase in O1 can be
expected after up-regulating I2, we cannot exclude that the
negative feedback drives the level of O1 below its initial

level at a certain time point after increasing the level of I2.
We therefore call an activator (inhibitor) p of s a total acti-
vator (total inhibitor) of s if there is no path from p to a spe-
cies in a negative feedback circuit that is in turn connected
to s.

Positive feedbacks do not limit these qualitative up/
down-predictions because they cannot change the mono-
tone effect of the respective input signal, e.g. when
increasing the level of I2 in TOYNET we can expect an
increase in the level of O2 after some time.

To summarize, regarding the influence of a species p on
another species s we have 6 possible cases: total and non-
total activator, total and non-total inhibitor, ambivalent
factor and non-influencing species. Note that, by comput-
ing the connecting signaling paths, this classification pro-
cedure can be applied not only between a source and a
sink node but also between any pair of species, e.g.
between a source and an intermediate, an intermediate
and a sink, and two intermediates. In TOYNET, for exam-
ple, F is a total activator of O2 and has no influence on
O1, whereas D is an inhibitor but not a total one of O1
because it is connected to (even involved in) a negative
feedback circuit.

Additionally, as the complement of incoming paths, we
can also determine the paths starting in a certain species s
showing us which nodes and arcs are reachable from (and
influenceable by) s. As a further generalization, sets of
incoming and/or outgoing paths can also be defined not
only for a single species s but also for a set S of species.
This might be useful, for example, when we are interested
in all paths ending (starting) in a certain subset of the sink
(source) nodes.

Investigations of influence and signaling paths as pro-
posed above provide, apart from pair-pair relationships
(e.g. "a is a (total) activator of b" or "a has no influence on
b"), global properties (e.g. a is a (total) activator of all sink
species). Some other useful structural features and con-
straints can be detected by a statistical or combinatorial
analysis of certain path sets (partially, similar ideas have
been proposed by [14] for stoichiometric models of sign-
aling networks):

• Essential species (arcs): When focussing on a specific sig-
naling event, e.g. the activation of a certain species by sig-
nals from the input layer, we may identify essential
species (or arcs) with respect to this event. For example,
species E and arc 9 are essential for activating O2 but non-
essential for the activating paths leading to O1 in
TOYNET.
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• Species (arc) participation: A more quantitative measure
can be obtained by giving percentages of all those activat-
ing and/or inhibiting pathways, in which the species or
arc is involved. One may only relate the relative participa-
tion to the paths where the respective species or arc is
involved or to the complete set of paths. For example, I2
is involved in 50% of all positive paths coming from the
input layer and activating O1, while I2 is involved in
100% of all paths activating O2 (but only 50% of the
paths coming from I2 lead to O2). Arc 9 is involved in one
activating and one inhibiting path leading to O2. Thus,
only 50% of the paths running over this arc are activating,
however, it is involved in all (100%) activating paths con-
necting sources with O2. Similar considerations can be
done regarding feedback loops: in TOYNET, species D and
A as well as arcs 6, 7 and 11 are not involved in paths con-
necting input with output layers and have thus a special
importance in establishing the negative (D, A, arcs 6 and
7) and positive (arc 11) feedback. (Note that a similar
measure for the importance of a species or arc is between-
ness centrality [48]. This importance measure is well-
known in graph theory and checks how many shortest
paths between pairs of nodes are running over the respec-
tive node or arc.)

• Redundancy: The total number of paths activating
(inhibiting) a species is a measure for the redundancy in
the system.

• Path length: The length distribution of signaling paths
provides a rough idea on the compactness of the network
[18].

• Crosstalk: Using our framework, crosstalk might be
defined as a place (node) where paths from different
source nodes cross each other for the first time. For exam-
ple, E is a crosstalk species in TOYNET (signals of I1 and
I2 cross) whereas F and G are not. In some cases, however,
crosstalk is a more complex phenomenon where different
nodes are involved. For example, at species C a path com-
ing from I1 via B and another path from I2 via E meet each
other. However, I1 and I2 have also met earlier in E and,
additionally, the action of I1 on C via B is already influ-
enced by I2 in species B since I2 can act on B via the path
visiting E, C, D and A.

Distance matrix and dependency matrix
Some applications presented in this section require
exhaustive enumerations of signaling paths becoming
computationally challenging in large networks. However,
in some cases we only want to know whether any activat-
ing and/or any inhibiting path between two nodes exists
or whether there is any positive or any negative feedback
circuit in which a certain species is involved. For such
"existence questions" we can often apply standard meth-

ods from graph theory. A very useful object is the distance
matrix D which can be obtained with low computational
demand by computing the shortest distances (shortest
path lengths) between each pair of species (e.g. Dijkstra's
algorithm [32]). D has dimension m × m and the element
Dij stores the length of the shortest path for traveling from
node i to node j, being Dij = ∞ if no paths exists between i
and j. The distance matrix shows immediately

• which elements can be influenced by species i (the i-th
row of D)

• which nodes can influence species i (i-th column of D)

• whether feedback circuits exist: if the distance Dii from a
node i back to itself is finite, then i is involved in at least
one feedback loop. Furthermore, if Dij and the transposed
element Dji are finite, Dij, Dji≠∞, then a feedback between
species i and j exists.

By an extension of the usual shortest path algorithm (not
shown), we may also compute separately a matrix Dpos for
the shortest positive paths and another Dneg for the shortest
negative paths. Table 1 shows the distance matrices Dpos

and Dneg from TOYNET.

Note that by taking the minimum values from Dpos and
Dneg, D can be obtained. Moreover, the two matrices Dpos

and Dneg, whose computation is reasonably possible in
very large networks, are sufficient to classify all species
into (total/non-total) activators, (total/non-total) inhibi-
tors, ambivalent factors, and non-influencing nodes with
respect to a certain compound y. The reason is that this
classification requires only knowledge on the existence of
positive and negative paths between species pairs and on
the existence of negative feedback loops. For example, a
species x is a total activator of y if (i) at least one positive

path from x to y exits (  ≠ ∞) and if (ii) no negative

path from x to y exists (  = ∞) and if (iii) for any spe-

cies z that is influenced by x (Dx, z ≠ ∞) and connected to y

(Dz, y ≠ ∞) it holds, that z is not involved in a negative feed-

back (  = ∞).

For representing species dependencies in a compact man-
ner, we introduce the dependency matrix M, which shows
all the pair-wise dependencies, e.g. by using 6 different
colors (for the 6 possible cases). Thereby, the color of
matrix element Mxy indicates whether species x is a total/
non-total activator or a total/non-total inhibitor or an
ambivalent factor or a non-influencing node for species y.

Dx y
pos
,

Dx y
neg

,

Dz z
neg
,
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Again, x = y is allowed, indicating feedbacks. Figure 6
shows the dependency matrix for TOYNET.

Although the distance and dependency matrices store a
wealth of structural information in a very condensed
manner, some applications still require a full enumera-
tion of all available signaling paths. One case is the sys-
tematic determination of minimal cut sets.

Minimal cut and intervention sets in interaction graphs
Searching for intervention strategies in signaling networks
is of high relevance in experimental and, in particular,
medical applications. Recently, the concept of minimal cut
sets has been introduced, which facilitates the identifica-
tion of efficient intervention strategies (cuts) and, at the
same time, the recognition of potential failure modes in a
given biochemical reaction network [28,29]. Basically, in
the most general version, a minimal cut set (MCS) is
defined as a minimal (irreducible, non-decomposable)
set of cuts (or failures) of edges or/and nodes that
represses a certain functionality or behavior in the system
[29]. For example, assume we want to prevent the activa-
tion of the sink node O1 in TOYNET. By removing nodes
{B, E} one can be sure that an activation of O1 by an
external stimulus becomes infeasible. The set {B, E}
would thus be a cut set for preventing the activation of
O1. Moreover, it is minimal since neither the removal of
only B nor the removal of only E can guarantee that the
"inhibition task" is achieved. Another minimal cut set
would be {C}. C is thus essential for activating O1, as
would be confirmed by participation analysis of all paths
activating O1. A general algorithmic scheme for a system-
atic enumeration of MCSs in stoichiometric networks was
given in [29]:

(i) Define a deletion task

(ii) Compute all minimal functional units (elementary
modes) and specify the set of target modes that have to be
attacked in order to achieve the deletion task

(iii) Compute the so-called minimal hitting sets of the tar-
get modes

We could proceed here in a similar way. First, a deletion
task specifying the goal of our intervention is defined. In
our example, the deletion task is "Prevent the activation of

Dependency matrix of TOYNETFigure 6
Dependency matrix of TOYNET. The color of a matrix ele-
ment Mxy has the following meaning: (i) dark green: x is an 
total activator of y; (ii) light green: x is a (non-total) activator 
of y; (iii) dark red: x is a total inhibitor of y; (iv) light red: x is 
a (non-total) inhibitor of y; (v) yellow: x is an ambivalent fac-
tor for y; (vi) black: x does not influence y;

Table 1: Shortest length of positive/negative paths in TOYNET (∞= no path exists). Values in the diagonal indicate whether the 
respective element is involved in a positive/negative feedback loop. See also the dependency matrix in Figure 6.

I1 I2 A B C D E F G O1 O2

I1 ∞/∞ ∞/∞ 4/4 1/∞ 2/2 3/3 ∞/1 ∞/2 ∞/3 3/3 ∞/4
I2 ∞/∞ ∞/∞ ∞/4 ∞/5 2/∞ 3/∞ 1/∞ 2/∞ 3/∞ 3/∞ 4/∞
A ∞/∞ ∞/∞ ∞/4 1/∞ 2/∞ 3/∞ ∞/∞ ∞/∞ ∞/∞ 3/∞ ∞/∞
B ∞/∞ ∞/∞ ∞/3 ∞/4 1/∞ 2/∞ ∞/∞ ∞/∞ ∞/∞ 2/∞ ∞/∞
C ∞/∞ ∞/∞ ∞/2 ∞/3 ∞/4 1/∞ ∞/∞ ∞/∞ ∞/∞ 1/∞ ∞/∞
D ∞/∞ ∞/∞ ∞/1 ∞/2 ∞/3 ∞/4 ∞/∞ ∞/∞ ∞/∞ ∞/4 ∞/∞
E ∞/∞ ∞/∞ ∞/3 ∞/4 1/∞ 2/∞ ∞/∞ 1/∞ 2/∞ 2/∞ 3/∞
F ∞/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞ 2/∞ 1/∞ ∞/∞ 2/∞
G ∞/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞ 1/∞ 2/∞ ∞/∞ 1/∞
O1 ∞/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞
O2 ∞/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞
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O1 by any external input". Hence, the signaling paths
from the input layer to O1 are computed, which are P1,
P2, and P5 (see Figure 5). However, according to our dele-
tion task, the target set comprises only the paths P1 and
P5, because only these two activate O1. Finally, the mini-
mal hitting sets of the target paths have to be computed,
which are the MCSs [26,29]. When cutting species, a hit-
ting set T is a set of species that "hits" all target paths in a
minimal way, i.e. for each target path there is at least one
species that is contained in T and in the path. To be a min-
imal hitting set, no proper subset of T fulfills the hitting set
condition. The minimal hitting sets of the target paths and
hence the MCSs of our deletion task would be: {C}, {B,
E}, {I2, B}, {I1, E} and {I1, I2}. Deletion tasks may be
more complicated: for example, in TOYNET we might be
interested to repress the activation of O1 and O2. Accord-
ingly, the target paths would increase by one (P4 in Figure
5) resulting in another set of MCSs.

This example might suggest that we can use the same pro-
cedure as in metabolic networks, namely computing the
minimal hitting sets with respect to the target paths. This
naive approach works indeed for the case where the target
paths do only involve positive arcs (as in our example). It
can also be applied for interrupting any set of feedback cir-
cuits. For example, removing {A} interrupts the negative
feedback circuit and deleting {D, F} interrupts both feed-
back circuits in TOYNET. However, in general, negatively
signed arcs occurring in interaction graphs require a spe-
cial treatment. Even the following simple activating path
leading from a source species I to a sink species O contains
pitfalls:

. If the activation of O
is to be repressed, the signal flow along this path must be
interrupted. Removal of one species in the chain should
be sufficient. However, not all nodes are allowed to be cut.
If species B is removed, its negative action on C would be
interrupted, enabling in turn C to activate O. The reason
is that B, according to the definitions, is an inhibitor of O
and is therefore not a proper cut candidate. In fact, we
could add (constitutively provide or activate) B to stop an
activation of O. Generally, for attacking an activating path,
only the species that have an activating effect on the end
node of this path are proper cut candidates, whereas spe-
cies inhibiting the end node should instead be kept at a
high level to prevent an activation along this path. Hence,
as a generalization of (minimal) cut sets, we define (min-
imal) intervention sets (MISs) in interaction networks as
(minimal) sets of elements that are to be removed or to be
added in order to achieve a certain intervention task. By

allowing only the removal of elements, the set of MISs
coincides with the MCSs.

The computation of the MISs (or the smaller set of MCSs)
for a set of activating target paths that involve negatively
signed arcs is a more difficult task than computing only
minimal hitting sets. Indeed, each MIS will still represent
a hitting set, because at least one species in each target
path must be removed or constitutively provided. The dif-
ficulty arises by ambivalent factors which have in some
target paths an activating and in others an inhibitory effect
upon the end node. We could therefore restrict the inter-
ventions to those species that are either pure activators
with respect to the target paths (these are allowed to be
removed) or pure inhibitors (these are allowed to be
added). Using only these species, the MISs could again be
computed as the minimal hitting sets.

However, for computing MISs that may also act on ambiv-
alent factors, we present a more general algorithm (here
for a given set of activating target paths):

(1) In each target path, the involved nodes are labeled by
+1 (if the species influences the end node of the respective
path positively) or by -1 (if the species has a negative influ-
ence on the end node of the respective path).

(2) Combinations Ci of one, two, three, ... distinct
removed or activated species are constructed systemati-
cally. For each combination Ci, it is checked for each target
path whether the signal flow from the start node to the
end node is interrupted properly. A requirement is that at
least one of the positive (+1) species of each path is
removed or at least one negative (-1) species is provided
(added) by Ci (hitting set property). If, for a certain path,
Ci contains several nodes that are visited by this paths then
it is only checked whether the node closest to the end
node is attacked properly. When all paths have been
attacked (hit) properly by a combination Ci, then a new
MIS has been found. When constructing further combina-
tions of larger cardinality, the algorithm has to ensure that
none of the new combinations contains an earlier found
MISs completely.

Of course, this enumerative algorithm is even more time
consuming than computing minimal hitting sets and it
will become infeasible to compute all MISs in large net-
works. We may then restrict ourselves to MISs of low car-
dinality and/or to the subset of MCSs. Besides, the
determination of MISs can become even more compli-
cated: it might happen that a MIS attacks all activating tar-
get paths correctly but simultaneously destroys an
inhibiting path (not contained in the set of target paths)
which might then become an activating path. The MCS
{I1, I2} of our example represents such a problematic

I A B C O+ − − + →  →  →  →
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case: it hits the two activating paths to O1 as demanded,
but it also attacks the inhibiting path leading from I1 to
O1. Thus, the inhibition of E through I1 would be inter-
rupted and it could be sufficient to retain E in an active
state enabling the activation of O1. Hence, we would not
be sure about the activation status of O1 after removing
this cut set. To avoid such side-effects, we may extend our
algorithm given above by checking also the consequence
of each intervention Ci with respect to the non-target
paths and exclude combinations that do not fulfill certain
criteria.

In a completely analogous fashion, we can also determine
MCSs or MISs that repress inhibitory paths. For example,
removing {I1} is a MCS that attacks the only inhibiting
path to O1, alternatively we might use the MISs {#E} or
{#C}, where # stands for "constitutively provided". The
same issues as discussed above must be taken into account
when interrupting a negative path: here, in each target
path, only the inhibiting species of the final sink source
should be removed whereas the activating nodes can be
added. Furthermore, we may also define more compli-
cated intervention tasks, e.g. where some activating and
some inhibiting paths are selected as target paths.

Jacobian matrix and interaction graph
Several works have highlighted the strong relationships
between interaction graphs and the Jacobian matrix J, the
latter obtained from a dynamical model of the network
under investigation [10,35,39]. A dynamic model of a sig-
naling (or any kind of interaction) network is usually
described by a system of ordinary differential equations
that model the evolution of the m network components x1
... xmwith the time:

The m × m Jacobian matrix J(x) collects the partial deriva-
tives of F with respect to x:

 

The sign of Jik(x) tells whether xk has a (direct) positive or
negative influence on xi and sign(J(x)) can thus be seen as
the adjacency matrix of the underlying interaction graph.
In an adjacency matrix Y, a non-zero entry for Yik indicates
an edge from node i to k. Adjacency and incidence matrix
are equivalent for describing a graph structure and can be

converted into each other: each non-zero element Yik gets
a corresponding column in the incidence matrix.

The sign structure of the Jacobian matrix is, in biological
systems, typically constant and reflects, despite its very
qualitative nature, fundamental properties of the dynamic
system. For example, multistationarity can only occur if a
positive circuit exists in the associated interaction graph
[39]. Methods for the detection of multistability in a spe-
cial class of dynamical systems – monotone I/O systems –
have been developed by Sontag et al. [36]. Monotone I/O
systems possess a monotonicity property that can be
checked from the interaction graph spanned by the Jaco-
bian matrix. In fact, having one source species and one
sink species, the required monotonicity property is equiv-
alent to our definition of a total activator of the sink node.
Thus, the methods developed in the previous section may
support such studies, where the structure of the Jacobian
matrix is analyzed. Having the absolute values of the Jaco-
bian matrix available (which change over time), arcs,
paths, and feedback circuits could be assigned an interac-
tion strength useful to identify key elements in the net-
work.

Boolean networks and (logical) interaction hypergraphs
Definitions
The methods described above consider an interaction as a
dependency between two species allowing to employ
tools from graph theory. However, in cellular networks,
an interaction (edge) often represents a relationship
among more than two species (nodes). A typical example
is a bimolecular reaction of the form A+B→ C, where three
species are involved. The binding of the ligand to the
receptor in Figure 2(b) (Rec+Lig→ RecLig*) is such a
bimolecular interaction. Using an interaction graph, this
reaction is modeled with two arcs (Figure 7(a)), namely
Rec→ RecLig* and Lig→ RecLig*, capturing correctly that
Rec and Lig have an influence on RecLig*. However, this
relaxed representation has shortcomings for a functional
interpretation of the network. To exemplify this, consider
the minimal cut sets repressing the phosphorylation of M
in Figure 7(a). As explained in the previous section, we
need to attack all positive paths leading to M-P. There are
two positive paths, one starting from Rec and the other
from Lig and, thus, {Rec, Lig} would be a minimal cut set.
But, intuitively, this cut set is not minimal for the real sys-
tem because both Rec and Lig are required for activating
M, and removing only one of the two species is thus suffi-
cient to interrupt the activation of M. (In other words, the
existence of a signaling path in an interaction graph does
not ensure that a signal can flow along this path.)

This example reveals that a proper consideration of AND-
connections between species is required. However, AND-
relationships are not possible in graphs but in hyper-
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graphs, which are generalizations of graphs. Similar to a
directed graph, a directed hypergraph H=(V, A) consists of
a set V of nodes and a set A of hyperarcs (= directed hyper-
edges [49]). A hyperarc aconnects two subsets of nodes: a
= {S,E}; S,E⊂ V. S comprises the tail (start) nodes and E
the head (end) nodes of the connection. S and E can have
arbitrary cardinality, and a graph is a special case of a
hypergraph where the cardinality of S and E is 1 for all
edges.

In our context, without loss of generality, we will usually
have only one end node in E and we interpret a hyperarc
as an interaction in which the compound contained in E
is activated by a combined action of the species contained
in S. Figure 7(b) depicts the example with the receptor-lig-
and-complex as a hypergraph in which a hyperarc cap-
tures now the AND-connection between Rec and Lig
yielding RecLig*.

AND connections facilitate a refined representation of sto-
ichiometric conversions within interaction networks,
albeit the precise stoichiometric coefficients are not cap-
tured here. Apart from stoichiometric interactions, AND
connections allow the description of other dependencies,
for example, the case where only the presence of an acti-
vator AND the absence of an inhibitor leads to the activa-
tion of a certain protein.

In TOYNET, the four nodes (B, C, E, F) have more than
one incoming arc (Figure 3). In these nodes it is undeter-
mined how the different stimuli are combined, e.g.

whether B AND E are required to activate C or whether
one of both is sufficient (B OR E).

We could therefore concatenate all incoming edges in a
node by logical operations leading to Boolean networks
[21,31]. An assumption underlying Boolean networks is
to consider only discrete (concentration/activation) levels
for each species; in the simplest case a species can only be
"off" (= 0 = "inactive" or "absent") and "on" (= 1 =
"active" or "present"). Hence, each species is considered
as a binary (logical) variable. Next, a Boolean function fi
is defined for each node i which determines under which
conditions i is on or off, respectively. fi depends only on
those nodes in the interaction graph from which an arc
points into species i. In general, for constructing a Boolean
function, all logical operations like AND, OR, NOT, XOR,
NAND can be used. However, here we express each
Boolean function by a special representation known as
sum of products (SOP; also called (minimal) disjunctive
normal form (DNF)) which is possible for any Boolean
function [50]. SOP representations require only AND, OR
and NOT operators. In a SOP expression, literals, which
are Boolean variables or negated Boolean variables, are
connected by AND's giving clauses. Several such AND
clauses are then in turn connected by OR's. Using the
usual symbols '·' for AND, '+' for OR and '!' for NOT, an
example of a SOP expression would be: fi = x·y·z + x·!z
stating that fi gets value "1" if (x AND y AND z are active)
OR (if x is active AND z is NOT) and "0" else. The SOP
expression fi = x·!y + !x·y mimics an XOR gate.

In our context, writing a Boolean function as a SOP has
several advantages. First, many biological mechanisms
that lead to the activation of a species correspond directly
to SOP representations. Second, by using SOPs, the struc-
ture of a Boolean network can be represented and
depicted intuitively as a hypergraph: each hyperarc point-
ing into a node i is an AND clause of other nodes and rep-
resents one way of activating i; hence, all hyperarcs ending
in i are OR'ed together. A hyperarc carries a signal flow to
its end node and the binary value of the flow depends on
the state of all its start nodes. In the following, such a
hypergraph induced by a minimal SOP representation of
a Boolean network will be called a logical interaction hyper-
graph (LIH).

In Figure 8 a possible instance of a LIH compatible with
the interaction graph of TOYNET in Figure 3 is depicted.
In each of the four nodes with more than one incoming
arc, the logical concatenation has now been specified. For
example, B is now activated if A AND I1 are active simul-
taneously (hyperarc "1&4"). In contrast, C is activated if B
OR E is present (active), and F is active if E OR G are in an
active state. Hence, C and F retain their graph-like struc-
ture.

(a) the graphical and (b) the more correct hypergraphical representation of the simple interaction network shown in Figure 1 and 2Figure 7
(a) the graphical and (b) the more correct hypergraphical 
representation of the simple interaction network shown in 
Figure 1 and 2.
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Inhibiting arcs in the interaction graph are interpreted in
the corresponding LIH as NOT-operations. Thus, arc 7 is
now interpreted as "A is active if D is not present". Since
arc 2 and 3 in Figure 3 have been combined with an AND
in Figure 8, we interpret this new hyperarc as "E becomes
activated if I2 is present AND I1 NOT". Hence, in contrast
to inhibiting arcs in interaction graphs, in general we do
not assign a minus sign (a NOT) to the complete hyperarc,
but to its negative branches (see hyperarc 2&3 in Figure
8), whereas all other branches get positive signs. Due to
the assignment of signs LIHs can formally be seen as
signed directed hypergraphs.

The pure logical description of a signaling or regulatory
network works well when the activation (inhibition) of a
species by others follows a sigmoid curve [21]. Problems
that might arise while describing a real network within the
logical framework and possible solutions are discussed in
a later section.

LIHs can be formally represented and stored in a similar
way as interaction graphs. The underlying hypergraph is
stored by an m × n incidence matrix B in which the rows
correspond to the species and the columns to the n hyper-
arcs. If species i is contained in the set of start (tail) nodes
of a hyperarc k then Bik = -1, if i is the endpoint (head) of
hyperarc k then Bik = 1, and if i is not involved in k we have
Bik = 0. For storing the NOTs operating on certain species
in a hyperarc we may use another m × n matrix U that
stores in Uik a "1" if species i enters the hyperarc k with its
negated value and "0" else. Accordingly, the incidence
matrix B for the LIH of TOYNET (Figure 8) reads

 

To be concise, the two non-zeros entries of U are indicated
by an asterisk in the incidence matrix.

Representing a Boolean network as a LIH we can easily
reconstruct the underlying interaction graph from the
matrices B and U: we simply split up the hyperarcs having
more than one start node (or/and more than one end
node in the general case). Thus, a hyperarc with d start and
g end nodes is converted into d·g arcs in the interaction
graph. The sign of each arc in the graph model can be
obtained from U. The reverse, the reconstruction of the
LIH from the interaction graph, is not possible in a unique
manner underlining the non-deterministic nature of
interaction graphs.

Time in Boolean networks
A logical interaction hypergraph describes only the static
structure of a Boolean network. However, it is the dynamic
behavior of Boolean networks that has been analyzed
intensely in the context of biological (especially genetic)
systems [21,31,51]. For studying the evolution of a logical
system we need to introduce the (discrete) time variable t
and a state vector x(t) that captures the logical values of
the m species at time point t. Two fundamental strategies
exist to derive the new state vector x(t+1) from the current
state x(t). In the synchronous model, the logical value of
each node i is updated by evaluating its Boolean function
fi with the current state vector: xi (t+1) = fi(x(t)). Synchro-
nous models are deterministic but assume for all interac-
tions the same time delay which is often too unrealistic for
biological systems [21]. In the asynchronous model, we
select any (but only one) node i whose current state is
unequal to its associated Boolean function: xi (t) ≠ fi(x(t)).
Only this node switches in the next iteration. Since there
are, in general, degrees of freedom in choosing the switch-
ing node, this description is non-deterministic. The
advantage is that the complete spectrum of potential tra-
jectories is captured, albeit the graph of sequences is usu-
ally very dense, complicating its analysis in large systems.
The asynchronous description becomes (more) determin-
istic if time delays for activation and inhibition events are
known [21].
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We are now approaching the main part of this section.

Logical steady-state analysis

An important characteristic of the dynamic behavior of
Boolean networks, which is equivalent for both asynchro-
nous and synchronous descriptions, is the set of logical

steady states (LSSs). LSSs are state vectors xs obeying  =

fi(xs) for all nodes i. Hence, in LSS, the state of each node

is consistent with the value of its associated Boolean func-
tion and, therefore, once a Boolean network has moved
into a logical steady state, it will stop to switch and then
retain this state.

In the following, we will focus on logical steady state anal-
ysis (thus circumventing any interpretation problems that
might arise by choosing synchronous or asynchronous
description), which suffices for a number of applications,
especially for predicting potential functional states in sig-
naling or regulatory networks.

Given a Boolean network we may enumerate all possible
LSSs [52]. However, this is computationally difficult in
large networks. Besides, we are often interested in particu-
lar LSSs that can be reached from a given initial state x0. In
some cases, we only know a fraction of all initial node val-
ues. For example, a typical scenario in signaling networks
would be that initial values from species in the input layer
are known (specifying which external signals reach the
cell and which not), and we would like to know how the
(logical) integration and propagation of these input sig-
nals generate a certain logical pattern in the output layer.
Of course, we have to "wait" until the signals reach the
bottom of the network and, for obtaining a unique
answer, there should be a time point from which the states
will not change in the future. This is equivalent to deter-
mining the LSS in which the network will run from a given
starting point.

In a possible scenario for TOYNET, the initial values of the

source species I1 and I2 might be known to be  = 0 and

 = 1, whereas the initial states of all other nodes are

unknown (Figure 9(a)). The states of I1 and I2 will not
change anymore because I1 and I2 have no predecessor in
the hypergraph model. Assuming that each interaction
has a finite time delay, E must become active and B inac-
tive. From these fixed values we can conclude that C and
F will definitely become active (by E) at a certain time
point and not change this state in the future. Proceeding
further in the same way, we can resolve the complete LSS
resulting from the given initial values of I1 and I2 (Figure
9(b)).

The last example illustrated that partial knowledge on ini-
tial values, especially from the source nodes, can be suffi-
cient to determine the resulting LSS uniquely. However, in
general, several LSSs might result from a given set of initial
values or a LSS may not exist at all. For example, if we only

know  = 1 in TOYNET nothing can be concluded

regarding a LSS (except that I2 will retain its state). If no
complete LSS can be concluded uniquely from initial val-
ues, there might nevertheless be a subset of nodes that will
reach a state in which they will remain for the future. For

example, setting  = 1 E will definitely become inacti-

vated after some time (again, finite time delay is
assumed). Since in this scenario nothing further can be
derived for other nodes, we would say that xI1 = 1 and xE =

0 are partial LSSs for the initial value set {  = 1}. Note

that these two partial steady states would not change
when we specified more or even all initial values.

We have conceived an algorithm which derives partial
LSSs that follow from a given set of initial values (if for
each node a partial LSS can be found, then a unique and
complete LSS exists for the set of initial values). The itera-
tive algorithm uses the following rules in the logical
hypergraph model:

• initial values of source nodes will not change in the
future, hence, are partial LSSs

• if species i has a proved partial LSS of 0, all hyperarcs in
which i is involved with its non-negated value have a zero
flow

• if species i has a proved partial LSS of 1, all hyperarcs in
which i is involved with its negated value have a zero flow

xi
s

xI1
0

xI2
0

xI2
0

xI1
0

xI1
0

Example of a logical steady state in TOYNET resulting from a particular set of initial states in the input layerFigure 9
Example of a logical steady state in TOYNET resulting from a 
particular set of initial states in the input layer.
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• if all hyperarcs pointing into node i have a zero flow,
then i has a partial LSS of 0

• if all start nodes of a hyperarc have a partial LSS of 1 (or
of 0 for those start nodes entering the hyperarc with the
negated value) then a partial LSS of 1 follows for the end
node of this hyperarc

• knowing all the positive feedback circuits in the system,
we can check whether there is a "self-sustaining" positive
circuit where the known initial state values of the involved
nodes guarantee a partial LSS for all the nodes in this cycle
(see comments below)

In each loop, the algorithm tries to identify new partial
LSSs (following from the current set of partial LSSs already
identified) until no further ones can be found. Setting ini-
tial values in the input layer, this can be envisioned as a
propagation of signals through the interaction network
until signals reach nodes where the available information
is not sufficient to derive a unique LSSs.

Generally, in logical interaction hypergraphs where the
underlying interaction graph has no feedback loop (i.e. is
acyclic), specification of the initial values of all the source
nodes will always result in a unique and complete LSS
since the signals can be propagated step by step from top-
down to the output layer. In general, if all initial values are
known for the input layer, non-uniqueness or even non-
existence of partial LSSs can only be generated by feedback
loops. The partial LSSs of nodes involved in positive feed-
backs do often depend on the initial values of all the

nodes in this loop. For example, defining  = 0 we can

conclude a partial LSSs of zero for E in TOYNET (Figure
8), but, among others, the values of F, G and O2 remain
unknown although the only connection to a source node
leads via E. The reason is that F and G build up a positive
feedback loop which cannot be resolved without knowl-
edge on further initial values. If we know, additionally to

 = 0, that  = 1 then F and G will always keep

each other activated so that we can infer a partial LSS of 1
for F, G and O2 (this is the last rule in the list given

above). If we have instead  = 0, we derive a 0 for

the partial LSS of these three nodes. If one of the two
nodes F and G has an initial value of 1 and the other 0,
nothing can be derived since the positive loop might
become fully activated or fully deactivated. However,
what can be confirmed in these simple examples is that
positive feedback loops induce multistationarity. It is
noteworthy that continuous dynamic models of networks

with positive feedbacks will depend, apart from kinetic
parameters, in a similar fashion on initial state values.

In contrast, negative feedback loops are not sensitive
against initial values but they can be the source of oscilla-
tions, preventing hence the existence of LSSs. In TOYNET
we have one negative feedback loop which can potentially

generate oscillations, for example, when we set  = 1.

Then, C cannot be activated via E. Assuming an initial
value of 0 for C (the same conclusion would be drawn
with 1), D becomes deactivated and thus A actived. Due
to the partial LSS of 1 for I1 we get an activation of B and
then of C and D which in turn inhibits A leading in the
next round to a deactivation of B, C and D and so on. The
logical states within this circuit and downstream of it
(O1) will thus never reach a steady state. As shown in
[21], oscillatory behavior in logical models corresponds
to oscillations or a stable equilibrium (lying somehow
between the fully activated and fully inactivated level) in
the associated continuous model, depending on the cho-
sen parameters. Negative feedback loops can thus impede
predictions on the basis of logical steady states, but they
also point to network structures whose parametrization
will have great impact on the dynamic behavior.

Note that feedback loops do not always prevent predic-
tions on (partial) LSSs as can be seen by the example in
Figure 9, it depends on the given initial values.

Such a logical steady state or "signal flow" analysis (SFA)
as presented herein shares similarities with the established
method of metabolic flux analysis [53]. In MFA, uptake
and excretion rates of cells are measured in order to recon-
struct the intracellular flux distribution within a metabolic
network. MFA relies on the quasi-steady state assumption,
similarly as SFA relies on LSS. However, whereas MFA tries
to reconstruct the reaction rates along the edges and noth-
ing can be said on the states of the species, the goal of SFA
is to determine the steady states of the nodes (belonging
to a given activation scheme) from which then the signal
flows along the edges follow. It is noteworthy that the cal-
culability of unknown reaction rates in MFA depends only
on the set of known rates [54], whereas in SFA the set of
given initial states and their respective values determine the
unique calculability of (partial) LSSs.

Applications of logical steady state analysis
The LSS analysis introduced herein offers a number of
applications for studying functional aspects in cellular
interaction networks:

xI2
0

xI2
0 x xF G

0 0=

x xF G
0 0=
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0
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Input-output behavior
Imposing different patterns of signals in the input layer
one may check which species become activated or inhib-
ited in the intermediate and, in particular, in the output
layer. This can also be simulated in combination with dif-
ferent initial state values for certain intermediate nodes,
albeit this will have an influence on the LSS only in con-
nection with positive feedbacks, as shown above.

Mutants and interventions
The changes in signals flows and in the input-output
behavior occurring in a manipulated or malfunctioning
network can be studied by removing or adding elements
or by fixing the states of certain species in the network. In
TOYNET, for example, if we want to study the effect of a
mutant missing F (or the effect of adding an inhibitor for
F) we may remove species F from the network (or, equiv-
alently, fix the state of F to zero) and compute then the
partial LSSs again. We will see that, independently of a
given pattern in the input layer, G and O1 will be assigned
a partial LSS of 0. Removing elements often changes not
only the values, but also the determinacy of partial LSSs.

Minimal cut sets (MCSs) and minimal intervention sets (MISs)
The definiton of MCSs and MISs in logical interaction
hypergraphs is similar as in interaction graphs: a MCS is a
minimal (irreducible) set of species whose removal will
prevent a certain response or functionality as defined by
an intervention goal. In the more general MISs we permit,
additionally to cuts, also the constitutive activation of cer-
tain compounds. Two examples in TOYNET: removing F
is a MCS for repressing an activation of G and O2. Assum-
ing an initial state of zero for the species in the intermedi-
ate layer, adding I1 and removing B would be a proper
MIS for repressing the activation of O1 and O2. Note that
in the interaction graph of TOYNET, this intervention
would not suffice to attack all activating paths leading
from the input layer to O1 and O2 (path P4 not attacked,
Figure 5). This example underscores again that MCSs and
MISs in interaction hypergraphs are usually smaller than
those obtained from the underlying interaction graph,
simply because more constraints are added by logical
combinations. However, the determination of MCSs, and
let alone MISs, in logical interaction hypergraphs is com-
binatorially complicated as in interaction graphs, in par-
ticular when negative signs (NOTs) occur. Here, we can
only propose a "brute-force" approach where the LSS
analysis serves algorithmically as an oracle: we check sys-
tematically for each combination of one, two, three ...
knocked out (for MISs also of permanently activated)
nodes in the network how this affects the (partial) LSSs,
possibly in combination with a given scenario of initial
states. From the resulting partial LSSs we can decide
whether our intervention goal has been achieved or not.
To compute only minimal cut or intervention sets, further

combinations with a cut or intervention set already satis-
fying our intervention goal have to be avoided. The algo-
rithm can be stopped when a user-given maximum
cardinality for the MCSs/MISs has been reached.

Backward propagation
The methods described above compute partial LSSs actu-
ally only by forward propagation of signals, but one may
also do the opposite, e.g. fixing values in the output layer
and tracing back the required states of nodes in the inter-
mediate and input layer using similar rules as for forward
propagation.

Network expansion methods
There is an interesting relationship between our LSS anal-
ysis and network expansion methods proposed by Eben-
höh et al. [55]. Network expansion allows for checking
which metabolites can in principle be produced from a
provided set of start species within a metabolic (stoichio-
metric) reaction network. This is a special case in our log-
ical framework. Briefly, metabolic networks are per se
hypergraphs and can thus be represented as a LIH by using
only AND's (each reaction is an AND clause of its reac-
tants; stoichiometric coefficients are not considered) and
OR's. Hence, no inhibiting interactions exist. We may
then put the supplied set of available species in the input
layer, set the initial values of all other species to zero and
compute then the LSS. Note that, according to the expla-
nations given above, a complete LSS will always be found
since all initial values are given and no negative feedback
circuit exists. Therefore, the computed LSS indicates
which species can be produced from the input set and
which not.

Extensions for the logical description of interaction networks
Several extensions and refinements of the logical frame-
work can be introduced which allow a more appropriate
description of real signaling and regulatory networks:

(1) As already proposed and applied by Thomas et al.
[21], the discretization in more than two levels is in prin-
ciple possible. This mimics the fact, that in reality multi-
ple relevant threshold values for a species may exist. A
refined discretization could be relevant, for instance, for a
species that activates/inhibits more than one species (with
different threshold levels). Another relevant situation
occurs if a species can be activated via two paths (con-
nected by an OR; see species C in TOYNET): the activation
via both paths might be significantly stronger than by only
one. However, considering several activation levels for a
certain species forces one to often consider multiple levels
for elements downstream or/and upstream of this species,
increasing hence the complexity of the network, and
requiring detailed knowledge which is often not available.
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(2) As we have seen, negative feedback can limit the pre-
dictability in LSS analysis. However, in cellular networks,
negative feedbacks become activated often upon a certain
time period after an activation event occurs, for example,
when gene expression is involved. This might be consid-
ered by classifying species and/or hyperedges by assigning
a discrete time constant (or time scale) τ to each element
telling us whether this network element appears in an
early (τ = 1) or late (τ = 2) state. Using the sub-network
with all elements having a time constant of τ = 1 for the
first simulation and then using the computed LSSs as ini-
tial values for computing the second round (where the
complete network is considered) leads often to more real-
istic results. As in the case of multiple levels, this extension
requires a more detailed knowledge about the network
under consideration. An example in TOYNET (Figure 8):
we may assume that D is a factor that is transcriptionally
regulated by C, thus, arc 6 has a time constant of τ = 2 and
all others have τ = 1. Setting the initial values I1 = 1, I2 =
0 and D = 0 and computing the LSSs for τ = 1 activation of
C and O1 occurs. We can then fix the state of D (D = 1)
and get then a complete deactivation of C and O1.

(3) In real signaling and regulatory networks, it is some-
times difficult to decide whether arcs from the interaction
graph have to be linked by an AND or an OR in the inter-
action hypergraph. For example, in TOYNET, species E is
inhibited by factor I1 and activated by factor I2. If I1 has
a very strong inhibiting effect on E we may formulate the
hyperarc as done in Figure 8, suggesting that I1 must not
be active for activating E. However, if the interaction
strength of both I1 and I2 with respect to E is at the same
level (i.e. additive) neither "NOT(I1) OR I2" nor
"NOT(I1) AND I2" would reflect the real situation.
Indeed, this is a recurring situation in signaling networks,
where often a balance between different signals deter-
mines the activation of a certain element. At this point it
could be helpful to use logical operations that have a par-
tially incomplete truth table. In the latter example we
could say that E is active if (NOT(I1) AND I2) and E is
inactive if (I1 AND NOT(I2)). For the other two possible
cases, no decision could be made along this hyperedge. Of
course, modeling uncertainty in this way will limit the
determinacy but on the other hand a determined result
with this model allows a safer interpretation.

Analyzing interaction networks using CellNetAnalyzer
We have integrated many of the methods and algorithms
described herein in our software tool CellNetAnalyzer,
which is a MATLAB package and the successor of FluxAna-
lyzer [56]. Whereas FluxAnalyzer was originally developed
for structural and functional analysis of metabolic net-
works, CellNetAnalyzer extends these capabilities conse-
quently to the structural analysis of signaling and
regulatory networks. Apart from stoichiometric (meta-

bolic) reaction networks, CellNetAnalyzer supports now
also the composition of logical interaction hypergraphs
using AND, OR and NOT connections. Whenever needed,
the underlying interaction graph can be deduced from the
interaction hypergraph. Alternatively, by using only OR's
and NOT's, arbitrary interaction graphs can be con-
structed. As in FluxAnalyzer, the network model can be
linked with externally created graphics visualizing the net-
work. User interfaces (text boxes) enable data input and
output directly in these interactive maps (see screenshot
in Figure 10). New functions for graph-theoretical and
logical analysis have been integrated into the user menu;

Screenshot of the CellNetAnalyzer model for T-cell activationFigure 10
Screenshot of the CellNetAnalyzer model for T-cell activation. 
Each arrow finishing on a species box represents a hyperarc 
and all the hyperarcs pointing into a species box are OR con-
nected. In the shown "early-event" scenario, the feedbacks 
were switched off whereas all input arcs are active. The 
resulting logical steady state was then computed. Text boxes 
display the signal flows along the hyperarcs (green boxes: 
fixed values prior computation; blue boxes: hyperarcs acti-
vating a species (signal flow is 1); red boxes: hyperarcs which 
are not active (signal flow is 0)).
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the results from computations are directly displayed
within the interaction maps or in separate windows. The
functions include:

• large-scale computation of all (positive and negative)
signaling paths connecting inputs with outputs or of all
signaling paths between a given pair of nodes; statistical
analysis of these paths

• large-scale computation of all (positive and negative)
feedback loops; statistical analysis of these routes

• computation of minimal cut sets for a given set of paths
or/and loops

• computation of distance (shortest paths) matrices – sep-
arately for positive and negative paths

• large-scale dependency analysis: identification of (total)
activators, (total) inhibitors and ambivalent factors for a
given species; display of the dependency matrix

• computation of (partial) logical steady states from a
given set of initial state values

• computation of (logical) minimal cut sets repressing or
provoking a user-defined behavior in the logical network

To illustrate the ability of our approach to deal with real
complex signaling networks, we have set-up and analyzed
in CellNetAnalyzer a logical model of T-cell activation (Fig-
ure 10), which will be discussed in the next section.

CellNetAnalyzer is free for academic purposes (see web-site
[57]).

Logical model of T-cell activation
T-cell activation and the molecular mechanisms behind
T-lymphocytes play a key role within the immune system:
Cytotoxic, CD8+, T-cells destroy cells infected by viruses or
malignant cells, and CD4+ helper T-cells coordinate the
functions of other cells of the immune system, such as B-
lymphocytes and monocytes [58]. Loss or dysfunction,
especially of CD4+ T-cells (as it occurs e.g. in the course of
HIV infection or in immuno-deficiencies) has severe con-
sequences for the organism and results in susceptibility to
viral and fungal infections as well as in the development
of malignancies. The importance of T-cells for immune
homeostasis is due to their ability to specifically recognize
foreign, potentially dangerous, agents and, subsequently,
to initiate a specific immune response that is aimed at
eliminating them. T-cells detect foreign antigens by means
of their T-Cell Receptor (TCR) which recognizes peptides
only when presented on MHC (Major Histocompatibility
Complex) molecules. The peptides that are recognized by

the TCR are typically derived from foreign (e.g. bacterial,
viral) proteins and are generated by proteolytic cleavage
within so called antigen presenting cells (APCs). Subse-
quent to their production the peptides are loaded onto the
MHC-molecules and the assembled peptide/MHC-com-
plex is then transported to the cell surface of the APC were
it can be recognized by T-cells. The whole process of anti-
gen uptake, proteolytic cleavage, peptide loading onto
MHC, transport of the peptide/MHC complex to the sur-
face of the APC and the recognition of the peptide/MHC-
complex by the TCR is called antigen presentation and
provides the molecular basis for the fine specificity of the
adaptive immune response.

The binding of peptide/MHC to the TCR, and the addi-
tional binding of a different region of the MHC molecules
to so called co-receptors (CD4 in the case of helper T-cells
and CD8 in the case of cytotoxic T-cells), initiates a pleth-
ora of signaling cascades within the T-cell. As a result, sev-
eral transcription factors – most importantly, AP1, NFAT
and NFκB – are activated. These transcription factors, in
turn, control the cell's fate, e.g. whether it becomes acti-
vated and proliferates [59] or not.

In the following, a logical model describing some of the
main steps involved in the activation of CD4+ helper T-
cells (also applicable for CD8+ cytotoxic T-cells) will be
briefly introduced and analyzed (see Figure 10 and Table
2). Several players, in particular, some whose role and
activation is not completely understood, are not included
in our model and thus their effects are not considered or
lumped with others. Additionally, in several, currently
still controversial cases, we have assumed one of the pos-
sible hypotheses; however, this does not mean that we
propose this to be the correct description of the TCR-
induced signaling network; we just want to demonstrate
the applicability of our approach on a realistic, complex
case. It is out of the scope of this paper to analyze the com-
plete, highly-complex signaling machinery of a T-cell.

Here, the biochemical steps included in the signaling
pathway will be described briefly; for a detailed descrip-
tion we refer the reader to reviews such as [59,60] and the
references therein:

• Upon binding of peptide/MHC to the TCR, the first
main step in the TCR-mediated signaling cascade is the
activation of the Src-family protein tyrosine kinase p56lck

(in the following termed Lck), although the exact mecha-
nism is still unclear. We have included one well accepted
mechanism [61], which probably plays a major role but
may be combined with others (cf. Figure 10):

 In resting T-cells, the major negative regulator of Lck,
the protein tyrosine kinase Csk (C-terminal Src-kinase) is
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bound via a SH2-domain to the constitutively tyrosine
phosphorylated transmembrane adaptor protein PAG
(Protein Associated with Glycosphingolipid enriched
microdomains) and consequently inhibits membrane-
bound Lck by phosphorylating a C-terminal negative reg-
ulatory tyrosine residue of the Src kinase.

 Upon ligand binding, PAG is dephosphorylated by a so
far unknown protein tyrosine phosphatase, thereby lead-
ing to the detachment of Csk from PAG, and hence releas-
ing Lck from the inhibitory effect of Csk. The release of
Csk from PAG, together with the activity of the membrane
associated tyrosine phosphatase CD45 (which dephos-
phorylates Lck on the same inhibitory residue that is
phosphorylated by Csk), and the concomitant binding of
the MHC molecule to the coreceptor CD4, leads to full
activation of Lck (see Figure 10).

 However, both CD4 and the TCR can also be stimulated
individually, e.g. by using monoclonal antibodies specifi-
cally directed at either of the molecules or using cell lines
expressing mutated forms of CD4 that cannot bind MHC
or cannot transmit signals.

 A regulation of the enzymatic activity of CD45 is not
included in the model (basically because it is not yet clear
how CD45 is regulated in vivo), but, since CD45 is an
important regulatory element for T-cells, it is included as
an input signal, allowing the analysis of its effect and the
performance of CD45 knock-out experiments.

 After a few minutes, PAG is rephosphorylated [62],
probably by the Src-kinase Fyn, and subsequently Csk is
re-recruited to PAG inhibiting Lck again.

• Activated Lck can phosphorylate another member of the
Src-protein kinases, p59fyn, in the following termed Fyn
(Fyn can probably also be activated in a Lck-independent,
TCR-dependent manner [63]). Additionally, Lck phos-
phorylates the so called ITAMs (Immunoreceptor Tyro-
sine-based Activation Motifs) that are present in the
cytoplasmic domains of the TCR-complex (the latter if the
TCR is close to Lck, i.e., if there is a concurrent activation
of the TCR). Subsequently, the Syk-family protein tyrosine
kinase ZAP70 (Zeta Associated Phosphoprotein of 70
kDa) binds to the phosphorylated ITAMs and, if Lck is
active, becomes activated by Lck-mediated tyrosine phos-
phorylation. Thus, during the initial phase of signal trans-
duction via the TCR three tyrosine kinases become
activated in a sequential manner, first Lck and Fyn and
then ZAP70. Together these three kinases propagate the
TCR-mediated signal by phosphorylating a number of
membrane associated and cytosolic signaling proteins.

• Active ZAP70 can phosphorylate LAT (Linker for Activa-
tion of T-cells), a second transmembrane adapter protein,
at four different tyrosine residues. Subsequently, cytoplas-
mic signaling molecules containing SH2-domains,

Table 2: The hyperarcs of the logical T-cell signaling model (see 
Figure 10). Exclamation mark ('!') denotes a logical NOT and 
dots within the equations indicate AND operations.

→ CD45
→ CD8
→ TCRlig
AP1 →
Ca → Calcin
Calcin → NFAT
CRE →
CREB → CRE
DAG → PKCth
ERK → Fos
ERK → Rsk
Fyn → PAGCsk
Fyn → TCRphos
Gads → SLP76
Grb2Sos → Ras
!IkB → NFkB
!IKKbeta → IkB
IP3 → Ca
JNK → Jun
Jun·Fos → AP1
LAT → Gads
LAT → Grb2Sos
LAT → PLCgbind
Lck·CD45 → Fyn
Lck → Rlk
MEK → ERK
NFAT →
NFkB →
!PAGCsk·CD8·CD45 → Lck
PKCth·DAG → RasGRP1
PKCth → IKKbeta
PKCth → SEK
PLCg(act) → DAG
PLCg(act) → IP3
Raf → MEK
Ras → Raf
RasGRP1 → Ras
Rsk → CREB
SEK → JNK
TCRbind·CD45 → Fyn
TCRbind·Lck → TCRphos
!TCRbind → PAGCsk
TCRlig·!cCbl → TCRbind
TCRphos·Lck·!cCbl → ZAP70
ZAP70·SLP76·PLCg(bind)·Itk → PLCg(act)
ZAP70·SLP76 → Itk
ZAP70 → cCbl
ZAP70 → LAT
ZAP70·SLP76·Rlk·PLCg(bind) → PLCg(act)
Page 20 of 26
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:56 http://www.biomedcentral.com/1471-2105/7/56
including the scaffolding proteins Grb2, Gads, and the
lipid kinase PLCγ1 (Phospholipase gamma 1), can bind to
phosphorylated LAT. Additionally, Grb2 binds to the
nucleotide exchange factor Sos (here we lumped Grb2 and
Sos in one activation step), and Gads to the adapter pro-
tein SLP76. The latter, upon phosphorylation by ZAP70,
can bind to the Tec-family tyrosine kinase Itk. Binding to
SLP76 and additional phosphorylation by ZAP70 acti-
vates Itk.

• For the activation of PLCγ1, the following conditions
have to be fulfilled: PLCγ1 is bound to LAT, SLP76 bound
to Gads, ZAP70 is activated (which hence phosphorylates
SLP76, allowing PLCγ1 to bind to SLP76), and Itk is
active, and hence is able to phosphorylate and thereby to
fully activate PLCγ1. Since all these conditions are needed,
a logical AND was included in the model (see Figure 10).
Rlk, another Lck-dependent Tec-family tyrosine kinase,
can also phosphorylate PLCγ1, hence Rlk has a redundant
role to Itk with regard to the activation of PLCγ1 [64].

• Activated PLCγ1 hydrolyses phosphatidyl-inositol-4,5
biphosphate (PIP2), which is considered an ubiquitous
membrane associated phospholipid and is therefore not
modeled, thereby generating the second messenger mole-
cules diacyloglycerol (DAG) and inositol trisphosphate
(IP3) [59,61].

• IP3 mediates calcium flux. Calcium (together with cal-
modulin) activates the serine phosphatase calcineurin,
which dephosphorylates the cytosolic form of the tran-
scription factor NFAT (Nuclear Factor of Activated T-
cells). The calcineurin-mediated removal of phosphate
groups allows NFAT to translocate to the nucleus and to
regulate gene expression.

• The second messenger DAG activates PKCθ and
(together with PKCθ[65]) activates the nucleotide
exchange factor RasGRP1.

• RasGRP1 and Sos (the latter if it is close to the mem-
brane, that is, if it is bound to LAT by means of Grb2), can
activate Ras, which in turn activates the Raf/MEK/ERK
MAPK Cascade.

• PKCθ is involved in the activation of JNK, as well as the
essential transcription factor NFκB (via phosphorylation
and subsequent degradation of the NFκB inhibitor, Iκ B,
by the PKCθ-activated Iκ B-kinase, IKK).

• ERK, activated by the Ras/Raf/MEK cascade, activates the
transcription factor CRE and (together with JNK) the
essential transcription factor AP1.

• The E3 ubiquitin ligase cCbl is important for shutting off
TCR-mediated signaling processes by ubiquitination of
key proteins, which are subsequently targeted for degrada-
tion [66]. One important target of cCbl is ZAP70; upon
tyrosine phosphorylation of ZAP70, cCbl binds to ZAP70,
leading to ZAP70's ubiquitination and degradation as
well as to the downregulation of the TCR.

From these biological facts we constructed a logical hyper-
graph model, containing 40 nodes and 49 hyperarcs, and
implemented it in CellNetAnalyzer (Figure 10). The model
is summarized in Table 2.

Remarks on the logical T-cell activation model
Note that a species can represent different states of a mol-
ecule: for example, CD45 refers to the availability of
CD45 to act on its substrates (Lck and Fyn), PLCg(bind)
refers to PLCγ1 bound to LAT, and PLCg(act) to the active
(bound to LAT and phosphorylated) form of PLCγ1. It is
also important to realize that several steps can be lumped
together or expressed in higher detail; for example, the
formation of the complex LAT:Grb2:Sos is considered as
one step, but intermediate steps could be considered. This
would be reasonable, for example, if Grb2 would have
other functions apart from binding Sos. Similarly, the two
steps of cCbl's effect (ubiquitination and degradation) are
lumped in the hyperarcs pointing to its targets ZAP70 and
TCR.

Also note that some of the logical operators could be
modeled in a different manner, as in the case of Sos and
RasGRP for the activation of Ras (where we prefer an OR
since both can independently activate Ras, although both
(AND) may be needed for full Ras activation).

Furthermore, our model describes the full activation of
the cascade which leads to proliferation; it is known that
e.g. stimulation of TCR with antibodies against its CD3
subunits produces a certain activation of the cascade
(where probably Fyn overtakes Lck's role [63]) but does
not lead to full activation. Therefore, in our model, as an
approximation, activated Fyn can phosphorylate the
ITAMs of the TCR, but is not able to activate ZAP70. Here
a model with more than 2 levels could be envisioned,
where activation of Fyn would be enough to produce a
weak (level 1) activation of ZAP70 and hence the whole
cascade downstream, while full activation via Lck would
activate the cascade to a level 2 (full activation).

The model has two extracellular input signals (one for the
TCR and one for the coreceptor CD4). Additionally, an
input arc for CD45 is included because the regulation of
CD45 is not modeled, as described above. Therefore,
mathematically speaking, the model contains 3 elements
in the input layer. On the other hand, the output layer
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contains 4 transcription factors (CRE, AP1, NFAT and
NFκB).

As explained in the theoretical section, one reasonable
way to deal with the effect of negative feedbacks is to con-
sider the different time scales of the processes. Hence,
since PAG rephosphorylation takes place after a few min-
utes [62], and cCbl mediated degradation is an even
slower process, we can define several scenarios:

-τ = 0, resting-state (no inputs, no feedbacks),

-τ = 1, early-events (input(s), no feedbacks), and

-τ = 2, mid-time events (input(s), feedbacks). Here, the
state of the feedback loops (activation of PAG/Csk by Fyn
and recruitment of cCbl to phosphorylated ZAP70) will
depend on the state of the respective activators at τ = 1.
This can be considered either by fixing manually the state
values of cCbl and PAG/Csk for τ = 2 upon inspection at τ
= 1 (as was done herein) or by inclusion of a positive self-
loop.

We use the term mid-time event since one can also envi-
sion a long-term scenario (τ = 3), where slow gene expres-
sion mechanisms (not considered here) are active.

Analysis of the T-cell signaling cascade
In the interaction graph underlying the hypergraphical
model, there are 1158 paths from the input to the output
layer and 9 (7 negative and 2 positive) feedbacks loops,
which are listed in Table 3. cCbl is involved in most
(88%) of the loops, in accordance to its important role in
the regulation of the signaling cascade. Not surprisingly,
since the only feedback mechanisms included are the
effect of cCbl on ZAP70 and TCR and of Fyn on PagCsk,
no loop goes downstream of ZAP70, and a suitable mini-
mal cut set attacking all the feedback loops would consist
of Fyn and cCbl.

We further analyze the interaction graph by computing
the dependency matrix (Figure 11). Since downstream of
ZAP70 there are only positive connections (except at node
IκB), all the elements downstream of ZAP70 are total acti-
vators (except of IκB, which is a total inhibitor of NfκB)
with respect to the transcription factors in the output
layer, that is, they can have only positive effects. Therefore,
for these species, a negative intervention via e.g. inhibitors
or iRNA would unambiguously lead to a decrease in the
activation levels of the transcription factors. For consider-
ing the early-events scenario (τ = 1: the feedback loops are
not active), we recompute the dependency matrix where
the action of Fyn on PAGCsk and of ZAP70 on cCbl is not
considered (Figure 12). Then, all inputs (CD45, TCRlig
and CD4) are total activators for all species in the output
layer. This is not the case when the feedbacks become
active (Figure 11): TCRlig and CD45 become then ambiv-
alent factors, i.e. have negative connections to the sink
species, whereas CD4 is still an activator but no longer a
total one, as it is now connected to a negative feedback
loop.

A further analysis of the interaction graph provides that
there is no minimal cut set containing only one (essential)
species whose removal would interrupt all the positive
paths to all the outputs. In fact, all minimal cut sets satis-
fying this intervention task would contain at least two spe-
cies, for example MCS1 = {Rlk, ZAP70} and MCS2 =
{LAT, PLCg(act)}. The latter examples agree only partially
with biological knowledge: removal of MCS1 or MCS2
would indeed prevent the activation of any output, how-
ever, from experimental observations one knows that for
example LAT alone is essential in TCR signaling [60].
Thus, MCS2 would not be minimal.

Interpreting the hypergraphical (logical) model (Figure 10)
reveals that, due to several AND connections, the addi-
tional removal of PLCg(act) would indeed be redundant
because PLCg can anyway not be activated if LAT is
removed. This example illustrates the limitations of
graph-based methods and we computed therefore the

Table 3: All negative and positive feedback loops in the T-cell model as determined by CellNetAnalyzer. Negative influences are 
indicated by "", positive influences are expressed by "→".

1 (negative) TCRbind → TCRphos → ZAP70 → cCbl  TCRbind
2 (negative) TCRbind → Fyn → TCRphos → ZAP70 → cCbl  TCRbind
3 (negative) TCRbind  PAGCsk  Lck → ZAP70 → cCbl  TCRbind
4 (negative) TCRbind  PAGCsk  Lck → TCRphos → ZAP70 → cCbl  TCRbind
5 (negative) PAGCsk  Lck → Fyn → PAGCsk
6 (negative) TCRbind  PAGCsk  Lck → Fyn → TCRphos → ZAP70 → cCbl  

TCRbind
7 (negative) cCbl  ZAP70 → cCbl
8 (positive) TCRbind → Fyn → PAGCsk  Lck → TCRphos → ZAP70 → cCbl  

TCRbind
9 (positive) TCRbind → Fyn → PAGCsk  Lck → ZAP70 → cCbl  TCRbind
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(logical) minimal cut sets from the logical interaction
hypergraph revealing that not only LAT, but also ZAP70,
Lck, TCR, the ligand for the TCR, TCRphosp, CD4 and
CD45 are essential for full T-cell activation. This result is
in good agreement with the current knowledge: the T-cell
receptor, its ligand, and the ability of the receptor to get
phosphorylated are required for T-cell activation; and
CD4 (since it binds Lck thus recruiting it to the mem-
brane) and CD45 (which dephosphorylates Lck inhibi-
tory regulatory site) are required for the activation of the
essential kinase Lck.

Next we performed a logical steady state analysis for the
different time scales given above. These simulations pro-
vide a rough approximation to the dynamics of the sign-
aling cascade. Figure 10 shows the particular situation in
the early-event scenario (τ = 1) as displayed in CellNetAn-
alyzer. Figure 13 summarizes the logical steady state values
of important components obtained for the three different
time scales. The blue line shows the case for
TCR+CD4+CD45 stimulation, whereas the dashed red
line represents the case when only TCR+CD45 is stimu-
lated in the input layer. Similar analysis can be performed
using different scenarios, for example, in a cell where a
certain element has been knocked-out.

Conclusion
In this contribution we have presented a collection of
methods for the functional analysis of the structure of cel-

lular signaling and regulatory networks. As discussed in
the theoretical sections, different abstractions and formal-
isms can be used to encode and analyze the topology of
interaction networks. The simplest representations are
interaction graphs, which are restricted to one-to-one rela-
tionships but do yet capture important functional and
causal dependencies in the system under study. We have
shown that arguably the most important features of inter-
action graphs, namely feedback circuits and signaling (or
influence) pathways, can systematically be identified by
the concept and algorithm of elementary modes known
from stoichiometric (metabolic) network analysis. Feed-
back cycles are mainly responsible for the dynamic behav-
ior of the system, whereas signaling paths reveal network-
wide dependencies between species. In some cases, analy-
sis of feedback cycles and signaling paths may allow one
to predict unambiguously the qualitative effect upon per-
turbations of certain species (independently of kinetic
parameters and mechanisms). Falsification experiments
may then be used to identify missing or incorrect interac-
tions. Knowledge on all the signaling paths also facilitates
a systematic identification of optimal intervention strate-
gies. Again, a concept known from metabolic networks,
minimal cut sets, can be adapted and employed here.
However, inhibitory actions make this kind of analysis
more complicated and we therefore generalized the for-

Dependency matrix for the T-cell model for the early event scenario (τ = 1: the feedback loops are not active)Figure 12
Dependency matrix for the T-cell model for the early event 
scenario (τ = 1: the feedback loops are not active). The meaning 
of the different colors is the same as in Figure 6.

Dependency matrix for the T-cell modelFigure 11
Dependency matrix for the T-cell model. The meaning of the 
different colors is the same as in Figure 6.
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malism of minimal cut sets leading to minimal interven-
tion sets.

The applicability of tools from metabolic network analy-
sis to interaction graphs relies on the fact that metabolic
networks are hypergraphs, which in turn are generaliza-
tions of graphs. In our opinion, the importance of hyper-
graphs in structural analyses of cellular interaction
networks has been underestimated. In fact, whenever
AND-connections occur in interactions of species, hyper-
graphical approaches become essential.

Boolean networks describe interaction networks in a more
constrained and deterministic manner than interaction
graphs, enabling discrete simulations. Herein we have
demonstrated that signed directed hypergraphs are capa-
ble to represent the logical structure of any Boolean net-
work. The hypergraphical coding of Boolean networks,
which relies on the sum-of-product representation of
Boolean networks (using only AND, OR and NOT opera-
tions), has several advantages: it is rather intuitive, it
mostly corresponds to the underlying molecular mecha-
nisms, and it is easy to store and to handle. A hypergraph-
ical representation of a Boolean network also establishes
a direct link to the corresponding (underlying) interaction
graph which can easily be derived from the hypergraph.
Finally, it facilitates a logical signal flow (or steady state)
analysis in Boolean networks which, as demonstrated in
this report, is useful for studying and predicting the qual-
itative input-output behavior of signaling networks with
respect to a given, possibly incomplete, set of initial state

values. This can be achieved here without an explicit enu-
meration and/or simulation of all possible trajectories.

In general, Boolean networks rely on stronger assump-
tions and knowledge than interaction graphs and a pure
logical description of all interactions is not always possi-
ble. We have suggested extensions of the Boolean frame-
work, such as incomplete truth tables of logical
operations, to handle these problems.

As pointed out by many authors (e.g. [67-69]) the logical
description and analysis of large signaling networks has a
strong relationship to electrical circuit analysis; however,
there still seems to be a large potential in employing the-
oretical and software tools from electrical engineering and
Boolean logic for investigating interaction networks. Sig-
nal flow analysis as introduced herein might be another
step in this direction.

Describing signal and mass flows equivalently as interac-
tions, as done herein, offers high flexibility and enables
one to integrate several types of cellular networks (such as
metabolic, signalling or regulatory ones) into one frame-
work. However, the higher level of abstraction comes with
the price that some molecular mechanisms are not always
precisely represented, as, for instance, the stoichiometric
coefficients in mass flows.

The potential of the introduced methods were demon-
strated on a model of a small part of the signaling machin-
ery of T-cells. The size and complexity of the model was
chosen so that the methods could be tested on a case study
of real size and complexity, while at the same time the
results could be (at least in part) intuitively understood
and proofed. If enough information is available, similar
models could be set up for any other signaling network.

Certainly, these tools will be especially useful in larger
interaction networks. Our current and future work aims to
expand and subsequently analyse the T-cell model, with
hopes that further understanding of this complex network
can improve current knowledge about important ill-
nesses, such as autoimmune diseases and leukemia. This
is certainly a challenging task, but the potential described
here makes it a worthy endeavour.

Availability and requirements
For academic purposes,CellNetAnalyzer can be obtained
for free via the website

http://www.mpi-magdeburg.mpg.de/projects/cna/
cna.html

Note that CellNetAnalyzer requires MATLAB® version 6.1
or higher.

Simulation results of LSS analysis of key elements of the T-cell model using the two time-scales explained in the textFigure 13
Simulation results of LSS analysis of key elements of the T-
cell model using the two time-scales explained in the text. 
Blue line: upon TCR+CD4+CD45 activation; dashed red line: 
only TCR+CD45 activation.
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