BIVIC Bioinformatics

Correspondence

@,

BiolVled Central

Agile methods in biomedical software development: a multi-site

experience report
David W Kane* 1, Moses M Hohmant2, Ethan G Cerami3,
Michael W McCormick#, Karl F Kuhlmman> and Jeff A Byrd®

Address: 1SRA International, 4300 Fair Lakes Court, Fairfax, VA 22033, USA, 2Center for Functional Genomics, Northwestern University, 2205 Tech
Drive #2-160, Evanston, Illinois 60208, USA, 3Memorial Sloan-Kettering Cancer Center, Computational Biology Center, 1275 York Avenue, Box
#460, New York, NY 10021, USA, “Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA, 5Applied

Biosystems, 850 Lincoln Centre Drive, Foster City, CA 94404, USA and ®Vanderbilt Medical Center, 2209 Garland Avenue, 416 Eskind Biomedical

Library, Nashville, TN 37232-8340, USA

Email: David W Kane* - david_kane@sra.com; Moses M Hohman - moses@moseshohman.com; Ethan G Cerami - cerami@cbio.mskcc.org;
Michael W McCormick - mmccormi@fhcrc.org; Karl F Kuhlmman - kuhlmakf@appliedbiosystems.com; Jeff A Byrd - jeff.byrd @vanderbilt.edu

* Corresponding author tEqual contributors

Published: 30 May 2006 Received: 17 November 2005
BMC Bioinformatics 2006, 7:273 doi:10.1186/1471-2105-7-273 Accepted: 30 May 2006
This article is available from: http://www.biomedcentral.com/1471-2105/7/273

© 2006 Kane et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Agile is an iterative approach to software development that relies on strong
collaboration and automation to keep pace with dynamic environments. We have successfully used
agile development approaches to create and maintain biomedical software, including software for
bioinformatics. This paper reports on a qualitative study of our experiences using these methods.

Results: We have found that agile methods are well suited to the exploratory and iterative nature
of scientific inquiry. They provide a robust framework for reproducing scientific results and for
developing clinical support systems. The agile development approach also provides a model for
collaboration between software engineers and researchers. We present our experience using agile
methodologies in projects at six different biomedical software development organizations. The
organizations include academic, commercial and government development teams, and included
both bioinformatics and clinical support applications. We found that agile practices were a match
for the needs of our biomedical projects and contributed to the success of our organizations.

Conclusion: We found that the agile development approach was a good fit for our organizations,
and that these practices should be applicable and valuable to other biomedical software
development efforts. Although we found differences in how agile methods were used, we were also
able to identify a set of core practices that were common to all of the groups, and that could be a

focus for others seeking to adopt these methods.

Background matics journal; indeed, there are few if any articles availa-
Agile development methods have gained adoption in a ble describing software development processes used in
wide variety of software development domains [1-5]. To this application domain. We have used agile development
date no group has published a study of agile methods in ~ approaches to create and maintain biomedical software.
the context of biomedical informatics in a major bioinfor- In the process we have observed how well the promises of

Page 1 of 12

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16734914
http://www.biomedcentral.com/1471-2105/7/273
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7:273

agile methods fare on our projects and for our users. One
of our sponsors, John Weinstein, says that "the success of
our programs is attributable in part to our adoption of the
agile software development paradigm, which promotes
close, iterative interaction between software engineers,
biologists, and bioinformaticists" [6]. In this paper we
describe our collective and varied experiences with these
methods both to foster discussion within the biomedical
software community about software process, and to
acquaint readers with issues to consider when applying
agile methods to biomedical informatics.

We first provide some background on agile methods. We
then describe the methods used to conduct this qualita-
tive study of agile practices in software projects at our
organizations. We present the results that we gathered,
including organizational characteristics and key software
development practices. The discussion section addresses
our analysis and assessment of these results including
similarities and differences among the projects, and les-
sons learned from using agile methods.

The Agile Manifesto

The agile movement formally declared its existence in
2000 with the publication of the Agile Manifesto [7]. The
practices and methods advocated in the manifesto are not
new and have a long history of practice. However, the con-
fluence of new tools, new books, and changes in the
developer community has created strong interest in these
methods in many software development domains.

The Agile Manifesto describes the principles of agile devel-
opment. The manifesto does not prescribe a specific meth-
odology or tools, but rather a philosophy for approaching
software development. The manifesto reads:

We are uncovering better ways of developing software by
doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools.
Working software over comprehensive documentation.
Customer collaboration over contract negotiation.
Responding to change over following a plan.

That is, while there is value in the items on the right, we
value the items on the left more [7]. (original emphasis)

In this paper, we will illustrate how our interpretation and
implementation of these four guiding principles affected
our biomedical software development projects.

http://www.biomedcentral.com/1471-2105/7/273

Emergent requirements and iterative development

One key assumption underlying agile principles is that
requirements for software are emergent, that is, the activ-
ity of developing and delivering software yields new
understanding of the problem. The pursuit of science is an
exploratory process that employs trial and error to find
and reject blind alleys among a range of promising
options. The idea of emergence contrasts with the more
traditional notion that, with enough analysis, all require-
ments for software development can be understood and
documented before the start of programming. Software
processes that require scientists to determine detailed
requirements up front lead to customer frustration when
clinicians and scientists are asked for feature descriptions
more precise than they are prepared to give.

The agile view is that the best feedback comes from users
interacting with working software. To facilitate this sort of
feedback, agile methodologies promote early and fre-
quent delivery of well-tested software. The opportunity to
interact early with a program being developed helps users
internalize what is possible with software and facilitates a
better common understanding of the features needed for
project success. By emphasizing early visibility into the
software, agile methods are similar to older methodolo-
gies like Rapid Application Development (RAD). Agile
methods differ from RAD by driving deeper to deliver
completed features and by pairing these features with
automated tests [8-10]. Unlike traditional development
approaches, which can have software development cycles
that can last for several months, agile project teams use
short cycles that are usually only a few weeks long.

During each of these cycles the software team works
through all of the phases of software development - gath-
ering requirements, building code that meets those
requirements, testing to ensure that requirements are met,
and possibly deploying the code into production for cus-
tomer use. Customers may choose not to deploy after
every iteration, but the software should be stable enough
to be deployed after every iteration [11].

Methods

We began work on this paper by identifying organizations
using agile development methods to develop biomedical
software. General background on some of the common
methodologies is provided in Table 1. The groups were
identified during informal discussions at software engi-
neering and bioinformatics meetings and conferences.
The groups are summarized in Table 2. This was a conven-
ience sample; it was not randomized. However, we did
not select against negative experiences with agile
approaches. All but one invitee, who responded too late,
joined the group or appointed a representative from their
organization.

Page 2 of 12

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:273 http://www.biomedcentral.com/1471-2105/7/273

Table I: An overview of two common agile development methodologies, Extreme Programming and Scrum

The principles of the Agile Manifesto are applied in many different software development methodologies. Kent Beck's Extreme Programming is the
most well known, but there are many others including Scrum, Crystal, FDD, DSDM [13] [28] [29] [30] [3]. The two methods that were most
strongly reflected in our projects were Extreme Programming and Scrum. We briefly describe these methods here.

Extreme Programming

Kent Beck's Extreme Programming (XP) is one of the most well known, and also one of the most controversial of the agile methods. Beck took a
number of well-known practices and "turned them up to 10" [13]. For example, in XP, peer reviews are implemented as pair programming, i.e.
continuous peer review. The method assumes that software is being developed in a dynamic environment, so the software development approach
needs to be able to adapt to this rapid change.

XP is organized around short iterations, typically one or two weeks long. Features in XP are described as user stories. Programmers estimate the
effort to complete each story. Each iteration the customer gets an effort budget and selects a list of stories for implementation from the list of
possible user stories. The customer bases the budget on the completed story velocity from the previous iteration. This means that, iteration by
iteration, the customer directs the development team to work on the features most important and immediate to that customer.

The engineering practices of XP are notable as well. The method forgoes a distinct design phase in favor of an evolutionary design approach for the
software. The approach focuses on informal communication rather than formal documentation. XP makes extensive use of automated unit and
acceptance tests. Programmers run these executable tests throughout the development process. When developing new features, the development
team uses "the simplest [design] that could possibly work" [13]. When adding a new feature that requires extension of the existing design,
programmers refactor the code first to improve the design, and then add the new feature. Refactoring improves the internal design without
changing the external behavior. The automated tests provide verification that the behavior of the code has not changed after refactoring.
Developers using XP continually shift back and forth between refactoring activities and new feature development activities. XP uses the
combination of testing and refactoring to make the software malleable to accommodate rapid requirements change.

Scrum

Scrum is an agile method that focuses on project management [28]. The key practices focus on management of feature backlogs. The mechanics of
backlog management are similar to those found in XP, i.e. the customer regularly prioritizes features, and in each iteration the development team
implements the top N features from the list. Iterations, called sprints, are 30 days long. In addition to selecting features for each sprint, the
development team organizes several sprints into releases. Project managers use "burn down" charts to track progress within a sprint or a release.
These charts provide a view of progress by plotting unimplemented features against time remaining in the sprint or release.

Another key practice in Scrum is the scrum meeting. A scrum meeting is a daily stand-up meeting for the development team. In the meeting, each
member of the team reports what they did since the last scrum meeting, what work is planned before the next scrum meeting, and obstacles. The
meeting is short and facilitates open and frequent communication in the team.

Scrum does not specify a particular engineering approach; the approach says nothing about testing or configuration management practices. Some

groups apply XP-style engineering practices to complement their scrum practices, but other variants are common as well.

To capture each project's situation we chose to study qual-
itatively each project's experience in detail, to try to
uncover interesting issues related to the use of agile meth-
ods in a biomedical software application domain. We ini-
tially conducted a survey of the specific practices used at
each organization and assessed the preliminary results.
We asked the authors to identify the agile development
practices that their respective organizations used. We also
gathered context information about each organization.
Table 3 summarizes the practices and attributes of each
project and the degree to which they were common across
these organizations.

We then conducted a second, more detailed survey of the
authors' experiences. This survey consisted of a set of
mostly open-ended questions [see Additional file 1],
which allowed participants to provide details difficult to
uncover with more directed questioning. The interviewer
followed up each question's answer with additional ad hoc
questions to clarify interesting details.

We organized the second survey in three sections. The first
section covered each biomedical software project's con-
text within its respective organization. We asked partici-
pants to describe how the project under study compared
with other projects within the organization, when/how/

by whom agile methods were introduced, as well as more
basic matters such as the duration and current status of the
project.

The survey moved on to gather a historical view of the
project's software development practices. For each stand-
ard project process area (planning, communicating with
users, development, testing and deployment) we asked
the participant to explain the project's practices and how
and why they changed over time, if at all. Some questions
focused on details of particular practices highlighted in
the agile development literature, such as automated unit
testing.

Finally, we presented participants with more open-ended
questions. We asked each participant to focus on how the
stated values of agile development (collaboration, work-
ing software, embracing change, technical excellence and
simplicity) contributed to their project experiences. We
also asked whether the project used any "non-agile" prac-
tices, and whether there were any important issues not
covered during the survey interview.

After collecting the responses, we worked through the
answers looking both for interesting patterns (either com-
monalities or differences) among the projects and for

Page 3 of 12

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:273

Table 2: A summary of the organizations described in this report

http://www.biomedcentral.com/1471-2105/7/273

Organization

Type

Application(s) and Users

Team Size

Previous Approach

Applied Biosystems

Fred Hutchinson Cancer
Research Center

Memorial Sloan-Kettering
Cancer Center

National Cancer Institute

Commercial

Academic

Academic

Government (supported by
a commercial contractor)

A custom workflow engine
as a component to be used
by developers of products.
A community tool to
collect, analyze, report, and
share genetic sequence
data.

A freely available, open
source cancer pathway
database with a growing
array of public users.

A variety of tools to
integrate and visualize
integromic data set that are
made available to the
public.

Two developers, a part
time project manager, and
a customer.

Four engineers for both
developing this application
and maintaining legacy
systems.

One scientific lead, and one
architect/developer.

Three engineers and a
bioinformatics analyst.

Approach based on the

Rational Unified Process
(RUP)

Approach similar to the
Rational Unified Process
(RUP)

None. Agile-like practices
used since inception of

project.

No explicit process

Northwestern University Academic Two projects written at Three to five developers, No explicit process
Center for Functional the Center, with users domain and quality
Genomics onsite and at two other assurance staff.
institutions participating in
a consortium.
Vanderbilt University Academic A clinical support Three developers and A plan driven development

Medical Center

application.

additional quality assurance
and configuration

approach that emphasized
extensive up front design

management support staff.

noteworthy individual experiences. We followed up with
each participant to confirm details if necessary, and incor-
porated these findings into the paper. When describing
specific examples, we do not identify the institution
involved. We needed to provide anonymity for potentially
sensitive examples and organizations, and for consistency
we followed this approach for all examples, sensitive or
not.

Results: multi-site comparison of agile practices
Context and site characteristics

We studied the agile practices of at least one software
development project at each author's organization, sum-
marized in Table 2. The projects we examined were drawn
from a diverse set of organizational settings, and represent
a wide array of software applications. However, they all
shared a number of key characteristics. All of the develop-
ment teams were fairly small, ranging from one to six peo-
ple. All of the projects used Java as the primary language
for software development. In addition, they all reported
that much of the complexity in the software they devel-
oped reflected the inherent complexity of biological or
clinical study and practice. At four of the six organizations,
software development teams were responsible for more
than one significant software project at once. Dedicated
quality assurance (QA) staff, typical in a corporate soft-
ware development environment, was absent in all but one
project. These characteristics are typical of many other

projects and organizations developing bioinformatics
software.

There were a number of differences in context among the
projects. Development teams came from academic, com-
mercial and government development organizations. The
teams built software both for users internal to organiza-
tions and users external to these organizations. Two of the
organizations used less rigorous development processes
before adopting agile methods. For three other organiza-
tions, agile development reflected a shift to a more nimble
approach from process-heavy software development
methods. One organization used agile methods from the
beginning of its software development. The projects we
studied were not developing safety-critical software, but
some were critical to users' daily work or to the launch of
a commercial product, while others were public informa-
tion resources and tools.

One of the major challenges reported by the projects was
the need for a close working relationship between at least
two different fields: software engineering and biology.
Biologists possess a significant amount of specialized
knowledge, expressed in an intellectual framework unfa-
miliar to software developers. When biologists communi-
cate with other biologists, they can frequently assume a
mutual level of understanding, allowing them to leave out
obvious details during discussions. This tacit knowledge

Page 4 of 12

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:273

http://www.biomedcentral.com/1471-2105/7/273

Table 3: The commonality of key practices and attributes across the projects

Practice\Organization Applied Fred Hutchinson Memorial Sloan- National Cancer Northwestern Vanderbilt
Biosystems Cancer Research Kettering Cancer Institute University Center University
Center Center for Functional Medical Center
Genomics
Customer Collaboration
Onsite Customer . .
Automated Acceptance Testing .
Use Cases . .
User Stories
Planning
Iterative Development
Feature/Product Backlog
Mid-range Planning
Scrum Meeting
Developer Task Self-Selection
Building
Automated Unit Tests
Collective Code Ownership
Continuous Integration
Nightly Builds & Tests
Refactoring
Shared/Open Workspace/
Team Room
Adoption

Sponsor
Champion

becomes a challenge when communicating with software
developers. This information asymmetry surfaced in all of
our projects, in both directions. As a simple example,
groups reported that sometimes the same terms meant
different things to the different groups. In one instance the
term, "database", caused confusion - the word meant a
relational database system to a developer, but meant a
data set to a biologist. Early on during another project, it
took several months for developers to realize that mouse
pens (the cages that house laboratory rodents) could hold
more than one animal at a time.

All of the groups took steps to elucidate crucial but tacit
knowledge and to prevent misunderstanding. In addition
to ad hoc conversations, five of the six groups used a
weekly meeting between scientists and bioinformaticians
to work through issues. Two groups collocated bioinfor-
maticians and scientists in the same office space to
increase the possibility of informal communication, a
practice explicitly recommended by some agile methodol-
ogies. Other approaches included periodic in-depth inter-

views with scientists and direct observation of scientists
performing daily work. On one project the latter was
sometimes tricky, both because investigators were protec-
tive of their technicians' work time, and because special
clearance or training was required even to be present in
some lab space.

The academic tradition of collaborative decision making
was common in all of the groups. In this tradition, every-
one contributes to the decision-making process. Decisions
are made by consensus, when they can be reached. This
has the advantage of involving diverse viewpoints and giv-
ing everyone a voice, but can sometimes slow decision-
making because of conflicting priorities and lack of an
authoritative voice to resolve differences.

Sometimes scientists do not reach consensus. Another sig-
nificant aspect of the academic tradition is that investiga-
tors in a lab have a fair degree of independence from one
another. Conflicting approaches and research goals can
coexist, and individual investigators are accustomed to

Page 5 of 12

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:273

having the freedom to pursue their own understanding of
what is best.

For scientists, software development is an ancillary task in
the service of science, rather than a central goal. Software
is only valuable if it can enable the otherwise impossible
or save valuable time. As a result, some scientists and cli-
nicians are wary of spending too much time on software
issues, because this diverts energy away from core scien-
tific projects and publications.

A problem arises, however, when scientist users are not
sufficiently invested in the success of a software effort. Any
software project requires an effective collaboration of the
users of the system, both with each other and with the
developers. The decentralized organization of most sci-
ence labs, where each investigator is free to be as involved
or uninvolved as he or she chooses, can make this diffi-
cult. For some of our projects, it was difficult to interest
users in collaborating closely enough to break down the
information asymmetry and to provide a common picture
of the user goals for the software effort, leading to mis-
takes, rework and a slower pace of development. In this
way, the biomedical domain can present challenges for
agile methods, which explicitly rely on collaboration. On
the other hand, agile's focus on collaboration can help
organizations give this crucial process appropriate atten-
tion.

We believe that both the common characteristics and the
range of variation provide a fair cross-section of a signifi-
cant percentage of biomedical informatics efforts today.
This representative context forms the basis for our investi-
gation of the suitability of agile methods for the field.

Practices
The following sections describe the agile practices our
projects used, and include examples of how they were
applied.

Capturing requirements

Since requirements change often, agile methods avoid
detailed written documentation of requirements, in favor
of a high-level written description that is "a promise to
have a conversation," allowing details to be worked out
through verbal communication with the customer. Our
projects varied in the level of detail with which they
recorded requirements, but none of the groups attempted
to describe requirements completely. Two used use cases,
and all groups used unstructured text to describe user sto-
ries. We all used the combination of short development
iterations and customer feedback to resolve the details of
specific features. Another feature all projects had in com-
mon was the use of web-enabled software tools, such as
XPlanner [12], to manage and track requirements. One of

http://www.biomedcentral.com/1471-2105/7/273

the groups had started using simple index cards to track
requirements, a practice recommended by many promi-
nent practitioners of Extreme Programming [13], but
found that system ceased to work well when a key cus-
tomer moved to different city.

Automated acceptance testing

One group used the acceptance testing process as a central
customer collaboration activity. For each feature devel-
oped, customers wrote machine-executable acceptance
tests whose successful execution confirmed programmers
had correctly completed their work. The group used the
FitNesse open-source testing tool [14] to organize and
execute these tests and included the acceptance tests as
part of regression testing.

The process of writing the tests refined and confirmed the
users' understanding of their requirements. This exercise
helped demonstrate to customers the real complexity of
their requirements and the value of their close involve-
ment to getting the behavior right. Just as important, the
practice encouraged the scientists and developers in the
group to collaborate and to share responsibility for the
final result. The key to these accomplishments was con-
vincing the customer that this was best way to ensure the
software would perform the business rules correctly — that
is, the best way to transfer the users' tacit special knowl-
edge into explicit knowledge used to check the behavior of
the software.

Open workspaces

All of the groups co-located the developers in a common
open workspace. For two groups, customers shared this
room as well, so that the proper level of domain expertise
was never far away. This arrangement improved commu-
nication within the development team and with custom-
ers by minimizing barriers and encouraging frequent
interactions. When developers had questions about either
the software or the customer's requirements, often the
person with the answer was in the room and could be que-
ried without the formality and overhead of a full meeting.

Project planning and prioritization

Fundamental to all of our projects was the need to accom-
modate changing requirements. One of the major pain
points for our customers in the past, especially for those
who had experienced more traditional software methods,
was development teams that resisted changes in funda-
mental assumptions once the project was underway. As
discussed above, our customers' exploratory scientific
process required that the developers be able to make bold
changes in direction. Agile methods provide a number of
planning tools to help accommodate change.

Page 6 of 12

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:273

Table 4: Iteration lengths for each project

Organization Iteration Length

Applied Biosystems 3-5 weeks
Fred Hutchinson Cancer Research Center 2—4 weeks
Memorial Sloan-Kettering Cancer Center 6-8 weeks
National Cancer Institute 2 weeks
Northwestern University Center for Functional ~ 1-2 weeks
Genomics

Vanderbilt University Medical Center 4 — 6 weeks

Iteration planning

All of the groups used an iterative approach to organize
software development activities. Iterative approaches
break up work into smaller pieces, each of which can be
measured individually for progress and feedback. This
takes place on two levels, the release level and the itera-
tion level. At the release level, the end of each release
results in the deployment of software into production.
Each release does not take too long, however, so the devel-
opment team can apply customer feedback coming from
use of the working product to iterative refinement. A
number of smaller iterations make up each release. It is
possible for a release to be composed of only one itera-
tion, so that software is released into production at the
end of every iteration.

Each iteration, the development team, working with the
customers, plans to implement a set of the customers'
high priority features, designs architectural changes, and
brings the software to some stable point of completion by
the end of the iteration. At the end of each iteration, the
development team compares progress to estimates. This
comparison can provide early indication if the team is
completing functionality more quickly or more slowly
than planned.

In our study, the details of the iterative approach varied by
project. Four groups had mid-range planning practices
that provided course-grained guidance for more than one
iteration. One project planned work for several weekly
iterations, culminating in a release of software to users.
Other projects were organized in "phases" of work, some
of which resulted in an internal release for local testing,
and some of which resulted in production-quality releases
to the public. The lengths of iterations across all projects
ranged from one to eight weeks. The iteration lengths for
each group are reported in Table 4.

Most groups supplemented iteration planning with
shorter range planning. Four groups used daily stand-up
meetings (see Table 1). In these meetings developers
shared basic status information about their work with

http://www.biomedcentral.com/1471-2105/7/273

each other. This practice provided a synchronized starting
point for the group's work each day. Also, managers had
the opportunity to hear daily about any obstacles that for
some reason had not otherwise come to their attention.

Estimation

All of the groups used a feature backlog as a central plan-
ning tool (again, see Scrum in the sidebar on Common
Methodologies). The development group captured all
new requests for features and listed them in the backlog
where they could be considered for inclusion in future
iteration plans. Iteration planning consisted of the selec-
tion of features from the backlog for completion in the
next iteration. Developers estimated the effort required to
complete features, and customers prioritized the most val-
uable features. When selecting content for an iteration,
customers weighed the value of the feature and the effort
required to complete it. Once a priority feature set was
selected whose required effort fit the available resources,
groups varied in how they assigned those tasks to specific
developers. In four groups, developers volunteered for
specific features and tasks, based on interest or time avail-
ability. In one group, a senior developer or architect
explicitly assigned tasks to each developer. In one group,
there was a single developer, and so all work was implic-
itly assigned to that developer.

Beyond noting what work was still incomplete, five
groups also measured velocity, a simple metric for the
amount of work completed during an iteration. To quan-
tify work, our projects used a variety of estimation meth-
ods: estimating in pairs, estimating by analogy, estimating
by guessing, estimating in ideal days, and estimating in
actual time [15,16]. Measuring estimate accuracy using a
tracking tool proved helpful for future planning and esti-
mation improvement. These tools calculated velocity, in
this case calculated as the amount of work (quantified as
estimated effort) developers could complete in a period of
calendar time (e.g. a day, or an iteration). The develop-
ment team used the velocity of past iterations to calculate
the customer's budget for selecting features for the next
iteration.

Release planning

One characteristic apparent in our analysis that may be
common in biomedical informatics was that our custom-
ers generally placed less value on fixed release dates and
more value on frequent releases of software. For one
project this was not the case, because deliverables had to
be synchronized with a larger product release. However,
for all other projects, customers wanted to receive fre-
quent improvements to the software but did not care
about the precise delivery date, except for important bug
fixes. Agile development puts the scope/date tradeoff in
the hands of the customer, so that they get to decide

Page 7 of 12

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:273

whether to include more features in a release and post-
pone the release date, or release sooner with fewer new
features per release. Our customers usually opted for the
latter approach. Including smaller amounts of functional-
ity per release also meant that no release could spiral too
far out of control, meaning that estimated release dates
were reasonably close.

The staffing resources available to our projects were lim-
ited, and many of our teams worked on more than one
project, often switching without much notice. Iterative
development helped by making development estimates
and tradeoffs both more accurate and clear to the cus-
tomer. Notably, our releases were on the shorter side even
for agile projects, typically ranging from two to eight
weeks. Finally, we remark that even for the project with
fixed release dates every three weeks, that project was
more reliable in meeting its release dates than similar
projects at the same site that did not use agile methods.

Decision making

In all of the groups, customers regularly took part in
requirements prioritization. Furthermore, all of the
groups, even those with developers working via a contract,
had the flexibility to change requirements and priorities
with minimal administrative overhead. Nonetheless, the
groups reported a mixed level of success getting project
priorities from their customers.

Some groups had a central authority who could weigh
conflicting priorities and make a final decision. In other
groups, the emphasis on academic freedom and collabo-
rative decision making took first priority, and there was
no clear authority to make final decisions. For example, in
one project, the customer group was spread among three
collaborating institutions. To simplify the decision mak-
ing process, each institution nominated a representative
who spoke for that customer group with full authority.
Each representative ranked the feature backlog in order of
priority, and the development team averaged these rank-
ings to come up with the final prioritization. The repre-
sentatives and their organizations accepted the explicit
fairness of this approach, and the group was able to
achieve consensus on priorities.

Working by collaborative consensus did not, however,
work for all our projects. Another group reported a lack of
central decision-making authority, internal arguments,
conflicting priorities, and slowed development. The group
supported a number of different tools, each with different
stakeholders. Agile methods alone were not sufficient to
bring these stakeholders to consensus.

http://www.biomedcentral.com/1471-2105/7/273

Coding practices

The strongest similarities among the organizations were
the methods used to build software. For all of the groups
automated testing, refactoring and continuous integration
were core practices. While the benefit of these practices is
not unique to biomedical informatics, we found it signif-
icant that all our projects had resounding praise for the
value of these practices. Furthermore, we note that the use
of these practices represents greater development disci-
pline and quality than is typical for the field.

Automated testing

Automated tests are programs that check software applica-
tion behavior and report problems. Although only one
group used automated acceptance testing, all groups used
automated unit testing, and some also automated system
tests or load tests. Unlike acceptance tests which were
user-oriented, these tests were developer-oriented. Auto-
mated unit tests exercise the smallest complete unit of
code in the system, typically a method or function. When
writing these tests, developers simulate interactions with
other portions of the system with stubs or mock objects
[17]. Automated system tests exercise the system as a
whole, from the user interface or an API to the bottom lay-
ers of the system. These tests can leverage the same frame-
works as the unit tests, but focus on exercising systems to
simulate the software's intended function as a whole.
Some groups included user interface testing as part of sys-
tem testing of web applications, but many of the system
tests were driven through programmable interfaces
instead. On all projects, automated tests were integrated
into a testing framework, such as JUnit [18], that enabled
frequent execution. Frameworks such as Cruise Control
were then used to enable continuous integration [19].
Some groups scheduled their tests to run every evening.
Other groups configured their test frameworks to run their
tests whenever changes were checked into their code
repositories.

Only one group formally measured test coverage (the per-
centage of application code exercised by the tests), how-
ever all reported that automated tests covered a significant
majority of their functionality. All groups felt this sort of
coverage was crucial to be able to respond to change as
required by our customers, and for finding regression
errors early in the release cycle.

Refactoring

Refactoring improves the internal design of a unit of code
without changing its external behavior [20]. Automated
tests are an important prerequisite for refactoring because
the unit tests provide the assurance that the external
behavior has not changed. The groups studied used refac-
toring extensively to evolve the design and to improve the
readability and maintainability of their software. Several

Page 8 of 12

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:273

groups reported that before they used automated tests and
refactoring, they would sometimes fear modifying legacy
code out of concern that something would break. Refac-
toring and testing created an environment that made code
modification easier and more reliable. Many of the groups
augmented their ability to refactor by using integrated
development environments such as Intelli] IDEA [21] or
Eclipse [22] that included refactoring features.

Refactoring helped our projects maintain simpler code
bases that were easier to maintain. One project initially
used hash tables for object persistence, working out the
business rules and program behavior first. Near the end of
the project, the modularity of the code base and the exist-
ence of tests allowed the developer to swap in a relational
database back end in just a single four-week iteration.
Refactoring contributed to the ease of this transition in
two ways. First, refactoring done before the change in the
persistence layer had helped create a clean interface. Sec-
ond, the change in persistence layer did not change the
behavior of refactored code, and so the existing tests of
that layer were used to verify that no errors were intro-
duced. Another group found that combination of auto-
mated testing and refactoring made responding to issues
raised during code reviews much easier. Before these tools
were adopted, code reviews would identify areas for
improvement that would have been arduous and time-
consuming to implement. With the testing and refactoring
tools, implementing the recommendations from code
reviews took less time, and resulted in code that was easier
to read and to maintain.

Pair programming

One of the most controversial practices suggested by
Extreme Programming is pair programming [13]. The con-
troversy stems from the difficulty of determining whether
doubling up programmers on a programming task saves
time because of reduced errors and increased productivity,
or wastes time for obvious reasons. Our projects did not
use pair programming regularly. Some projects used pair
programming in an ad hoc manner, e.g. when training new
team members, or when working on particularly challeng-
ing tasks. Some of the teams were too small for pairing
(one developer). In other cases, synchronizing work
schedules presented a problem for pairing. Others had
past negative experience that led them away from pairing.

Adoption of Agile Practices

Introducing a new development process can be challeng-
ing, even in small groups. Each of the organizations exhib-
ited two characteristics important to the successful
introduction of agile methods. Each group had a cham-
pion that pushed for the adoption of agile methods, and
each group had a sponsor who provided support for the
effort [23].

http://www.biomedcentral.com/1471-2105/7/273

The champions were the ones who initially introduced
their respective groups to agile development methods.
The champions recommended specific practices and took
the lead in helping the teams learn how to apply them.

Because the agile methods for requirements gathering,
planning and prioritization change the relationship
between customers and software development teams,
sponsor support was important to realize this change. Our
customers have become some of our biggest proponents.
One customer regularly trumpets the success of agile
methods when he presents to his peers.

Discussion

We draw several conclusions from this study. First, agile
practices represent a distinct shift from development
approaches used previously in our organizations. Second,
these methods appear to be particularly valuable to bio-
medical software projects. Third, groups looking to adopt
agile methods should focus on core practices. Fourth,
there is room within the principles to adapt practices to
local needs.

Shift from how this community has traditionally
approached software

Agile development is not business as usual - it represents
a real change in how we develop software in this domain.
All of the organizations we studied recognized the differ-
ence between their groups now and their groups before
adoption of these practices. Many also saw differences
between how their teams and their peers in the field devel-
oped software. In some cases, agile approaches represent
a more disciplined approach to software development.
For some in bioinformatics, software is incidental to the
scientific results and treated like any other working mate-
rial, and there is no particular attention to testing or
requirements. In other cases, agile approaches reflect a
leaner approach to software development than those with
more emphasis on modeling, documentation and formal
decision-making processes. In both cases, agile encour-
ages deeper collaboration during the development proc-
ess, with a greater level of shared responsibility.

Agile methods are valuable for bioinformatics projects
The projects we examined were typical of many in the
field today. Staffed with small teams, each needed to cre-
ate software that could relate to the complexity of biolog-
ical systems. All of the projects we studied reported many
benefits from using agile development techniques.
Groups reported improved quality, flexibility, and main-
tainability. Developers were happier with these practices
because they made the dynamic nature of the field more
manageable. Because the projects we studied were similar
to many others in the field, other groups adopting these
methods could experience similar benefits.

Page 9 of 12

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:273

Even for projects with different characteristics from the
ones in our study, agile methods may still be appropriate.
We did not have any large projects in our report. However,
there have been reports of successful deployment of agile
methods in large-scale projects in other fields [24,25].
Similarly, although our software was not heavily affected
by regulatory requirements, there are similar experience
reports of agile methods used successfully in regulated
fields [26].

Adapting to change

Customers' needs in the biomedical domain are character-
ized by change, sometimes deep and fundamental
change. Science is by its nature an exploratory activity. As
scientists test hypotheses and gain new knowledge, they
uncover new insights and directions for research. For soft-
ware developers supporting these investigations, this
means new requirements. Clinically-oriented biomedical
applications are also subject to significant change as the
entire health care industry struggles to adopt information
technology to improve patient care. Historically this has
guided practitioners toward throw-away, quick-and-dirty
solutions, or in some medical applications, to avoid soft-
ware solutions entirely. Agile strikes the right balance by
pairing frequent feedback and short iterations with auto-
mated testing and refactoring approaches that maintain
quality while embracing change. Because agile approaches
give developers tools to better manage change, we
observed that this approach also made the developers
more open to change when required.

Enabling collaboration

Biomedical software teams are typically small (especially
in academia), and the environment is by necessity collab-
orative. Biomedical software development projects can
require expertise in medicine, biology, statistics and soft-
ware engineering. The principle of collaboration in the
Agile Manifesto in general comes relatively naturally.
However, in practice, effective collaboration can be hard
to achieve, and agile methods give software development
teams tools to collaborate better. The agile methods pro-
vide an approach for mediating and prioritizing among
the competing interests that can surface among the key
stakeholders for particular projects. In our age of high
throughput biology, computation has become central to
biological inquiry and can no longer be considered ancil-
lary to biological research. Agile methods remind both
developers and customers of the importance of shared
responsibility and real collaboration for success.

Need for software quality

Although the goal of some biomedical informatics
projects is to produce high quality operational software, a
commitment to software quality has not been historically
characteristic of biomedical software not directly involved

http://www.biomedcentral.com/1471-2105/7/273

with patient care. Software is often incidental to scientific
publications, and even when software is the focus of a
paper, measures of software quality are rarely considered.
As a result, quick solutions sufficient to support the
research at hand are the rule. However, there is a need for
higher-quality software in the biomedical field. First, a
focus on quality would give the community greater confi-
dence in the tools that are created. Second, quality would
make it easier for groups to share and to extend each
other's software. Increasingly, biomedical software
projects integrate tools from a wide variety of sources.

The agile practices of continuous integration, automated
testing and refactoring make it feasible to modify the soft-
ware of existing tools without getting bogged down in the
legacy code. Without these tools, developers who modify
existing code risk breaking features that worked before.
When modifying existing software without automated
tests they face the unpleasant choice of manually verifying
that the previous features still work correctly or skipping
such validation and hoping for the best. Many developers
react to this choice by frequently cloning existing software
rather than modifying it to support new requirements.
Heavily cloned software is expensive to maintain and
hard to understand, which makes it even harder to modify
the existing codebase [27]. However, automated testing
and refactoring provide a way to overcome these chal-
lenges and to offer a level of quality that has often been
missing from academic software.

Core practices common to all of our projects

Although there are a variety of agile methods and prac-
tices, a group of practices was common to all of our
groups. These practices are:

e Automated unit tests

¢ Continuous integration
e Feature backlog

e Refactoring

e Open workspace

Most of these practices (automated unit tests, continuous
integration and refactoring) focus on automating the
development environment and emphasize the agile prin-
ciple of working software. Testing, especially automated
testing, is anecdotally fairly uncommon within biomedi-
cal informatics, but we have found it to be one of the most
valuable practices promoted by agile methodologies for
this domain. The feature backlog embodies the under-
standing that there can be an unlimited number of poten-
tial requirements with varying degrees of importance and

Page 10 of 12

(page number not for citation purposes)

BMC Bioinformatics 2006, 7:273

difficulty. The backlog provides a good mechanism to cap-
ture these potential features when they surface and to help
the customer elucidate and clearly express priorities. The
open workspace is useful for facilitating communication
within the development team. We believe that other bio-
medical software development groups adopting or con-
sidering agile methods should pay particular attention to
these practices. They appear to have broad value and
applicability in this domain.

There are a variety of ways to apply agile approaches

Every project is different. Even though there were com-
mon practices across our projects, the agile principles do
not prescribe a specific methodology or set of practices.
This freedom was reflected in the variety of approaches
used by our groups. Some used use cases, some did not.
Some used Scrum meetings, some did not. Groups also
varied in the lengths of their iterations. Despite the varia-
tion, each group used many practices typical of current
agile development approaches and aligned with the four
principles outlined in the Agile Manifesto.

Augmented practices developed

Several projects adopted practices that were not part of the
standard agile development portfolio. In some cases, we
needed new methods to work with loose collaborations of
internal and external groups. In another similar case, a
group of developers who supported multiple projects
needed better tools to work with the customer to balance
priorities among subprojects. In yet other cases, our
projects needed new methods to work with participants
not co-located with the core development team. Each of
the groups responded to these challenges by developing,
adapting or adopting additional practices. These addi-
tions were still consistent with agile principles and fit with
groups' other development practices.

Conclusion

Agile development methods have gained significant adop-
tion in a variety of software development domains. Our
experience demonstrates that many of the benefits of agile
documented for other domains extend to biomedical
informatics. These methods are well suited to the explora-
tory, iterative and collaborative nature of scientific
inquiry. We have identified a core set of practices com-
mon across all of the projects we examined, and we also
identified areas where there was significant variation
among the projects. We believe that others looking to
adopt these methods should focus attention on the com-
mon areas identified. The areas in which there is variation
are the areas where there is more flexibility to adapt to
local needs and circumstances. We have presented our
experience using agile development approaches in six bio-
medical software development organizations. Our
projects were typical of many biomedical projects in the

http://www.biomedcentral.com/1471-2105/7/273

field today, and we believe these experiences to be broadly
applicable.

Abbreviations
API Application Program Interface

QA Quality Assurance

RAD Rapid Application Development
RUP Rational Unified Process

XP Extreme Programming

Authors' contributions

DWK established the initial concept for the manuscript,
wrote drafts of the manuscript, edited contributions from
other authors, and gathered survey data from his organi-
zation.

MMH designed the second, more detailed agile practices
survey, interviewed each of the other authors, and collated
the responses for the group. He helped place these find-
ings into the paper, and edited drafts of the manuscript.

KFK, JAB, MWM and EGC contributed interview
responses for their organizations and helped draft the

manuscript.

Additional material

Additional file 1

Appendix. Survey questions asked about each site.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-273-S1.pdf]

Acknowledgements

We would like to thank Dana Eckart, David Fenstermacher and John Wein-
stein for the feedback that they provided on drafts of the paper. We would
also like to thank Warren Kibbe for his suggestions during early discussions
about the paper. This research was supported in part by the Intramural
Research Program of the NIH, National Cancer Institute, Center for Can-
cer Research. This research was supported in part by NIH grant U0
MH61915 to).S.T. and by the Bioinformatics Grid at Northwestern Univer-
sity (BioGNU).

References

I. Manhart P, Schneider K: Breaking the ice for agile development
of embedded software: an industry experience report. In
26th International Conference on Software Engineering (ICSE'04) Edin-
burgh, Scotland, United Kingdom. IEEE; 2004:378-386.

2. Schooenderwoert NV, Morsicato R: Taming the Embedded
Tiger — Agile Test Techniques for Embedded Software. In
Agile Development Conference (ADC'04) Sal Lake City, Utah. IEEE;
2004:120-126.

Page 11 of 12

(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-7-273-S1.pdf

BMC Bioinformatics 2006, 7:273

21.
22.
23.

24.

25.
26.

27.
28.
29.
30.
31

Freeman-Benson B, Borning A: YP and Urban Simulation: Apply-
ing an Agile Programming Methodology in a Politically Tem-
pestuous Domain. In Agile Development Conference (ADC'03) Salt
Lake City, Utah. IEEE; 2003:2-11.

Spayd MK: Evolving agile in the enterprise: implementing XP
on a grand scale. In Agile Development Conference (ADC'03) Salt Lake
City, Utah. IEEE; 2003:60-70.

Layman L, Williams L, Cunningham L: Exploring extreme pro-
gramming in context: an industrial case study. In Agile Devel-
opment Conference (ADC'04) Salt Lake City, Utah. IEEE; 2004:32-41.
Weinstein J: 2005.

Manifesto for Agile Software Development [http://www.agile
manifesto.org

Beck K: Test-driven development : by example Boston: Addison-Wesley;
2003.

Hunt A, Thomas D, Pragmatic Programmers (Firm): Pragmatic unit
testing in Java with JUnit Raleigh, NC: Pragmatic Bookshelf; 2003.
Rainsberger JB, Stirling S: JUnit recipes : practical methods for program-
mer testing Greenwich, CT: Manning; 2005.

Larman C: Agile and iterative development : a manager's guide Boston:
Addison-Wesley; 2004.

XPlanner [http://www.xplanner.org]

Beck K, Andres C: Extreme programming explained : embrace change
2nd edition. Boston, MA: Addison-Wesley; 2004.

FitNesse: the fully integrated standalone wiki, and accept-
ance testing framework [http://www fitnesse.org

Beck K, Fowler M: Planning extreme programming Boston: Addison-
Wesley; 2001.

Hohman MM: Estimating in Actual Time. In Agile 2005; Denver,
Colorado |EEE Computer Society; 2005:132-138.

Mock Objects [http://www.mockobjects.com]

JUnit, Testing Resources for Extreme Programming [http:/

WWWw.junit.org

CruiseControl: continuous integration toolkiit [http://cruise
control.sourceforge.net]

Fowler M, Beck K: Refactoring : improving the design of existing code
Reading, MA: Addison-Wesley; 1999.

Intelli) IDEA [http://www.jetbrains.com/idea/]

Eclipse [http://www.eclipse.org]

Manns ML, Rising L: Fearless change : patterns for introducing new ideas
Boston: Addison-Wesley; 2005.

McMahon P: Extending Agile Methods: A Distributed Project
and Organizational Improvement Perspective. Crosstalk 2005,
18:16-19.

Scaling Agile Methods [http://www.newarchitectmag.com/docu
ments/s=7576/na | 002e/index.html]

G Alleman MH: "Making Agile Development Work in a Gov-
ernment Contracting Environment". In 2003 Agile Development
Conference; June 25-28, 2003 Salt Lake City, UT; 2003.

Dikel DM, Kane D, Wilson JR: Software architecture: organizational prin-
ciples and patterns Upper Saddle River, NJ: Prentice Hall; 2001.
Schwaber K, Beedle M: Agile software development with scrum Upper
Saddle River, NJ: Prentice Hall; 2002.

Cockburn A: Agile software development Boston: Addison-Wesley;
2002.

Feature Driven Development [http://www.featuredrivendevel

opment.com]
DSDM Consortium [http://www.dsdm.org]

http://www.biomedcentral.com/1471-2105/7/273

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 12 of 12

(page number not for citation purposes)

http://www.agilemanifesto.org
http://www.agilemanifesto.org
http://www.xplanner.org
http://www.fitnesse.org
http://www.mockobjects.com
http://www.junit.org
http://www.junit.org
http://cruisecontrol.sourceforge.net
http://cruisecontrol.sourceforge.net
http://www.jetbrains.com/idea/
http://www.eclipse.org
http://www.newarchitectmag.com/documents/s=7576/na1002e/index.html
http://www.newarchitectmag.com/documents/s=7576/na1002e/index.html
http://www.featuredrivendevelopment.com
http://www.featuredrivendevelopment.com
http://www.dsdm.org
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	The Agile Manifesto
	Emergent requirements and iterative development

	Methods
	Results: multi-site comparison of agile practices
	Context and site characteristics
	Practices
	Capturing requirements
	Automated acceptance testing
	Open workspaces
	Project planning and prioritization

	Iteration planning
	Estimation
	Release planning
	Decision making
	Coding practices
	Automated testing
	Refactoring
	Pair programming

	Adoption of Agile Practices

	Discussion
	Shift from how this community has traditionally approached software
	Agile methods are valuable for bioinformatics projects
	Adapting to change
	Enabling collaboration
	Need for software quality

	Core practices common to all of our projects
	There are a variety of ways to apply agile approaches

	Augmented practices developed

	Conclusion
	Abbreviations
	Authors' contributions
	Additional material
	Acknowledgements
	References

