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Abstract

Background: Neural stem cells are motile and proliferative cells that undergo mitosis, dividing to produce daughter
cells and ultimately generating differentiated neurons and glia. Understanding the mechanisms controlling neural
stem cell proliferation and differentiation will play a key role in the emerging fields of regenerative medicine and
cancer therapeutics. Stem cell studies in vitro from 2-D image data are well established. Visualizing and analyzing large
three dimensional images of intact tissue is a challenging task. It becomes more difficult as the dimensionality of the
image data increases to include time and additional fluorescence channels. There is a pressing need for 5-D image
analysis and visualization tools to study cellular dynamics in the intact niche and to quantify the role that
environmental factors play in determining cell fate.

Results: We present an application that integrates visualization and quantitative analysis of 5-D (x, v, z, t, channel) and
large montage confocal fluorescence microscopy images. The image sequences show stem cells together with blood
vessels, enabling quantification of the dynamic behaviors of stem cells in relation to their vascular niche, with
applications in developmental and cancer biology. Our application automatically segments, tracks, and lineages the
image sequence data and then allows the user to view and edit the results of automated algorithms in a stereoscopic
3-D window while simultaneously viewing the stem cell lineage tree in a 2-D window. Using the GPU to store and
render the image sequence data enables a hybrid computational approach. An inference-based approach utilizing
user-provided edits to automatically correct related mistakes executes interactively on the system CPU while the GPU
handles 3-D visualization tasks.

Conclusions: By exploiting commodity computer gaming hardware, we have developed an application that can be
run in the laboratory to facilitate rapid iteration through biological experiments. We combine unsupervised image
analysis algorithms with an interactive visualization of the results. Our validation interface allows for each data set to
be corrected to 100% accuracy, ensuring that downstream data analysis is accurate and verifiable. Our tool is the first
to combine all of these aspects, leveraging the synergies obtained by utilizing validation information from stereo
visualization to improve the low level image processing tasks.
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Background

Neural stem cells (NSCs) are motile and proliferative cells
that undergo mitosis, dividing to produce daughter cells
and ultimately producing differentiated neurons and glia.
Understanding the mechanisms controlling NSC migra-
tion and proliferation will play a key role in the emerging
field of regenerative medicine and in cancer therapeutics.
All of the cells in a clone are genetic copies of the orig-
inal stem cell. Image-based analysis of static 3-D images
demonstrated the important relationship between neu-
ral stem cells and blood vessels, and the propensity of
both adult and embryonic NSCs to seek out and main-
tain distinct spatial relationships with respect to vascu-
lature known as their vascular niche [1-3]. Confocal and
multiphoton microscopes that contain integrated incuba-
tion systems are able to image live NSCs together with
blood vessels in intact tissue slices, with 5-D image stacks
(x,7,2,t, 1) captured at intervals (e.g. 20 min.) over a
period of 16—20 hours. Here, A represents spectral infor-
mation from a fluorescent label. By labeling the blood
vessels and the NSCs with different fluorescent markers,
these microscopes are able to capture image sequence
data that show the dynamic behaviors of migrating prolif-
erating NSCs while simultaneously capturing the relation-
ship to other structures including blood vessels. We have
developed an application that for the first time enables
the use of time-lapse microscopy data to quantify the
dynamic relationship between clones of mammalian NSCs
and their niche in intact tissue containing vasculature and
live proliferating cells.

The analysis of clones of migrating proliferating NSCs
starts with segmentation, the delineation of individual
cells in each image frame. Tracking then establishes tem-
poral correspondences between segmentation results.
Finally, lineaging establishes parent-daughter relation-
ships across mitotic events. The analysis of stem cell clonal
dynamics to date has consisted primarily of extracting and
analyzing a lineage tree generated from cultured cells. A
lineage tree is a graphical representation showing each
cell’s division time and the offspring it produces. Each
daughter cell is a genetic copy of its parent cell. A lineage
tree is often referred to as a clone of stem cells. Lineages
also indicate the population dynamics of clones of stem
cells, showing the lifespan and parentage of each cell in
the clone, as well as indicating the phenotype of differenti-
ated progeny. These trees summarize patterns of division
(i.e. symmetric or asymmetric, cell cycle time, number of
divisions, etc.) and differentiation in a single view. The lin-
eage tree is a key tool in the analysis of stem cell clonal
dynamics. In addition to tree level features, we can ana-
lyze cellular properties such as motion and morphology
using tools such as Algorithmic Information Theoretic
Prediction and Discovery (AITPD) [4,5]. AITPD analyzes
the patterns of cellular dynamic behavior for individual
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cells established by segmentation, tracking and lineaging.
It can accurately predict development potential for indi-
vidual NSCs. Previously, we have shown that software in
conjunction with AITPD enables the search for behav-
ioral markers of different functional subtypes as well as the
potential discovery of molecular mechanisms controlling
stem cell proliferation [6]. There is a pressing need for new
approaches to visualize and validate 5-D image sequence
data of proliferating mammalian cells to enable quan-
titative analysis of the mechanisms controlling cellular
proliferation and differentiation.

While it is possible to analyze the dynamic behaviors
of stem cells in a manner that is robust to segmenta-
tion errors, any errors in tracking or lineaging are likely
to corrupt all subsequent analysis. For in vitro phase con-
trast time lapse image sequence data (2-D) we recently
developed a software tool called LEVER that allows a
biologist to run automated segmentation, tracking, and
lineaging on image sequence data in the laboratory [6].
LEVER displays the lineage tree in one window, while
the image sequence data with segmentation and track-
ing results overlaid are displayed in a second window.
Navigation and editing can be done on either window.
The interface is designed so that users are able to easily
identify and quickly correct any mistakes in the auto-
mated image analysis. We have found in this work and in
previous studies that the vast majority of errors in track-
ing and lineaging are the result of segmentation errors
[5,6]. These errors happen often when the number of cells
in a given area have been incorrectly estimated. LEVER
uses an inference-based learning approach, which propa-
gates user-supplied corrections forward to reduce errors
on later frames. Here we present an application called
LEVER 3-D which displays image data in full stereoscopic
3-D and includes a utility to reconstruct 3-D image mon-
tages with the intent to be run in the biology lab. LEVER
3-D uses commodity gaming hardware to implement a
high-performance interactive system for validating and
correcting the automated image analysis results for 5-D
stem cell data. This will allow the biologist to better under-
stand stem cell dynamics and regulation within the neural
stem cell micro-environment.

Methods

A total of 18 5-D image sequences showing adult
mouse neural stem cells, ependymal cells, and vas-
culature were analyzed. The stem cells were imaged
within a 3D wholemount explant culture of the sub-
ventricular zone (SVZ) of the brain. Each 5-D voxel
location is specified as (x,9,z,¢t,A) where A refers to
a multichannel fluorescence signal, one channel imag-
ing NSCs, the second channel containing ependymal
cells and vasculature. The movies were captured on two
microscopes at two different laboratories. SVZ whole-
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mounts were dissected under a dissection microscope
as described previously [7,8] from transgenic mice
that express green fluorescent or tomato red fluores-
cent protein in neural stem cells (FVB/N-Tg(GFAPGFP)
14Mes/], the Jackson Laboratory; Ascl1tml-1(cre/ERT2),
B6.Cg-Gt(ROSA)?2650rtm9(CAG-tdTomato) NSCT), Briefly, the
brain was removed and halved and the cortex was peeled
back to reveal the SVZ. A scalpel was used to make a
2—4 mm cut on the striatal side of the SVZ and watch-
maker forceps were used to clip off the SVZ at the anterior
and posterior sides and carefully transferred into phos-
phate buffered saline containing 5 p1g/ml Alexa Fluor 647
conjugated Isolectin GS-IB4 (Life Technologies) on ice for
20 minutes to label the ependyma and blood vessels. SVZ
wholemounts were transferred SVZ side down to a glass
bottomed culture dish (MatTek Corporation) and immo-
bilized by covering with cold (4°C) growth factor free
Matrigel (BD Biosciences) and immediately transferred to
an incubator set at 37°C with 5% CO2 for 20 minutes to
allow the Matrigel to solidify. Freshly made slice culture
medium was added to the culture dish and the dish was
placed on a Zeiss LSM780 confocal microscope equipped
with an environmental enclosure set at 37°C and 5% CO,.
The pinhole was set at 2 AU and Z stacks (25 1 um steps)
were collected every 20 minutes using a 20X objective
for 16 hours. Spatial resolution was 512x512, at a pixel
spacing of 0.8 yum for a total of 1.3 GBytes of image data
at 32 bits per voxel (BPV). At this resolution, the entire
image sequence can be downloaded to the video RAM on
a 1.5 GB card, with room left for the frame buffer and
back buffer. Images were also captured on a Zeiss LSM510
confocal microscope at a spatial resolution of 1024 x 1024
at a pixel spacing of 0.3 um for up to 20 hours, result-
ing in as much as 5 GBytes of image data per sequence.
These larger sequences require the image sequence data
to be buffered in system memory, a task that is handled
automatically by the display driver. Interestingly, less pro-
liferation was observed in image sequences captured at
the higher spatiotemporal resolution. Once the 5-D image
sequence data has been captured it is imported directly
from the microscope output file using the open source
Bioformats application.

Processing of the 5-D image sequence data begins by
using the open-source BioFormats [9] tool to convert the
native microscope data (Zeiss LSM file) into intensity val-
ued tiff images. The use of BioFormats enables LEVER 3D
to work not only with the Zeiss specific file formats, but
with file formats used by most of the major microscope
manufacturers. In addition to the image data, BioFormats
extracts the imaging settings including the spatiotemporal
resolution used to account for image anisotropy, providing
scaling for the tracking and distance-based calculations.

Figure 1 illustrates the flow of data and processing steps
used to go from the raw input image sequence data to a
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Figure 1 Schematic Diagram of LEVER 3-D. This flow chart shows
the process in which LEVER 3-D uses automated algorithms along
with user inputs to create a 100% corrected lineage tree. Note the
feedback loop from the “Validation and Correction” section back into
“Segmentation” and “Tracking’.

fully validated and corrected clonal tracking and lineag-
ing. Figure 1 also illustrates the main software compo-
nents used including CUDA for efficient image processing
from C++, MATLAB for 2-D visualization of the lin-
eage tree and data analysis and export, and Direct 3D for
3-D rendering and visualization. Each of these steps is
described in more detail throughout the remainder of this
section.

Background noise removal

Confocal and multiphoton fluorescence microscopy of
live stem cells is a battle between capturing enough signal
and the disturbance of the specimen. Imaging is done in
a manner that maximizes the signal-to-noise ratio (SNR)
of the image data while being minimally invasive. Using
less excitation energy causes less phototoxicity and dis-
turbance to sensitive proliferating cells. This means that
in practice, SNR ends up being quite low. One way to
improve the analysis of this large volume of challenging
image sequence data is to apply pre-processing tech-
niques that model the underlying dynamic data and noise
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processes. Here we use two different background noise
removal techniques for the stem cell and the vascula-
ture channel to better match the characteristics of the
objects being imaged. These background noise removal
algorithms provide the benefit both of removing noise
and of providing adaptive contrast enhancement. This
simplifies and improves the performance of the subse-
quent visualization transform as well as the cell and vessel
segmentation algorithms.

For the stem cell channel, we adapt the background
noise removal technique described by Michel et al. [10]
that models the noise as a slow varying low-frequency
background noise signal combined with a random (shot)
noise process. Our approach differs slightly in that rather
than using extreme value theory and peaks over thresh-
olds approach to detecting fluorescent particles, we use
a segmentation approach based on mathematical mor-
phology combined with an adaptive Otsu transform [11]
on the filtered image as described in the “Segmentation”
section. This technique works as following: given the
observed image (L) that we model as a combination of
low-frequency background (B), random shot noise (R)
and the original (denoised) image (L) that we wish to
recover,

~ A

I=B+R+1I. )

The low-frequency background contribution (B) is esti-
mated using a low pass (Gaussian) filter. The size of the
neighborhood for the Gaussian filter can be set by the
user, but is defaulted to 100 in each (X,Y,Z) dimension.
When subtracting the results of this filter that had a large
neighborhood, structure is preserved. Making the neigh-
borhood too small will subtract away too much structure
and the image will lose substantial overall energy. We have
found that neighborhoods sizes in the range 75-250 give
expectable results. However, going above 100 gives dimin-
ished returns. After subtracting the estimated background
component from the observed image, the high frequency
shot noise is removed using a median filter to produce the
final denoised stem cell image used in the visualization
transfer functions and the segmentation algorithm.

The above denoising approach works well on the stem
cell channel where the foreground voxels (or pixels with
a third dimension) are found in relatively small high fre-
quency regions corresponding to cells. In the vasculature
channel, foreground voxels can constitute large portions
of the image corresponding to dense regions of blood
vessels. For denoising the vasculature channel we have
adopted a different denoising approach using Markov ran-
dom fields [12] and a global estimate of noise variance
rather than the local background estimate used in the stem
cell channel. This is an iterative technique that first esti-
mates the noise variance & for the original image 1° by
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convolving it with a Laplacian operator. This noise vari-
ance estimation is used as the stopping condition for our
iterative denoising where we keep the " image that is as
different from the original image as our noise estimator
predicted,

1t -1 < 5. (2)

Each iteration changes a voxel by the minimum value A,
where A = ming,¢;q-£r [v4 — v,| and v; is the finite set of
voxel values in the image. In other words, A is the mini-
mum gap found on the current histogram. Each iteration
adjusts the intensity of every voxel by a A depending on
the gradient of the neighborhood, as defined as:

n+l _ m n _
Lijge =1ije+ A xsgn [Sgn <Ii71,j,k Ii,j,k>

+ sgn (Ifj,k - Iiiu,k) +sen (Igf—lyk - 13/’*)
3)

+ sgn (Ii’,‘j’k — Ifj,kﬂ)] .

This gradient decent/accent is continued until the stop-
ping criterion & is met. The background denoising algo-
rithms for both the vasculature and stem cell channels
simplify segmentation, registration and visualization. The
efficiency of all of the subsequent steps increases greatly if
a “pure” signal can be extracted.

Registration

One of the next steps of preprocessing large static images
is registration. One particularly interesting structure that
produces stem cells throughout the life of the mammal is
the subventricular zone (SVZ) in the brain. In previous
studies, only subsections of the SVZ have been targeted
for inspection [13]. Subsections were necessary due to the
field of view being small given high magnification. We
would rather be able to inspect the structure of the SVZ at
the highest resolution possible. Having a sub-cellular res-
olution means that we can compare different populations
with a higher level of precision. However, subsections may
not contain corresponding structures that exactly line up
between experiments. Our solution to this problem is to
break the SVZ into a mosaic of high resolution overlap-
ping subsections. These images are then reconstructed
into an ultra high resolution large volume image of the
entire structure.

Here we detail a novel optimization to this problem
exploiting the constraints given by the structure of the
specimen and the imaging modality. With modern micro-
scopes, stage position is stored in the metadata of each
image capture. Knowing the approximate stage position
of the subsections with respect to one another, restricts
which images can have adjacency. This information is
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Figure 2 Reconstruction of an Entire SVZ. The image is the result of registering 34 subsections of a mouse subventricular zone. Registration using
only microscope stage position data is indicated with a green dashed line. The blue solid lines represent a max spanning tree indicating which edge
of the subsection was registered, e.g. subsection 22 was registered to 18, 21, and 23, where subsection 11 was only registered to 12. The red dashed
lines indicate the final position of each subsection after registration. Registration happens in the z direction as well, not shown here.

enough to reconstruct the entire structure. However, the
results leaves much to be desired. The initial reconstruc-
tion positions are displayed as green lines in Figure 2.
During the imaging process, the specimen can shift rel-
ative to the stage, making stage position insufficient for
registration. This can be caused by vibration of the stage,
mechanical drift, dehydration or settling of the tissue slice,
as well as removal of the slide between images. These
position inaccuracies can be quickly overcome by using
the overlapping image regions to find the relative offsets
(register) of the mosaic of images.

The complexity of the registration problem can be
reduced by the fact that images consist of a single time-
point and that each image in the montage is oriented
orthogonal to the imaging stage. A montage with a large
number of subsections, approaching 100, implies that the
specimen has to be static in time. Imaging one subsection
is time consuming and by the time another column or row
is started, the overlap sections would have changed too
much to be reconstructed. The next assumption comes
from the movement of microscope stage itself. The stage
moves in such a way that the subsections are all at right
angles to one another in a checkerboard fashion. Our last
assumption is that the volume will only deform in the
direction of gravity. This is consistent with settling and
dehydration. There should be only one subsection along
this direction. This alleviates the need for transformations
such as rotation, shearing, and deformation when regis-
tering. Based on these assumptions we can formulate an
effective and accurate translational registration algorithm.

The following technique works best with a channel
with unique semi-sparse structures that will span image

subregions. The SVZ’s vasculature channel is an ideal
example of such a structure. The first step in our regis-
tration method is to create a maximum intensity image
along the single subsection direction as stated in the para-
graph above. The two overlapping maximum intensity
projections are then shifted along the remaining two axes
relative to each other as defined by a windowed area
around the stage position data. Each position is evalu-
ated to determine how well they fit together. We use the
normalized covariance between the two overlapping vol-
umes, normcov in Equation 4, to quantify similarity and
select the maximum value. Once the best match is found,
we use the original 3-D overlap volumes (no longer the
maximum intensity images) to find the best registration
along the remaining axis. The benefits to this method are
that it is robust to variation in imaging parameters such
as intensity (by subtracting the mean ) and contrast (by
normalizing over the variance o), as well as being object
agnostic. This technique also works directly on the images
rather than requiring preprocessing to determine a set of
feature points that are used in more complex registration
schemes.

normcov(4, B) = 2 (A—pa) X (B~ pp) @
op X OB

Each overlapping subsection is evaluated and stored in
a graph structure. The nodes represent an offset from
the original stage position. Each edge is the normalized
covariance measure at the given offset. We then drop the
lowest scoring edges until we are left with a max span-
ning tree, represented by the blue line in Figure 2. This
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Figure 3 Fully Registered 3-D Montage with 5 Channels. This image has been reconstructed and rendered using the 3-D view window with
adjustments made in the transfer function interface in Figure 5. The channels are: blood vessels (red), cell nuclei (dark blue), neural stem cells and
astrocytes (green), oligodendrocytes (yellow), and migrating neuroblasts (cyan).

allows us to anchor a single sub-image and follow this max
spanning tree assigning delta values relative to the change
from the previous node in the graph. In other words, a
node is chosen to be stationary (position based solely on
stage position data). The delta for each node connected
to this root node is based only on the registration posi-
tion change. Each subsequent delta on a path of edges is
calculated from the cumulative delta from the root and
local registration delta. The final positions can be viewed
as the red lines in Figure 2. Once deltas has been calcu-
lated for each sub-image, a final reconstructed image can
be created. Given that each channel of a particular sub-
image has been taken at the same time, we can register
every channel using just one delta value. Figure 3 shows a
fully registered SVZ containing five channels. Additional
file 1 shows the same volume rotating and zooming into a
region of interest. These images are then exported as large
tiff files along with updated metadata files which contain
the new dimensions. The image in Figure 3 has dimen-
sions of 10,173 pixels in x, 3,858 in y, 74 in z, and five
channels. These newly exported images are now ready to
be processed just like any other images received from the
microscope.

Segmentation

In previous applications involving stem cell segmenta-
tion and tracking in phase contrast 2-D image sequences
[5,6,14] we have found that the most significant chal-
lenge to segmenting stem cells is to identify the correct
number of cells in each connected component of fore-
ground pixels. On a given frame, the numbers of cells in
a given area may be ambiguous to even a domain expert.
Ambiguity arises when the cells touch and most often

occurs immediately following a mitosis event. This can
also occur when there is a high density of cells. It is our
experience that it is easier to resolve the correct segmen-
tation in 3-D images as compared to 2-D images for both
human and automated algorithms. The problem of esti-
mating the number of cells in any connected component
of foreground voxels is easier in 3-D due to the discrim-
inative nature of the extra spatial channel. The output of
the denoising algorithm improves segmentation accuracy
by removing data that is not directly related to foreground
voxels. Our denoiseing techniques are especially useful at
preserving the gradient boundaries between cells and can
remove ambiguity.

Our segmentation algorithm begins by applying an
adaptive thresholding to all channels, using a CUDA Otsu
filter [11]. This results in a binary image of foreground
and background voxels. A morphological closing opera-
tor using a binary ball structuring element is applied to
remove any erroneous holes in the structures. The stem
cell channel is next processed with a connected compo-
nent image filter and any connected components less than
19 um? in volume are discarded. This value can be empir-
ically set by the user prior to running the segmentation
algorithm and is dependent only on cell type. Removing
objects that fall below the smallest expected volume of a
given cell type reduces spurious segmentations typically
attributed to noise. Finally, the convex hull of the fore-
ground voxels for each cell is computed using the open-
source QHULLS package [15], creating facet and vertex
lists for each cell. The convex hulls generated by QHULLS
are then loaded into Direct 3D vertex and index buffers.

The vasculature channel is processed in a similar man-
ner. Following the adaptive thresholding, a distance map
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is computed using the MATLAB distance map filter. This
provides the distance from each voxel to the nearest fore-
ground voxel, and is used in the subsequent analysis to
quantify the distance between each cell and its nearest
vessel. The results of the stem cell segmentation are next
passed to the tracking algorithm to establish temporal cor-
respondences between segmentation results and assign
tracking IDs to each cell.

Tracking

Once the cells have been segmented we use an approach
called Multitemporal Association Tracking (MAT) [6,16]
to establish temporal correspondences among segmen-
tation results. MAT is a graph-based tracking approach
which, for each frame, evaluates a multi-temporal cost
function that approximates the Bayesian a posteriori asso-
ciation probability between the current set of tracks and
all feasible track extensions out to a fixed window size
W. In multiple hypothesis tracking, this data association
problem is typically solved using bipartite or multidimen-
sional assignment, which is NP-hard and requires explicit
modeling of imaging specific conditions including occlu-
sions, missed and extraneous detections. MAT instead
uses a minimum spanning tree approach to solve the
data association problem. It relies solely upon typical cell
dynamic behavior of smooth motion and is independent
of imaging conditions. In addition to the current results
tracking stem cells in 3-D, MAT has achieved excellent
results for hundreds of in vitro (2-D) image sequences of
mouse adult and embryonic neural stem cells, as well as
hematopoietic stem cells and rat retinal progenitor cells
[6] and has been applied to tracking high density organelle
transport along the axon [16]. All of the stem cell movies
tracked by MAT in 2-D and 3-D were processed with the
same implementation.

In order to extend tracks from frame ¢ to ¢t + 1, we
denote a partially constructed track terminating at the
ith detection in frame ¢ as 7/, and denote the set of all
feasible extensions passing through the ;' detection in
frame ¢t + 1 as pth. The cost of edge c;; in the tracking
graph is assigned the minimum cost of extending par-
tial track 7/ through the /! detection in the next frame

¢;j = min; {C (rit, pitl

c?j < cyj for any m # iand n # j are called matching
edges. If it exists we extend each track 7/ along its match-
ing edge c; For any detections in £ + 1 without a matched
incoming edge cj,;, we initialize a new track. Occlusions,
where one cell is visually obscuring another, are handled
by allowing tracks that are not extended to be considered
in subsequent frames.

For tracking stem cells in the 5-D image sequences
we used the same cost function used previously for
tracking 2-D phase-contrast imaged NSCs [6], with the

) } Edges c?j satisfying C;}' < ¢ip and
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sole modification of using a Z value in the connected-
component distance. We define the connected component
distance between two detections as

min
ra ea,rﬁ €

dec(a, B) = ﬁ{llra —rgll}, (5)

where 7, rg are the scaled-voxel coordinates correspond-
ing to the foreground-voxels of the segmentation detec-
tions and, respectively. We also define a detection size
distance to preserve homogeneous sizes along a given
track,

' _ max{|e|,|B]} — min {|«|, |B]}
dsize (0, B) = max {|«], |8} ’ (6)

where || is the number of pixels in the foreground
connected-component of detection «. For a given path
extension we calculate the cost of the extended track
(7, p), as a weighted sum of the local connected compo-
nent distances along the detections of (7, p),

w

C(r,p)=(W —|pl+1) x (Z w; (dcc (0ir Piv1)
i—1

(7)
+ dsize (i ,0i+1))> ,

with p; indicating the ith detection on path (z,p). We
define |p| as the minimum of the track length or win-
dow size W. By convention, if i < 0 we use p; = T,
which allows evaluation of the cost over the full-extended
path. This cost reflects the expected behavior of neural
stem cells, namely, the cells should not move far (small
connected-component distance) and their size shouldn’t
vary greatly in adjacent frames. The multiplicative term
discourages shorter tracks which would otherwise have
lower cost due to fewer terms. We use a window size
W = 4. This cost function has proven effective in track-
ing both 2-D and 3-D cells as shown in the current and
previous applications.

Lineaging

Lineaging identifies parent-daughter relationships among
the proliferating cells. Our lineaging approach uses the
minimum cost path extensions discovered by the MAT
algorithm and stored in a sparse graph structure during
tracking, and is the same algorithm we have previously
used for 2-D lineaging [5,6,14]. Cells that constitute viable
tracks that appear after the first image frame are assigned
parents based on these tracking results. Given a track

Tnewborn, We identify its parent track T;‘arent as,
T;arent = arg min {C(fparent» fnewborn)} . (8)
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Figure 4 Mitosis event with lineage tree. The lineage tree in the right panel shows an entire clone starting with the progenitor cell 73 which
divides into two daughter cells, 371 and 578. The y-axis represents time where the x-axis represents the cell’s distance to its closest blood vessel. The
left panel shows cell 73 in the frame prior to it undergoing mitosis. The center panel shows the frame in which cell 73 divides into cells 371 and 578.
The cleavage plane is represented by a white mesh and shows the angle of cleavage relative to the vessel channel. Specimens that are imaged over
time typically have fewer channels than static samples. Immunofluorescence can be detrimental to natural cell behavior and has to be used
sparingly. Static images can be stained allowing for a larger number of channels given that the cells are already dead.

Once this has completed for all tracks in the image
sequence, the largest (most nodes) lineage tree is pre-
sented to the user. This tree is the first one to be displayed
with the expectation that it represents either the most
interesting biological lineage or the lineage that needs the
greatest number of user edits.

Traditional lineage trees communicate informative data
such as cell cycle time, number of progeny, apoptosis,
symmetry of subtrees, etc. In order to study cells in their
niche, the spatial relationships between objects must be
measured. Figure 4 and Additional file 2 shows a lineage
tree that encodes the spatial distance between stem cells
and the nearest vasculature. The vertical lines on the lin-
eage tree in the direction of the x-axis have been modified
to show the distance between a particular stem cell and
its nearest vasculature voxel at each image frame. At the
time of division, the lineage tree shows one daughter cell
farther from the vascular structure while the other daugh-
ter cell maintains its distance. We also represent the angle
in which the cells cleave during mitosis by a plane. This
cleavage plane allows for qualitative inspection of how
cells divide as well as an additional feature for quantitative
analysis.

User interface

Automated analysis of image sequence data showing pro-
liferating cells will inevitably make mistakes. In addition
to low SNR, these image sequences often contain visual
ambiguities, e.g. due to cells dividing, entering or exit-
ing the imaging frame etc., where it may be impossible
even for a human domain expert to correctly identify the
number of cells in a connected component of foreground

voxels from a single time point. These segmentation errors
cause tracking and lineaging errors which can then cor-
rupt the ultimate analysis. Once all of the automated
image analysis algorithms have completed, the data needs
to be displayed to the user in such a way that it enables
errors to be easily identified and quickly corrected. The
approach adopted here is to display the volumetric image
sequence data with segmentation and tracking results
overlaid in a Direct 3D window and the lineage tree in a
second MATLAB interactive figure window. The Direct
3D and MATLAB components run in a single memory
process, launched from MATLAB and communicating
with shared memory via the MATLAB Mex interface. This
allows for fast prototyping and scripting right in the MAT-
LAB integrated development environment. This enables
programmers to extend the image processing and biolo-
gists to access their data directly (many users will fit both
of these use cases).

Visualization of the volumetric data uses the notion
of 3-D textures. The slices of each 3-D texture are pro-
jected onto planes which consist of two view aligned
triangles. There are /2 times the maximum pixel dimen-
sion of these planes spanning the depth of the image
volume. Direct 3D maps the image data onto the tri-
angles using a custom shader. This shader incorporates
parameters derived from the transfer function sliders
in Figure 5. The transfer function was inspired by the
work of Wan et al. [17]. Currently there are six unique
colors that each channel can be assigned. As Wan et
al. point out, it is difficult to render unique visually
separable colors greater than three. When channels are
allowed to alpha blend (transparency between channels)
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Figure 5 3-D Image viewer and transfer function windows. The right panel shows the controls to set a transfer function which maps the
intensity values of the original images into values and colors in the view window. The left panel shows the original image data without any changes
to the transfer function. The middle panel shows an image where the transfer function settings shown in the far right panel have been applied.

it becomes even more difficult to differentiate between
colors that have been mixed. LEVER 3-D allows any of
the colors to be assigned to a channel and its visibility
toggled.

The colored sliders for an assigned channel are used to
set a polynomial transfer function that will map the orig-
inal image intensity values to an intensity value that will
be colored and displayed in the 3-D window. The darker
(top) slider for a given channel will set where the low
values of the original image will be floored to zero. The
brightest (bottom) slider for a given channel is used to
set the threshold in which all larger values are mapped to
the maximum value; in this case 255 for an 8-bit image.
The middle slider changes the curve of the line between
the max and min values. The slider on the left edge is
used to set the multiplier on the base alpha value for a
given channel, allowing a particular channel to be more
or less transparent relative to the others. The base alpha
for a given pixel is set to the maximum channel intensity
at that voxel after the transfer function has been applied.
This slider operates on the range of [0, 2], where the cen-
ter position equals a multiplier of 1. The last user interface
control that pertains to the image data is whether to light
the texture or not. The lighting check box turns on and off
a global directional light. The image data is lit using the
surface normal of each voxel. This normal is approximated
directly in the shader by finding the gradient direction for
each pixel based on a 3 x 3 x 3 neighborhood. Lighting
of this kind gives a more three dimensional feel to the
image even when viewed on a two dimensional medium
(see Figure 5). Once the images are set to the user’s liking,
they are able to integrate the segmentation results into the
3-D window.

Segmentation data is then loaded into video RAM to
be overlaid onto the image volume to show tracking
and lineaging results. The triangle meshes generated by
QHULLS as the convex hull of each cell’s voxels by the
segmentation process are loaded into Direct 3D index
and vertex buffers (triangle lists) and colors are assigned
according to tracking and lineaging results. The segmen-
tation buffer is rendered by a second custom shader that
can be toggled between off, wire-frame, and solid. The
default renderer draws the texture in its entirety and then
draws the segmentation results on top of that. This means
that the segmentation triangles will always be drawn on
top of the image data. This does not show when segmen-
tation is embedded into another structure; however, it
renders at high frame rates. Objects obscure one another
based solely on their placement in the render loop. Depth
peeling gives more visual cues that one object is obscured
by another. This is accomplished by layering or “peeling”
from each structure in a depth sorted order and interlac-
ing them in the render loop. That will draw the objects
that are closer to the view after the further objects, obscur-
ing more distant objects. This can slow the rendering of
larger volume data down to non-interactive speeds. To
mitigate this problem, a chunked depth peeling has been
implemented [17]. There is a slider on the transfer func-
tion window (Figure 5) labeled “Peeling”. This allows for
[1, N] chunks to be peeled, where N is the view aligned
voxel count of the volume. This slider can be used to add a
level of segmentation integration in the image data as the
user’s hardware will allow for and still be interactive. The
segmentation results are quite often the reason for errors
in the tracking and lineaging and are where the majority of
the edits take place. This is why it is important to give as
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many visual cues as possible to show where the segmen-
tation is wrong. When it is wrong, LEVER 3-D allows the
user to correct it manually.

Selecting a cell for visualization or editing in the 3-D
volume with the use of two dimensional tools (e.g. mouse
pointer) can be challenging. When the user clicks on the
volume, an inverse projection is used to find the intended
cell. The inverse projection consists of a ray starting at
the view origin passing through the cursor’s position on
the projection plane and continuing through the volume
space. The cell containing the first triangle that is inter-
sected by this ray is then selected. With this selected cell,
the user then can remove all other segmentations from
the display to leave emphasis on the cell in question. In
this view configuration, the user has the ability to play
the sequence and follow the particular cell through the
experiment.

Once a cell has been selected, the user then can cor-
rect the segmentation or tracking results for the cell. For
correcting segmentation results, a cell can be split into
n cells or can be deleted. To split a cell, we fit a mix-
ture of Gaussians [18] on the foreground voxels of the
cell. This is effective because a mixture of Gaussians deci-
sion boundaries favor ellipsoidal shapes that model 3-D
NSCs more appropriately than k-means, which favor
more spherical shapes. After a segmentation has been
corrected, the tracking automatically reruns. The segmen-
tation edit provided by the user can be “propagated” by
inspecting tracking assignments for the original segmen-
tation as potential automated correction candidates until
the newly added segmentation establishes its own track.
This is the same inference-based approach to learning
from user provided edits used in our previous 2-D stem
cell lineaging application [6].

The selection of a particular cell also selects the clone
to show in the 2-D lineage tree window. The lineage
tree is one of the easiest ways of identifying errors in
the automated image analysis routines due to predictable
qualities such as regularly spaced mitotic events, cells
on the lineage tree existing until they reach the end
of the sequence or a frame boundary, etc. The selec-
tion of a cell is translated through a Mex interface to
MATLAB allowing the selected clone to be toggled. The
shared memory Mex architecture enables all of the seg-
mentation, tracking, and lineaging results to be accessed
directly as MATLAB data structures and leverages the
implementation from our previous 2-D stem cell lin-
eaging application [6] for lineage tree manipulation and
display. The Mex interface allows bidirectional com-
munication between the MATLAB and the Direct 3D
user interfaces allowing the two windows to be tightly
coupled and enabling a high throughput approach to
validating and correcting the automated image analysis
algorithms.
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The typical work flow of LEVER 3-D proceeds as fol-
lows. The user with access to the MATLAB program
can launch LEVER 3-D from inside the MATLAB devel-
opment environment. This allows the user to integrate
LEVER 3-D visualization and analysis components with
their own scripts. For user that do not have access to
MATLAB, we provide a standalone program. The results
from the stand alone program can be exported for anal-
ysis in other environments. The first step is to specify
the location of the location of the raw data file from the
microscope. The image data is then buffered onto the
graphics card and is displayed in the image window. If
the current dataset has been processed previously (from
a previous session), the segmentation results are rendered
in the image window. The lineage tree containing the
most cells is shown in a second window. If the dataset
is unprocessed, the user is able to specify a processing
method on a particular channel. Now the user can explore
the image data and validate the automated processing.
Viewing of the image data is enhanced by the transfer
function window. The transfer function is used to com-
pensate for images with low amounts of fluorescence and
uncalibrated monitors. Once the user is satisfied with data
and the view settings, LEVER 3-D then can export image,
movies, and metrics for external use. Additional file 3 pro-
vides a short video overview of the usage of the LEVER
3-D application from within the MATLAB environment.
A similar usage scenario is also possible without requiring
MATLAB by using our compiled executable.

Results and discussion
The analysis of the image sequence data proceeds as fol-
lows. All timing information is based on a Windows PC
with dual Xeon X5570 processors (2.9 GHz), 24 GB of
RAM and an Nvidia GTX 680 video card with 4 GB of
video RAM. The automated image analysis routines were
implemented in C++ using CUDA. Background noise
removal, segmentation, tracking, vascular distance and
lineaging are run off-line. This step requires seconds to
only a few minutes using CUDA compared with up to 2
hours of processing time using the open source Insight
Toolkit (ITK). These times are dependent on the size and
dimensionality of image sequence data. The vast majority
of this time is consumed by the background noise removal
in ITK; in CUDA the task of noise removal, segmentation,
tracking, and lineaging are more equally spaced. Back-
ground noise removal is a task that is only run once per
image sequence and improves the results of the subse-
quent automatic segmentation algorithm, especially with
suppressing image noise between closely adjacent cells
improving the ability of the segmentation algorithm to
separate nearby cells.

After the automated image analysis routines complete,
the 3-D image data with segmentation and tracking results
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overlaid are shown in the imaging window (Direct 3D
connected via MATLAB’s Mex interface) and the lineage
tree is shown in a MATLAB figure window. The active
shutter stereoscopic 3-D visualization glasses improve the
visualization of the stem cell data, and especially the rela-
tionship between stem cells and vasculature. Stereoscopic
rendering allows the viewer to disambiguate the rela-
tive distances between objects compared to a monoscopic
viewing where additional visual cues are necessary, such
as movement (rotation) or lighting.

Image sequence data displays at 60 frames per second,
and manipulation of the 3-D volumetric data is fully inter-
active even with the 3D stereo vision hardware activated.
Navigation can be done on either the 3-D window or on
the 2-D lineage window. Clicking in the lineage tree win-
dow causes the frame to advance to the selected time
point. The time can also be navigated on the Direct 3D
window using the mouse wheel, and causes the time indi-
cator on the lineage tree window to update. Users can edit
the segmentation and tracking in the imaging window by
splitting cells with the mouse or by typing tracking num-
bers directly onto a cell. The user has only had to correct
the automated processes 7% of the time on average. Most
of these errors were due to the cells not separating imme-
diately after mitosis. We recently developed improved
techniques for resolving visual ambiguity in 2-D image
sequences of proliferating cells by incorporating tracking
and lineaging information [19]. These methods offer a
promising approach to reduce the number of errors in the
3-D segmentation and will be added in future versions.
Given correct segmentation and the time resolution of the
imaging is such that object overlap themselves by at least
50% between frames, there should be no tracking errors
[6]. The tracking and lineaging algorithms are automati-
cally executed in response to user provided segmentation
edits in order to dynamically update the results and also
to correct related segmentation errors in future frames.
This process typically requires a few seconds to complete,
making response to editing operations as well as the 3-D
visualization fully interactive.

Once the tracking and lineaging for a clone of stem cells
has been corrected, the data can be exported to MATLAB
for further analysis. In order to explore the relationship
between stem cells and their vascular niche, we used a dis-
tance map of the vascular channel. For each stem cell on
the clone, we can use this distance map to instantly find
the distance between the cell and the nearest blood ves-
sel. In Figure 4 we plot this distance for the three cells
on the lineage tree of the selected clone. Cell 73 is at
a stable distance to the nearest blood vessel. When the
cell divides one of the daughter cells moves into contact
with the vessel while the second daughter continues on its
parent’s trajectory. This is a result of the cleavage plane,
formed by the division between the two daughter cells,
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being oriented acutely toward the vessel. Interestingly, the
daughter cell that is closer to the vasculature following
division, cell 371, has a different pattern of motion than
the daughter cell that is not in contact with vasculature.
This may be indicative of a different sub type of stem cell
or of the cell seeking to re-establish its location in the vas-
cular niche following division. This is the first time, to our
knowledge, that this relationship between a clone of mam-
malian NSC’s and their vascular niche has been visualized
and quantified dynamically in live cell and tissue image
sequence data.

A key decision in the design of our application was the
use of Direct 3D rather than OpenGL to provide 3-D
rendering. In general, scientific visualization applications
tend to use OpenGL while gaming applications tend to
use Direct 3D. This decision was primarily based on the
need to incorporate support for NVidia’s 3-D Vision to
utilize active shutter stereoscopic glasses into our applica-
tion. Using Direct 3D enables the use of 3-D vision on less
expensive NVidia GTX-class gaming cards, as well as on
the more expensive Quadro cards. Additionally, automatic
driver optimized support for stereo separation is avail-
able to Direct 3D applications only [20] eliminating coding
overhead. The 3-D vision stereo glasses can be used from
OpenGL, but that requires the use of the more expensive
Quadro card and also requires explicit application sup-
port for stereo via quad buffering. Stereoscopic viewing
enables a user to quickly identify and easily correct track-
ing and lineaging errors in a natural and highly interactive
manner. Shortcomings of using Direct 3D are discussed in
the “Conclusions” section.

Other applications have been developed for 3-D stem
cell lineaging, notably by Murray et al. [21]. They devel-
oped an approach that does not however, include capabil-
ities for learning from user supplied edits or 3-D visual-
ization. In later work they incorporated a support vector
machine to automatically identify segmentation errors
[22], although we have found that segmentation errors
occur primarily when there is visual ambiguity in the
image data that the human eye is unable to resolve using
only a single image frame. The current project is an exten-
sion of the LEVER application designed for 2-D phase
contrast stem cell image sequences which uses a human
observer to assist in correcting the visual ambiguity inher-
ent in image sequences of live proliferating cells [6]. Aside
from the 3-D rendering, one other difference of the cur-
rent work is that the segmentation is implemented using
CUDA rather than MATLAB or ITK. CUDA provides a
significant performance improvement over MATLAB and
ITK, making the 3-D noise and background removal and
segmentation algorithms approximately 60 times faster.

In the area of biological image sequence data visualiza-
tion there are a large number of commercial and open
source products, as described in a review paper by Walter
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et al. [23]. One thing that differentiates our work from the
described approaches is the tight integration between the
automated image analysis algorithms and the Direct 3D
visualization. In contrast, most other applications utilize
the Visualization Toolkit (VTK) an open source visualiza-
tion library [24]. The 3-D rendering for our application
was initially implemented using VTK, however VTK is
only compatible with OpenGL and not with Direct 3D.
Direct 3D has the benefit of using low-cost gaming hard-
ware for stereoscopic visualization which is necessary for
efficient validation of 3-D volumes. The open source ICY
application [25] uses VTK for visualization and provides
an extensible user interface for visualizing 2-D and 3-D
images and incorporates segmentation and tracking algo-
rithms, as well as editing of results and multiple linked
views. Our work differs from ICY in supporting stem cell
lineaging and using inference-based learning to propagate
user-provided edits. A related application for visualizing
multichannel fluorescence microscopy data for biologi-
cal applications was presented by Wan et al. [17]. Their
application provided more control over the viewing of the
volumetric data including a user controllable 2-D transfer
function for setting the rendering properties of the vol-
umetric data. In contrast, the approach presented here
uses the automatic image analysis algorithms to set the
parameters on the visualization transfer function with the
intention that our application will be used for quickly
validating and correcting the clonal tracking and lineag-
ing results prior to subsequent statistical and algorithmic
information theoretic analyses.

There are a number of papers describing tools for visu-
alizing and analyzing 3-D image sequence data [26-28].
Taken together, these show the power of combining image
analysis and visualization tools. As Amat et al. [29] note,
extending such techniques to “3D+t is not straight for-
ward” The approach described here is novel in the ability
to visualize 5-D image sequence data, utilizing auto-
mated tracking and lineaging algorithms to analyze the
time course of the dynamic behaviors for all of the cells
in a developing clone and incorporating user-provided
edits to automatically correct related errors. This provides
unprecedented functionality for working with complex
live cell and tissue image sequence data and ensures that
subsequent analysis starts with 100% corrected data.

Visualization comparison between 2-D projection and
stereoscopic 3-D rendering is difficult to quantify.
Confocal microscopes are able to capture true three-
dimensional data and there are many tools that make
two-dimensional projections of this data, such as that
of Schmid et al. [30], and Peng et al. [26,27]. However,
2-D projection relies on visual cues to convey the rela-
tive depth between objects as explained by Wan et al.
[17]. Using a stereoscopic projection allows our binocu-
lar vision to convey this information more precisely [31].
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Even without depth peeling, lighting, or other cues nec-
essary with monoscopic projection, the user can perceive
depth between objects. We incorporate both depth peel-
ing and lighting to make the scene look more natural. With
the perceived depth from stereoscopic visualization, val-
idation can be more accurate and efficient. Stereoscopic
projection can also help earlier in the processing pipeline
by expediting discovery. Interactions between structures
in the SVZ are not fully known. Direct stereoscopic obser-
vation facilitates the identification of regions to quantify
and determine their significance. This discovery phase
optimizes the processing pipeline by identifying more pre-
cisely what models the analysis phase can emulate or
exploit. We believe that there is enough qualitative ben-
efit to the stereoscopic projection to base a large part of
visualization decisions upon it.

Conclusions

We have developed a new application called LEVER 3-D
for validating and correcting the automated segmentation,
tracking and lineaging of stem cells from 5-D time lapse
image sequence data. The segmentation and tracking
results are overlaid on the image data in the 3-D rendering
window. The lineage tree for the currently selected clone is
shown in a MATLAB 2-D window. Navigation and editing
can take place on either window; the MATLAB Mex inter-
face is used to communicate between the C++, CUDA,
DirectX, and MATLAB components. The ability to visu-
alize the image data simultaneously with segmentation,
tracking, and lineaging makes it possible to quickly iden-
tify and easily correct any errors in the automatic analysis.
Direct 3D is used for 3-D rendering, providing active shut-
ter stereoscopic visualization and interactive rendering
on low-cost gaming hardware. We use the open-source
Bioformats tool to read the image data directly from the
microscope and CUDA kernels to implement the back-
ground removal and segmentation algorithms. The open-
source MAT tracking algorithm developed previously for
2-D stem cell image sequences has been enhanced to work
with 5-D stem cell data.

One drawback to our use of Direct 3D to enable
active shutter stereoscopic is that our application is only
available on the Windows operating system. The use of
OpenGL would have required explicit application sup-
port for active shutter stereoscopic visualization and
also the use of the more expensive Quadro-class video
cards together with additional RAM for quad buffering,
but would have allowed for true cross-platform support.
Another drawback of Direct 3D is the lack of a web
integration module such as WebGL, which makes it dif-
ficult to implement a web client for demonstrating the
capabilities of the system or for implementing distributed
applications for validating and correcting the 5-D image
sequence data. We believe that these shortcomings are
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offset by the improved visualization available for low-cost
from DirectX, with active shutter stereoscopic visualiza-
tion automatically in the display driver using Nvidia GTX
class display cards.

Our goal is to develop an open source solution that
allows biologists to process, validate and analyze 5-D stem
cell image sequence data in the laboratory, increasing
the pace of discovery by combining accurate unsuper-
vised image analysis together with intuitive visualization
and validation tools. The current version of the source
code as well as video tutorials are available at (https://
git-bioimage.coe.drexel.edu). We are including executa-
bles along with a complete 5-D dataset to enable readers
to run the interface directly. Data collection has begun
for a number of biological experiments that will utilize
LEVER 3-D in a high throughput capacity to quantify
dynamic behaviors and niche associations for clones of
NSCs. The application described here represents a first
step in disseminating widely applicable software tools for
the analysis of proliferating cells and vasculature from 5-D
image sequence data.

Availability of supporting data
Source code and test image data is available on our website
http://bioimage.coe.drexel.edu in the Software section.

Additional files

Additional file 1: Video showing multi-resolution visualization of the
5 channel 3-D montage from Figure 3. Starting with the full resolution
image a complete rotation of the volume is rendered using 300
intermediate frames. Following each revolution the width and height of
the field of view are reduced by a factor of two. The white rectangle shows
the location of the next field of view that will be rendered. The process is
repeated five times, ultimately showing the image data at full resolution
with no scaling.

Additional file 2: Video showing analysis results together with image
data from 5-D confocal microscopy showing neural progenitors
undergoing mitosis. The left panel shows the segmentation and tracking
results overlaid on the image data. The right panel shows the lineage tree
encoded with division time combined with the distance from each neural
progenitor to the nearest vasculature at each image frame. The color of the
segmentation on the left panel corresponds to the track shown on the
lineage tree. The cleavage plane shows the orientation of the daughter
cells at the time of separation relative to the surrounding vasculature. The
ability to interactively explore complex spatiotemporal relationships in 5-D
image data is an important prerequisite to quantitative analysis.

Additional file 3: A video demonstrating the use of LEVER 3-D from a
MATLAB session. The control window provides access to the transfer
functions with parameters controlling visualization. The image window
shows the microscopy data together with the segmentation and tracking
results. As the transfer functions are manipulated, the image display is
updated immediately. The control window also provides access to the
denoising and segmentation algorithms. All the data structures and
functionality is accessible from MATLAB scripts. Stereoscopic 3-D requires a
monitor and video card that supports Nvidia's 3-D vision.

Abbreviations

NSC: Neural stem cells; AITPD: Algorithmic Information Theoretic Prediction
and Discovery; SVZ: Subventricular zone; SNR: Signal-to-noise ratio; MAT:
Multitemporal Association Tracking.
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