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Abstract

Background: The excessive production of lactic acid by L. bulgaricus during yogurt storage is a phenomenon we are
always tried to prevent. The methods used in industry either control the post-acidification inefficiently or kill the
probiotics in yogurt. Genetic methods of changing the activity of one enzyme related to lactic acid metabolism make
the bacteria short of energy to growth, although they are efficient ways in controlling lactic acid production.

Results: A model of pH-induced promoter regulation on the production of lactic acid by L. bulgaricus was built.
The modelled lactic acid metabolism without pH-induced promoter regulation fitted well with wild type L.
bulgaricus (R2LAC = 0.943, R2LA = 0.942). Both the local sensitivity analysis and Sobol sensitivity analysis indicated
parameters Tmax, GR, KLR, S, V0, V1 and dLR were sensitive. In order to guide the future biology experiments, three
adjustable parameters, KLR, V0 and V1, were chosen for further simulations. V0 had little effect on lactic acid
production if the pH-induced promoter could be well induced when pH decreased to its threshold. KLR and V1
both exhibited great influence on the producing of lactic acid.

Conclusions: The proposed method of introducing a pH-induced promoter to regulate a repressor gene could
restrain the synthesis of lactic acid if an appropriate strength of promoter and/or an appropriate strength of
ribosome binding sequence (RBS) in lacR gene has been designed.

Background
Lactobacillus delbrueckii subsp. bulgaricus has been widely
applied in diary industry, especially as a starter for yogurt
production. This microorganism is facultative anaerobic
and can produce lactic acid. During the later period of
fermentation and storage of yogurt, the production of
lactic acid is dominated by L. bulgaricus [1]. The excessive
production of lactic acid during storage makes the yogurt
taste too sour and this phenomenon is called post-
acidification.
At industrial level, several attempts have been made to

slow down post-acidification, such as using devoid of L.
bulgaricus, selecting the weak post-acidification L. bul-
garicus, pasteurization after fermentation and so on

[2-4]. However, these methods either control the post-
acidification inefficiently or kill the probiotics in yogurt.
Using genetic technology to modify the bacteria has
become another option to decline post-acidification.
Due to lacking molecular tools, mainly caused by the
absence of a reliable transformation procedure, our
understanding of the physiology and genetics of L.
bulgaricus is still limited [5].
In L. bulgaricus, the absorption of lactose is processed

by lactose/galactose antiport transport system [6].
Firstly, lactose is transported into cells by lactose per-
mease encoded by lacS gene. Then the lactose is decom-
posed into glucose and galactose by b-galactosidase
encoded by lacZ gene. The free galactose is pumped out
of cells or stored in cells in the form of macromolecule
i.e. carbohydrate gum. Glucose turns into pyruvate
through glycolysis, and the glycolysis is transformed into
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lactic acid by the catalysis of lactate dehydrogenase [7-9].
The lacS gene and the lacZ gene constitute a lacSZ
operon. In the downstream of lacZ gene, there is a lacR
gene encoding a repressor which makes the lacSZ operon
induced by lactose. However, in L. bulgaricus, the lacR
gene has lost regulatory function due to the insertion of
some gene fragments, resulting in constitutive expression
of lacSZ operon [10].
Due to our limited knowledge, most attempts at the

genetic level focused on changing the activity of one signi-
ficant enzyme at a time in the metabolism of lactic acid.
Druesne altered the Histidine codon to Alanine codon at
the 552th locus of lactose permease, resulting in the
reduction of the enzyme’s activity [11]. Early in 1990,
Molletobtained the mutant L. bulgaricus without b-
galactosidase activity by spontaneous deletion [12]. The
new aforementioned organisms did produce less lactic
acid but they had trouble in growing in milk indepen-
dently due to the lack of energy. Adams selected two cold-
sensitive mutants of the b-galactosidase from L. bulgaricus
by using the expression system of E. coli [13]. However,
their later research turned back to directly mutate and
screen L. bulgaricus since it was difficult to transform
with L. bulgaricus.
So far, Lactobacillus delbrueckii subsp. bulgaricus ATCC

11842 has been reported successfully transformed by
electroporation, although with very low reproducibility and
efficiency [5,14]. Several pH-induced promoters from Lac-
tococcus lactis have been demonstrated, such as rcfB [15],
P1 and P170 [16]. Combining the two points mentioned
above, we came up with a new method to build a pH-
induced promoter with a repressor gene controlling the
production of lactic acid. Thus, we could turn on the
switch at appropriate time. Here we analyse the parameters

in the kinetic model to investigate the regulation effect of
pH-induced promoter on lactic acid.

Methods
The reduced metabolic network
Here we present a model of the production of lactic acid,
which includes the important enzymes, lactose permease,
b-galactosidase, lactate dehydrogenase and related regula-
tion genes lacS, lacZ, lacR, as shown in Figure 1. The
process of glycolysis is reflected in one reaction, adopting
the assumption that there is a constant flux from glucose
to pyruvate. Pyruvate is partly catalysed to lactic acid, and
the other two products, acetyl-CoA and butanedione, are
not taken into account.

The mathematical model
The mathematical model describes how the extracellular
pH value influences the production of lactic acid. The
ordinary differential equations in the model are based on
Michaelis-Menten equations [18] and fundamental kinetic
principles. The variables are described in Table 1. The
model assumptions are as follows.

(1) Each entity, described in Table 1 is given as total
amount in the population.
(2) The model does not take energy metabolism into
consideration.
(3) All reactions are modelled by mass action prin-
ciples, except for enzyme reactions which obey
Michaelis-Menten equation, and transcription
which obeys saturation kinetics.
(4) The level of translation product is assumed to be
proportional to mRNA levels according to Dockery
and Keener [19].

Figure 1 A schematic of metabolic and gene regulation network model of the production of lactic acid. The LacS, LacZ and LDH
represent lactose permease, b-galactosidase, and lactate dehydrogenase respectively. When the extracellular pH reduces to 5.5, the pH-induced
promoter (we chose rcfB promoter as an example) will trigger the express of LacR. The accumulation of LacR will combine with the operator
sequence upstream of lacS gene, inhibiting the expression of LacS and LacZ [17].
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(5) There is no delay in synthesis of either component
or delay because of protein transportations.
(6) All substances are subject to degradation.

The metabolism of lactose
As mentioned before, the metabolism of lactose is
described by Michaelis-Menten equation. Since lactose
transport is reversible, a term was included to count for
lactose efflux dependent on the internal lactose concentra-
tion [20]. The Vmax for lactose permease and b-galactosi-
dase is associated with the concentration of enzymes, so
we use Kcat and the concentration of enzymes to estimate
the Vmax. Since the lac operon is usually induced by
lactose, we assume that the repressor LacR protein could
react with lactose. Thus we need to take the reduction into
consideration when evaluating the concentration of intra-
cellular lactose and LacR protein. As for the utilization of
sugar, L. bulgaricus belongs to the type of homofermenta-
tion. Theoretically, this microorganism could totally con-
vert glucose to lactic acid, but the conversion of glucose is
about 80%-90% in practice [21]. Therefore, the estimated
proportion of pyruvate transformed into lactic acid is 80%.
The gene regulation
The transcription and decomposition of lactose are
tightly regulated at the genetic level: production of the
enzymes can be decreased at the transcriptional level by
regulatory protein LacR binding at appropriate DNA
sites. We set M to stand for the transcript concentration
of lacR gene. Since lacS and lacZ are located in the
same operon, it is assumed that both genes are tran-
scribed at same rate. We used N to describe the concen-
tration of the two genes’ mRNA. When describing the
equations, the mRNAs are assumed to be transcribed at
two distinct rates: basal one when there is no regulation
and a higher/lower rate when being regulated [22].
The transcription of lacR gene
For M, it is described as function (1). The basal rate is
given by V0 and increased at a constant rate V1 which is
regulated by the pH value. GR stands for the repressor
gene concentration. The degradation of the mRNA occurs

at the rate of dM. It is also diluted due to cell growth rate
at μ. We assumed the decrease of mRNA is first-order
proportion to the concentration of M.

dM
dt

=
(
V0 + V1 · F

(
pH

)) · GR − (dM + μ) · M (1)

As the mechanisms of pH-induced promoters have not
been fully elucidated, we included a generic pH-dependent
switch F(pH) which turns on when pH value is below the
threshold. The switch takes the form of the smoothed step
function [23], where 5.5 represents the threshold pH level
around which the switch occurs [15]. n indicates the steep-
ness of the smooth switch function.

F(pH) = 1 − tanh
(
n · (pH − 5.5

))
(2)

Since lactic acid is the main product during fermentation,
we assumed pH value is all controlled by the concentration
of lactic acid. Besides, we needed to take the buffer capacity
of milk medium into account. Furthermore, we assumed
that all the lactic acid could spread to the medium even
when the extracellular concentration was pretty high. We
tested the pH value of milk medium when different amount
of lactic acid was added. Three parallel experiments were
taken and we fitted a function as the form of function (3).
To the pH data, c0, c1 and c2 are constants. This function
was then fed into the model via the switch function F(pH).

pH = c0 − c1 · LA + c2 · (LA)2 (3)

Transcription of lacS and lacZ gene
For N, it is described as function (4). The basal rate is
given by V2 and the transcription is inhibited by LacR. For
the part to simulate the regulation rate of LacR, Tmax

stands for the maximal rate of lacS and lacZ gene tran-
scription, S represents the sensitivity of lacS and lacZ gene
transcription to lactose permease and b-galactosidase [24].
G is the concentration of transcription gene. Again, we
assumed first-order degradation rate at dN and dilution
rate at μ of the mRNA.

dN
dt

=
(

V2 − Tmax · S · LR
1 + S · LR

)
· G − (dN + μ) · N (4)

Cell growth
In milk medium, lactose is the main carbon source, so it
is assumed that the cell growth rate is dependent on the
extracellular lactose concentration. The product, lactic
acid, which declines the pH value of milk medium per-
forms inhibition on cell growth. The function to
describe the production inhibition is the same as Con-
cepcion presented [21]. In function (5), Ks is the Monod
constant for growth in extracellular lactose, and μmax is
the maximum specific growth rate. KLA is the maximum

Table 1 Variables used in the model

Variable Description Units

LACout Concentration of lactose out of the cells mol/L

LACin Concentration of lactose in the cells mol/L

GLC Concentration of glucose in the cells mol/L

PYR Concentration of pyruvate in the cells mol/L

LA Concentration of lactic acid out of the cells mol/L

LR, LS, LZ Concentration of LacR protein, lactose
permease, b-galactosidase in the cells

mol/L

M Concentration of the mRNA of lacR gene mol/L

N Concentration of the mRNA of lacS and lacZ gene mol/L

X Concentration of cell mass g/L
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initial lactic acid concentration in which the microor-
ganism growth is completely inhibited.

μ = μmax ·
(

LACout

LACout + Ks

)
·
(

1 − LA
KLA

)
(5)

Combining the metabolism of lactose with gene regulation
All the definitions of the parameters are shown in Table 2.
Combining with the enzyme reactions, gene regulations
and cell growth discussed above, the process described in
Figure 1 could be represented by:

R1 =
Kcat·LP · LS · LACout

LACout + Km·LP

R2 =
Kcat·LP · LS · LACin

LACin + Km·LP

R3 =
Kcat·GAL · LZ · LACin

LACin + Km·GAL

R4 =
Vmax ·GLYC · GLU
GLU + Km·GLYC

R5 =
Vmax ·LDH · PYR
PYR + Km·LDH

R6 = V0 · GR

R7 = V1 · F(pH) · GR

R8 = (dM + μ) · M

R9 = KLR · M

R10 = Kb · LR · LACin

R11 = (dLR + μ) · LR

R12 = V2 · G

R13 =
(

Tmax · S · LR

1 + S · LR

)
· G

R14 = (dN + μ) · N

R15 = KLS · N

R16 = (dLS + μ) · LS

R17 = KLZ · N

R18 = (dLZ + μ) · LZ

R19 = μ · X

(6)

The final metabolic model is given by:

dLACout

dt
= −R1 + R2

dLACin

dt
= R1 − R2 − R3 − R10

dGLU

dt
= R3 − R4

dPYR

dt
= 2R4 − 0.8R5

dLA
dt

= 0.8R5

dM
dt

= R6 + R7 − R8

dLR
dt

= R9 − R10 − R11

dN
dt

= R12 − R13 − R14

dLS
dt

= R15 − R16

dLZ
dt

= R17 − R18

dX
dt

= R19

(7)

We set stoichiometric constant of R4 with two since
two molecules of pyruvate are formed from one mole-
cule of glucose. For the stoichiometric constant of R5, it
stands for the proportion of pyruvate which is converted
to lactic acid.
Data estimated
Firstly, we did not take lacR gene into consideration.
This is just the case of wild type L. bulgaricus which
lacSZ operon is constitutive expression. Since most of
the parameters in this reduced model have been
reported, V2 is the only one needs to be modified. We
used SBToolbox in Matlab to set up the reduced model
and simulated the metabolism process [30]. We com-
pared the concentration changes of extracellular lactose
and lactic acid within 8 hours with the data from
Fatama, where the conditions used were 43 °C, 8% of
skim milk concentration (without pH value control) and
4% of inoculum ratio [31]. After that, we added lacR
gene. This time we did not have sufficient data for full
parameterization of the model. However, we did have
enough information to estimate their relative sizes and
give the qualitative nature of our investigations. The
parameter values are listed in Table 2.
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Sensitivity and significance analysis of parameters
We still used SBToolbox to perform local sensitivity analy-
sis and Sobol’s method for global sensitivity analysis. The
local sensitivity analysis investigates how small changes in
a single parameter value could affect the model output.
The method is based on the partial differentiation of the
output with respect to the input parameters [32]. Herein,
the partial differentiation is evaluated numerically by
introducing a 1% increment from the specific parameter
value. We chose Sobol sensitivity analysis method to cal-
culate global sensitivity since the sensitivity index quanti-
fied the overall effects of a parameter, in combination with
any other parameters, on the model output [33]. The
number of simulation to carry out is 10000 times. We first
set the number as 1000 according to Schmidt [30]. Since
the results are varied among different simulations, we
increased the number to 10000 and got stable outcomes.
During the above sensitivity analysis, we chose lactic acid
concentration as the model output.
After figuring out the sensitivity parameters to the

model output, we carried out different simulations with
each sensitivity parameter at two levels, a relative low

value and a relative high value. The metabolism of lactic
acid and changing of pH values was carefully considered.
Those results indicate how pH values affect lactic acid
production under different situations and help us to
understand how to design LacR regulation in biology
experiments in future.

Results and discussion
Reduced model without lacR gene
The results of modelled concentration changing of extra-
cellular lactose and lactic acid are shown in Figure 2,
along with the experimental data. The model fits the
experimental data well. We have obtained the value of
V2, which indicates the basal rate of lacSZ gene transcrip-
tion. The relative size of fitting value (V2 = 3.5 h-1) is
determined according to Gustafsson’s [24] report.

Sensitivity analysis of parameters
The results of local sensitivity analysis and Sobol sensitiv-
ity analysis are shown in Figure 3. The parameters with
sensitivity from high to low in local sensitivity analysis
are followed as Tmax, GR, KLR, S, V2, dM, V1, umax, dLR

Table 2 List of parameters used in the model

parameter definition value reference/derivation

Km·LP Michaelis constant for lactose permease 2.6 × 10-4 M Patrick et al. (1997) [20]

Kcat·LP rate constant for lactose transportation 1.29 × 105h-1 Patrick et al. (1997)

Km·GAL Michaelis constant for b-galactosidase 9.8 × 10-4M Moez et al. (2009) [25]

Kcat·GAL hydrolysis rate for lactose 1.65 × 105h-1 Moez et al. (2009)

Km·GLYC Michaelis constant for glycolysis 1 × 10-4M L. Lactis Marcel et al. (2002) [26]

Vmax·GLYC maximum reaction speed when enzymes was saturated by substrate 143.82M·h-1 L. Lactis Marcel et al. (2002)

Km·LDH Michaelis constant for lactate dehydrogenase 0.1 M L. Lactis Marcel et al. (2002)

Vmax·LDH maximum reaction speed when lactate dehydrogenase was saturated by
pyruvate

307.08M·h-1 L. Lactis Marcel et al. (2002)

KLS LacS synthesis rate constant 564 h-1 Kennell et al. (1977) [27]

dLS LacS decay rate constant 0.6 h-1 Kennell et al. (1977)

KLZ LacZ synthesis rate constant 1.13 × 103h-1 Kennell et al. (1977)

dLZ LacZ decay rate constant 0.6 h-1 Kennell et al. (1977)

KLR LacR synthesis rate constant 564 h-1 Assumed

dLR LacR decay rate constant 0.6 h-1 Assumed

dM , dN mRNA decay rate constant 41.58 h-1 Varmus et al. (1970) [28] and Patrick et. al.
(1997)

GR, G lacR, lacSZ gene concentration 2.5 × 10-9 M Cheng et al. (2001) [29]

n steepness of the smooth switch function 1 Akyol et al. (2008) [15]

Kb LacR/lactose binding rate constant 7.2 × 104 M-

1·h-1
Assumed

V0 basal rate of lacR gene transcription for mRNA 1 h-1 Assumed

V1 increasing constant of lacR gene transcription for mRNA 20 h-1 Assumed

V2 basal rate of lacSZ gene transcription for mRNA 3.5 h-1 Obtained by ‘fitting’

Tmax maximum rate of lacSZ gene transcription 6 × 104 h-1 Assumed

S sensitivity of lacSZ gene transcription to LacS and LacZ 1000 Guessed

KS saturation constant for growth of L. bulgaricus on extracellular lactose 9.82 × 10-3 M Concepcion et al. (2000) [21]

KLA maximum lactic acid concentration to inhibit the growth of L. bulgaricus 0.448 M Concepcion et al. (2000)

μ maximum growth rate 0.8 h-1 Concepcion et al. (2000)
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and V0. The other parameters perform little effect on the
production of lactic acid. The reason is that when one of
those parameters increased, it would only affect the pro-
duction rate of the output but have no effect on the total
amount of lactic acid. Thus, they are not sensitive para-
meters in this method. As for Sobol sensitivity analysis,
the parameters with sensitivity from high to low is Tmax,
Km·LP, KLZ, KLR, GR, Km·LYC, V0, S, dLS, V1, dN, V2 and
dLR. The parameter Km·LP shows the second most sensi-
tivity in Sobol’s method, just as Druesne has proven, the
reduction of lactose permease’s activity would greatly
decline the production of lactic acid [11].

Significant analysis of parameters
In sensitivity analysis, sensitivity does not mean impor-
tance, since sensitive parameters are always fixed inherently

and unadjustable. We need to combine the sensitivity
results with operability, especially for the design of biology
experiments. Although Tmax, KLZ, V2, dLS, dLR, GR, dM, dN
and umax perform high sensitivity in both methods, these
parameters are usually inherently. Km·LP value is adjustable,
but to decrease its value would generate fatal disadvantage
on the growth of the bacteria. So we do not include this
parameter into consideration. Due to the same reason, we
exclude Km·GLYC, which is the Michaelis constant for glyco-
lysis. As for the parameter S, which means sensitivity of
lacSZ gene transcription to LacS and LacZ proteins, it is
difficult to measure and adjust in experiments. Therefore,
the parameters which exhibit great influence on the pro-
duction of lactic acid in both methods are KLR, V0 and V1,
with KLR representing RBS strength of lacR gene, and V0

together with V1 reflecting characters of the pH-induced
promoter.
For the three parameters, the relative high levels of

KLR, V0 and V1 are 1128 h-1, 1 h-1 and 21 h-1 respec-
tively. The relative low levels of KLR, V0 and V1 are 564
h-1, 0.1 h-1, 10.5 h-1 respectively. The results are shown
in Figure 4. From picture A, we could figure out that
with the increase of promoter strength, the production
rate and amount of lactic acid would be greatly
decreased. However, for the relative high value of V1,
the finial pH value only declines to 4.83 which is higher
than casein isoelectric point. Thus we need to find an
appropriate promoter strength between the relative high
and low values when it is turned on by pH value. From
picture B, we could draw the conclusion that if the pH-
induced promoter could be efficiently turned on when
pH decreases to its threshold, leaking expression of the
promoter would have little effect on the production of
lactic acid. In picture C, the increase of KLR leads to
strong decline of both the production rate and total
amount of lactic acid. By comparing the results of rela-
tive high level KLR with the relative high level V1 in
picture A, the two parameters almost perform the same

Figure 2 Simulation of batch fermentation conversion of
lactose to lactic acid using wild type L. bulgaricus. The initial
conditions were 43 °C 8% of skim milk concentration (without pH
value control) and 4% of inoculum ratio. The dots and triangles
indicated the measured concentration of lactose and lactic acid in
the medium, respectively, every two hours. The curves were the
simulated results of lactose and lactic acid concentration in 8 hours.

Figure 3 Local sensitivity analysis and Sobol’s method of global sensitivity analysis. A Local sensitivity analysis B Sobol’s method of global
sensitivity analysis
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Figure 4 The effects of V1, V0 and KLR on the production of lactic acid and pH. The variations of lactic acid and pH in wild type are set as
blank control. The curves indicated the simulated concentration of lactose and pH along with time under different values of V1, V0 and KLR. A
The effects of V1 (10.5 h-1 or 21 h-1), where V0 = 1 h-1, KLR = 564 h-1. B The effects of V0 (0.1 h-1 or 1 h-1), where V1 = 10.5 h-1, KLR = 564 h-1. C
The effects of KLR (564 h-1 or 1128 h-1), where V0 = 1 h-1, V1 = 10.5 h-1
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influence on the production of lactic acid. This is due to
the reason that the two parameters both affect the concen-
tration of LacR. Therefore, we could adjust the strength of
pH-induced promoter and/or RBS strength of lacR gene
to make our switch perform well in controlling lactic acid
production.
Other two important features for the promoter are the

threshold pH level around which it would start and
whether the promoter would keep turning on when the
pH value decreased to 3.5 or lower. Akyol [15] and
Madsen [16] only described the status of pH-induced
promoters along with the pH declined to 5.5. Further
experiments are needed to test the characteristics of the
promoters. This model neglect the effect of lower pH
on the promoter, assuming that it would still turn on
with the decrease of pH value.

Conclusions
In conclusion, we propose a new method to control the
production of lactic acid by L. bulgaricus which is to build
a pH-induced switch (promoter) to turn on repressor
gene. The proposed method overcomes the disadvantage
in bacterial growth by directly changing one of the enzyme
related to lactic acid metabolism. Then, we build a
reduced model of pH-induced promoter regulation on the
production of lactic acid and adjust the model with data
from wild type L. bulgaricus. After that we carry out sensi-
tivity analysis of the parameters and figure out three signif-
icant ones in the model. To make our switch work well,
we need to find an appropriate strength of promoter and/
or an appropriate strength of RBS in lacR gene. The values
of those two parameters should between the high level and
low level we have set in the analysis, so that when the pH
value declines to the promoter’s starting point, the lacR
gene could express moderately to inhibit the production
of lactic acid.
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