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Abstract

Background: Discovering functional relationships of genes through cell-based phenotyping has become an
important approach in functional genomics. High-throughput imaging offers the ability to quantitatively assess
complex phenotypes after perturbation by RNA interference (RNAi). Such image-based high-throughput RNAi
screening studies have facilitated the discovery of novel components of gene networks and their interactions. Images
generated by automated microscopy are typically analyzed by extracting quantitative features of individual cells,
resulting in large multidimensional data sets. Robust and sensitive methods to interpret these data sets and to derive
biologically relevant information in a high-throughput and unbiased manner remain to be developed.

Results: Here we propose a new analysis method, PhenoDissim, which computes the phenotypic dissimilarity
between cell populations via Support Vector Machine classification and cross validation. Applying this method to a
kinome RNAi screening data set, we demonstrate that the proposed method shows a good replicate reproducibility,
separation of controls and clustering quality, and we are able to identify siRNA phenotypes and discover potential
functional links between genes.

Conclusions: PhenoDissim is a novel analysis method for image-based high-throughput screen, relying on two
parameters which can be automatically optimized without a priori knowledge. PhenoDissim is freely available as an R
package.

Keywords: Phenotypic dissimilarity, Image-based high-throughput screening, High-content screening, RNAi,
Gene networks

Background
To understand phenotypes and their regulations, it is
important to identify key genetic components as well
as how they interact. Cell-based screening approaches
have been successfully used to monitor the effect of indi-
vidual gene knockdowns or small molecule treatments,
identify key regulators contributing to the assessed phe-
notype and investigate their interactions [1,2]. Such high-
throughput screening experiments can be divided into
two categories: homogeneous intensity-based methods,
such as reporter gene or cell viability assays, and image-
based phenotyping approaches. Intensity-based methods
usually report the average of cell populations, leading
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to scalar (or low dimensional) values per perturbation.
Such screens have been designed, for example, to iden-
tify novel signaling pathway components by associating
an intensity readout (e.g., luminescence or fluorescence)
with a perturbation of a specific reporter gene activity
[3-8]. In contrast, image-based methods mark cells with
fluorescent dyes, and produce high-dimensional data sets
based on images of phenotypes on a single cell level and
consequently on cell populations [9-15]. Cellular phe-
notyping by imaging offers many advantages including
flexible marker choices, subcellular resolution and abil-
ity to address cell population heterogeneity (Figure 1A),
but also pose new challenges such as lower throughput,
more complex infrastructure, and in particular, challenges
in data analysis [16].
While the analysis of univariate readouts from intensity-

based screens has been greatly facilitated by the develop-
ment of specific algorithms and analysis methods [17-20],
how to effectively analyze image-based phenotypes is still
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Figure 1Workflow for image-based screening, image quantification and phenotypic dissimilarity measure with SVM classification
accuracy. A) Cells are seeded into 384-well plates and treated with siRNA by reverse transfection. After incubation for 48 hours, cells are fixed,
permeabilized and immunostained for DNA, tubulin and actin and imaged with an automated microscope. B) Cell images are processed with
nucleus and cell segmentation using the R packages EBImage and imageHTS. Each cell is represented by a 46 image-based feature vector. Every
treatment generates a data matrix X[m,n], where m is the number of cells and n is the number of features. C) For each pair of RNAi treatments, SVM
classification is performed on the virtually pooled cell population based on cell features. Classification accuracy is estimated by cross validation, and
defined as the phenotypic dissimilarity between treatments.

being explored. In general, the analysis comprises two
steps: image quantification and phenotype-based analysis
of gene networks. The image quantification step, which
includes image pre-processing, cellular object segmenta-
tion and feature extraction, is relatively well established
with several software tools offering automated, scalable
and interactive pipelines [21,22]. This step generates a
multidimensional data set containing cell feature infor-
mation for typically 100–10000 cells per treatment and
10–200 features measured per cell (Figure 1B). The sec-
ond step, to derive functional relationships from these
complex datasets representing phenotypes, remains chal-
lenging. While intuitively this is performed in any kind
of genetic screens, e.g. in forward genetic screens in
Drosophilamelanogaster orCaenorhabditis elegans, a sys-
tematic implementation for quantitative cellular image
data sets is still missing. One key question is how to
define quantitatives to represent the phenotype of a given
perturbation based on the multidimensional cell feature
data sets, before one can identify and potentially cluster
phenotypes by similarity.
Previous studies typically first applied a dimension

reduction or data transformation method, such as

principle component analysis [23], Kolmogorov-Smirnov
statistics [9], Support Vector Machine [12,24], or factor
analysis [10], and generate a single feature vector for each
perturbation treatment, i.e. a phenotypic profile. Then the
distance between feature vectors is computed based on a
distance measure, such as Euclidean distance. Although
these approaches have been successfully applied in var-
ious image-based analysis, they often require manually
curated training data sets and/or multiple optimization
steps. Thus, for a new image-based screen campaign,
selecting and optimizing the appropriate method to per-
form hit identification and clustering analysis remains
challenging.
Here, we propose a novel method to measure pheno-

typic dissimilarity between cell populations in imaging
screens, based on cell classification and cross validation.
We define the phenotypic dissimilarity between a pertur-
bation and a control, or between two perturbations, as
the classification accuracy between the two correspond-
ing cell populations. First, we virtually pool cells from
both populations. Then, using Support Vector Machine
(SVM) classification, the mixed cell population is classi-
fied into two groups based on quantitative cell features.
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The classification accuracy can be estimated by cross vali-
dation with the original cell labels, and defined as the phe-
notypic dissimilarity. A higher accuracy indicates better
separation between the cell populations, thus a larger phe-
notypic dissimilarity. Evaluated on a kinome-wide RNAi
screen for cell morphology [12], the proposed phenotypic
dissimilarity method (hereafter, PhenoDissim) was able
to identify RNAi perturbations causing distinct morphol-
ogy phenotypes, such as siPLK1, siCOPB2 and siAKAP7.
We then clustered the phenotypes based on their
pair-wise dissimilarity, and genes that clustered together
were functionally related.
The PhenoDissim method is relatively straightfor-

ward to apply on different high-throughput screening
experiments, as it has only two parameters for SVM
classification: cost and gamma, and parameter opti-
mization can be automated. The method, as well
as the quality metrics for evaluation, is implemented
in a freely available R/Bioconductor package phen-
oDist (http://www.bioconductor.org/packages/release/
bioc/html/phenoDist.html), a toolbox for data analysis in
image-based high-throughput screening.

Results
We used a previously generated image-based RNAi
screening data set as a benchmark for phenotypic dissim-
ilarity analysis [12]. The genome-wide kinase screen was
conducted in duplicates using a cervix carcinoma cell line
(HeLa). Cells were stained with cytoskeletal and nuclear
markers (DNA, actin and tubulin) [12]. Plate layout is
listed in Additional file 1: Table S4. We reanalyzed the
images with the R/Bioconductor package imageHTS, and
measured 46 image-based features for every cell including
geometric features, Haralick texture features and Zernike
moments (see Additional file 1: Table S1 for a list of all
features).

Phenotype identification with PhenoDissim
One major goal in image-based screens is to identify per-
turbations that show significantly different phenotypes
when compared to negative controls. Applying the Phen-
oDissimmethod, we computed the phenotypic dissimilar-
ity between each perturbation and the negative controls,
which indicates how significant the phenotype is (see
Methods for details). The screening data set has one neg-
ative control (siRLUC) and two positive controls (siUBC
and siCLSPN), with four wells of each control per 384-well
plate. Figure 2A plots the distribution of the phenotypic
dissimilarity of these control wells to negative control
wells. Since siRLUC is the negative control, these show
a low phenotypic dissimilarity (0.64 ± 0.03). It is larger
than 0.5 due to noise and cell population variation within
siRLUC wells. The positive controls siUBC and siCLSPN
have much higher phenotypic scores (0.92 ± 0.02 and

0.87 ± 0.02 respectively) and are well separated from the
negative control siRLUC (Z’ factor values 0.56 and 0.40
respectively).
Phenotypic dissimilarity of all perturbations in the

screen to the siRLUC control are plotted in Figure 2B with
replicate 1 on the X and replicate 2 on the Y axis. The
data point and error bars represent the mean and stan-
dard deviation of three independent calculations, and in
most cases the error bars are negligible. There is a good
correlation between biological replicates (Pearson corre-
lation coefficient 0.75). Each control (siRLUC, siCLSPN
and siUBC) is represented by 12 data points as there are
three plates and four wells for each control per plate. Data
points of the same control cluster together, and nega-
tive and positive controls are well separated, consistent
with the density plot in Figure 2A. There are a total of
779 siRNA samples, with diverse phenotypic dissimilarity
ranging from 0.65 to 0.94.
Three example perturbation with distinct phenotypes

are shown in Figure 2C (siPLK1, siCOPB2 and siAKAP7).
PLK1 and COPB2 are essential genes which cause viabil-
ity defects similar to UBC when depleted by siRNAs. Cells
treated with AKAP7 siRNAs display amorphology pheno-
type whereby the cell shape is more round and actin signal
is more evenly distributed over the whole cytoplasm. This
phenotype is consistent with previous observations that
AKAP7, which encodes for A-kinase Anchoring Protein
7, localizes to cortical actin cytoskeleton under the cell
membrane and when mutated, spreads to the cytoplasm
[25,26].
In total, 31 siRNA perturbations (averaging two repli-

cates of each gene) showing high phenotypic dissimilarity
to siRLUC control (>0.85) indicate morphological phe-
notypes. With the pair-wise phenotypic dissimilarity for
the 31 siRNA samples, we generated a network of pheno-
types with nodes representing each phenotype and edges
for phenotype dissimilarity between nodes as in Figure 3
(only phenotypic dissimilarity smaller than 0.82 and con-
nected nodes are shown), as well as representative cell
images. From network connectivity and visual inspection,
we found three major groups of phenotypes. Genes high-
lighted in green are essential genes, and cause viability
defect when knocked down. Within this group are genes
PLK1 and COPB2, but also other genes such as PKM2
and PMVK. Genes highlighted in blue cause cell shape
defect when depleted by siRNA. Cells are often elongated
with thin stretches, suggesting defect in cell structure
maintenance. Genes highlighted in orange cause strong
actin staining and also affect cell shape. Genes in gray
show intermediate phenotypes between the major groups.
For example, siRAC1 treated cells show both a slight
viability defect and an elongated shape. Further experi-
ments to explain the underlying basis of these phenotypes
are needed, however, in some cases previous functional

http://www.bioconductor.org/packages/release/bioc/html/phenoDist.html
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Figure 2 Phenotype identification with PhenoDissim. A) Distributions of phenotypic dissimilarity of the controls, with siUBC (red), siCLSPN
(purple) and siRLUC (blue). B) The correlation between two replicates. Replicate 1 of all treatments including samples and controls is plotted on the
X axis and replicate 2 on the Y axis. siUBC treatments are in red, siCLSPN in purple and siRLUC in blue. All samples are in gray, with the strongest
phenotypes in black and labeled with gene names. C) Cell images of the controls (siUBC, siCLSPN, siUBC) and three phenotype hits (siPLK1, siCOPB2,
siAKAP7).

characterizations support the observed phenotypes and
their mechanism. For example, MRC2 was previously
shown to be responsible for the turn-over of collagen [27]
and higher levels of collagen was associated with elon-
gated cell shapes [28]. TESK2 was shown to be involved
in actin cytoskeletal organization [29]. It should also be
noted that the samemorphology phenotype can be caused
by unrelated mechanisms, nevertheless, grouping similar
phenotypesmay help identify and understand functionally
related genes and their interactions.

Gene clustering analysis with PhenoDissim
We then clustered genes by pair-wise phenotypic dissim-
ilarity of the whole screening set to identify genes that
perform potentially related functions. To this end, we
averaged the two replicates and generated a 779×779 phe-
notypic dissimilarity matrix, with each row and each col-
umn representing an siRNA treatment. Then hierarchical
clustering was performed based on the phenotypic dis-
similarity matrix (shown as a dendrogram in Figure 4A).
The clustering tree was cut into 20 clusters, and each

cluster analyzed for GO term enrichment (see Methods
for details). The clusters are shown as colored bars, and
the height of each bar indicates how many enriched GO
terms found in the corresponding cluster (Figure 4A).
There are a total of 126 enriched GO terms identi-
fied, with clusters vary in the number of enriched GO
terms.
Genes from the cluster with the highest number of

enriched GO terms (marked with an asterisk in Figure 4A)
are shown in Figure 4B, where nodes represent gene
members and edges represent the gene-gene interaction
identified in the STRING database [29]. The weight of
each edge is proportional to interaction confidence. 29 of
32 genes were found to be connected in STRING. Par-
ticularly, we noticed two functional groups, the mitogen-
activated protein kinase (MAPK) signaling pathway and
the protein expressed in non-metastatic cells (NME) fam-
ily. The MAPK pathway is involved in multiple cellu-
lar functions including proliferation, differentiation and
migration [30]. Eight members of the MAPK pathway
are found in this cluster, MAP3K4, MAP3K5, MAP3K6,
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Figure 3 A network of identified phenotypes and their phenotypic dissimilarity. 31 siRNAs are identified as phenotype hits and calculated for
pair-wise phenotypic dissimilarity. Each siRNA is represented by a node. siRNA pairs with phenotypic dissimilarity smaller than 0.82 are connected
with an edge, with only connected nodes shown. Cell images for representative phenotypes are shown and labeled with the corresponding siRNAs.

MAP3K7, MAP4K1, MAP4K5, MAPK1, PRKACA. These
genes show phenotypic similarity among each other, and
the associated GO terms are enriched such as activa-
tion of JUN kinase activity (GO:0007257, p value 0.002,
odds ratio 10). The NME gene family was discovered as
a metastasis suppressor [31], and was later shown to be
involved in cell proliferation and differentiation [32,33] as
well. Five NME genes are present in this cluster and the
associated GO terms are enriched such as GTP biosyn-
thetic process (GO:0006183, p value 1 × 10−5, odds ratio
33). Grouping genes from the same pathway or family
together validates the clustering analysis. Additionally, the
MAPK pathway and the NME gene family are clustered
together, which may suggest a functional link. This is
supported by the previous finding that overexpression of
NME represses MAPK phosphorylation, and thus inhibits
cell migration and metastasis [34,35]. In summary, our
analysis has shown that clustering based on the PhenoDis-
sim method has the potential to identify gene functional
clusters.

Discussion
The generation of phenotype-based perturbation net-
works based on cellular phenotyping is becoming a pow-
erful approach in systems biology, functional genomics
and drug discovery [36]. Several approaches have been

developed to quantify image-based readouts from image-
based screening via segmentation and feature extraction
[22,37,38]. However, translating multidimensional cell
feature data into phenotypic information remains elu-
sive and hinders the further application of image-based
screening. Previous studies have proposed multiple anal-
ysis methods with different dimension reduction and
statistical learning algorithms [9,10,12,24], but these
methods often rely on human experts to provide biological
knowledge, such as for feature selection and training data
set annotation. These approaches also require the opti-
mization of multiple parameters, which prevents an easy
adaptation to other image-based screens with different
setups.
We have developed here a new phenotypic dissimilarity

measure, PhenoDissim, for image-based high-throughput
screening. The proposed method can identify phenotypes
by computing the dissimilarity between samples and con-
trols, and determine phenotype-based gene networks by
computing the dissimilarity between samples. With the
proposed method, we have identified distinct phenotypes,
and functionally related genes by cluster analysis. This
method only requires the optimization of SVM classifi-
cation parameters cost and gamma, without knowing cell
lines, fluorescent markers, treatment types or biological
questions.
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Figure 4 Phenotypic clustering with PhenoDissim. A) The phenotypic clustering tree is plotted as dendrogram. The hierarchical tree is cut into
20 clusters, with each cluster analyzed for the number of enriched GO terms (indicated by the color and height of the bars). The cluster with the
most enriched GO terms is marked by an asterisk. B) Genes from the marked cluster are shown with gene interactions retrieved from the STRING
interaction database, where nodes represent genes in the cluster and edges represent interactions identified by the STRING database (edges are
weighted based on the evidence score).

Comparing the performance of PhenoDissim with pre-
vious methods is challenging due to the lack of gold
standards and different scales of screening data sets. We
have designed quality metrics to assess replicate repro-
ducibility and separation of controls, which provide eval-
uation of the whole screen from different perspectives

(see Methods for details). As summarized in Table 1,
the PhenoDissim method performs similarly or better on
the benchmark data set compared with previous meth-
ods, in terms of replicate reproducibility, separation of
controls and gene clustering quality. It should be noted
that we have not extensively performed optimization

Table 1 Evaluation of analysis methods

Method Replicate Z’ factor GO enrichment

correlation siUBC siCLSPN

PCA 0.74 -0.74 -1.31 88

Factor analysis 0.39 -1.87 -0.12 92

KS statistic 0.66 0.07 0.21 51

SVM weight vector 0.07 -84.94 -3.49 101

SVM supervised 0.75 -0.29 -1.34 83

PhenoDissim* 0.75 ± 0.001 0.56 ± 0.01 0.40 ± 0.01 131 ± 18

*mean ± standard deviation for three independent runs.
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for other methods, indicating that they could show
a higher performance when fine tuned. In addition
other data sets may behave differently for other analysis
methods.
Because PhenoDissim applies classification accuracy as

a proxy for dissimilarity, the highest dissimilarity value is
1, or 100% classification accuracy. Thus PhenoDissim will
not be able to quantify the differences between two phe-
notypes if both have 100% classification accuracy from the
negative control. Also when treatments generate similar
phenotypes but different cellular subpopulation distribu-
tion, PhenoDissim might not be able to detect the distinc-
tions. In these scenarios it will need to be combined with
other methods. Because SVM classification needs to be
performed between each pair of treatments, the proposed
method is computationally more intensive than previous
methods (O(n2)). We have estimated that with the data
set used in this study, every dissimilarity calculation takes
about 10 seconds on a 2 GHz Intel Xeon CPU (data not
shown). The computation needed for each comparison
will be affected by the number of features, the number of
cells and the SVM parameters when applied to other data
sets.
Diverse machine learning methods have been pro-

posed for the analysis of image-based screens, which
can be classified into generative model approaches, e.g.
principle component analysis and factor analysis, ver-
sus discriminative model approaches, e.g. support vector
machines; or supervised versus unsupervised approaches.
The proposed PhenoDissim method is discriminative and
unsupervised. Depending on the biological question of
the screening campaign, certain type of methods may
be better fit than others. Without a priori knowledge,
PhenoDissim captures any phenotypes different from the
negative controls as well as the dissimilarity between phe-
notypes. However, this method does not elucidate what
are the phenotypes and what image-based features define
the phenotypes.

Conclusions
The proposed PhenoDissim method needs minimum
parameter optimization and is successfully applied in phe-
notype identification and clustering in the current kinome
RNAi screen. More and diverse image-based screening
data sets need to be investigated to evaluate proposed
analysis methods. To facilitate screen data analysis in gen-
eral, we have developed an R package, available through
the Bioconductor project [39] (http://www.bioconductor.
org/packages/release/bioc/html/phenoDist.html), which
implements analysis methods and quality metrics used
in this study. As a toolbox for phenotypic analysis in
image-based screening, and quality control of screens and
analysis methods, the phenoDist package facilitates test-
ing different analysis methods with various image-based

screens, which will help develop accurate and effective
data analysis methods, and promote further application of
image-based screening.

Methods
Phenotypic dissimilarity measure with Support Vector
Machine classification accuracy
Cell classification is to learn a mapping X → Y , where
x ∈ X is a set of cell feature vectors and y ∈ Y is a cell label.
Given two treatments (e.g., treated by siRNAs i and j), we
collect (xi,yi) and (xj,yj), where xi is a set of feature vectors
representing cells from treatment i, xj is a set of feature
vectors representing cells from treatment j, and yi can
be assigned 1 and yj can be assigned -1 to represent cell
labeling. Virtually pooling (xi,yi) and (xj,yj), we can find a
classifier y = f (x,α), where α is the parameter space of
the function. The accuracy of the classification represents
the separability of these two cell populations, and thus the
phenotypic distance between the two treatments. One can
estimate the classification accuracy by performing cross
validation defined as CV (f̂ ,α)= 1

N
∑N

i=1 L(yi, f̂ −K(i)(xi,α),
where L is the zero-one loss function, L(y, ŷ) = 1 if y �= ŷ,
and 0 otherwise; κ {1, . . . ,N} → {1, . . . ,K} is an index-
ing function for K-fold cross validation. A support vector
machine classifier performs classification in an enlarged
feature space as f (x) = ∑N

i=1 αiyi〈h(x), h(xi)〉 + β0, where
h(x) is the function to map the original features to an
enlarged space and 〈, 〉 is the dot product operator. We
can define the kernel function as K(x, x′) = 〈h(x), h(x′)〉.
Two kernel functions are most frequently used, linear
and radial K(x, x′) = exp(−γ ‖ x − x′ ‖2). We evalu-
ated both kernel functions together with other methods
(see below), and found that the radial kernel function
always performed better than the linear kernel function
(data not shown). Thus only the radial kernel function
data is presented here. We first performed parameter tun-
ing for cost (C) and gamma (γ ) (see Additional file 1:
Table S3). Then for every pair of treatments, an SVM
classification was performed on the cells pooled from
both populations (Figure 1C). The classification accuracy
was estimated from five-fold cross validation and defined
as the phenotypic dissimilarity, which ranged from 0.5
to 1.0, with 0.5 indicating random classification (identi-
cal phenotypes) and 1.0 indicating perfect classification
(completely distinct phenotypes). To assess variation due
to random sampling in cross validation, each classifi-
cation and cross validation was performed three times,
with average and standard deviation of three trials being
reported.

Quality metrics for evaluation
In order to quantitatively evaluate high-throughput
screening experiments, we assessed replicate repro-
ducibility, separation of controls, and gene clustering

http://www.bioconductor.org/packages/release/bioc/html/phenoDist.html
http://www.bioconductor.org/packages/release/bioc/html/phenoDist.html


Zhang and Boutros BMC Bioinformatics 2013, 14:336 Page 8 of 9
http://www.biomedcentral.com/1471-2105/14/336

quality. We applied PhenoDissim and previous methods
to the same screening data set, and the quality
measurements indicated the performance of different data
analysis methods.
Replicate reproducibility: In the data set, there were four

negative control wells (siRLUC) per plate. For each sample
well containing a perturbation, we computed the pheno-
typic dissimilarity between the sample well and each of
the four negative controls on the same plate. There were
a total of 779 genes targeted in the human kinome library
with two replicates for each gene. To measure repro-
ducibility, we calculated the Pearson correlation coeffi-
cient between replicate samples, of the sample phenotypic
dissimilarity to each negative control, between replicate
samples.
Separation of controls: There were two types of positive

controls (siUBC and siCLSPN) and one negative control
(siRLUC) in the screening data set, with each control rep-
resented by four wells per plate. For positive controls,
phenotypic dissimilarity to negative control was calcu-
lated the same way as the samples. For negative controls,
we computed the phenotypic dissimilarity between each
negative control well and the other three negative control
wells on the same plate, and averaged the three measure-
ments. The performance of the phenotypic dissimilarity
method can be indicated by the separation between neg-
ative and positive controls, which can be measured by
the robust Z’ factor score, as Z′ = 1 − 3(MADpos +
MADneg/abs(μ 1

2 pos
− μ 1

2neg
)), whereMAD is the median

absolute deviation, μ is the median and abs is the absolute
value.
Gene clustering quality: After averaging two replicates

of the same gene, we performed hierarchical clustering
of 779 genes, based on their pair-wise phenotypic dis-
similarity matrix. For validation, the hierarchical tree was
cut into 20 clusters (the number of clusters is deter-
mined to maximize enriched GO terms), with genes in
each cluster analyzed for gene annotation enrichment.
Since most genes were kinases, we used the biological
process gene ontology annotation [40]. For each clus-
ter, genes within the cluster were defined as the genes
of interest and all genes in the library defined as the
gene universe. Fisher’s exact test was performed and
GO terms with p value smaller than 0.01 were iden-
tified as enriched [41]. The total number of enriched
GO terms was used to evaluate the quality of the
clustering.

Software implementation
We implemented the presented phenotypic dissimilarity
method and quality control metrics in an R/Bioconductor
package, named phenoDist (http://bioconductor.org/).
The presented analysis was performed with R version 2.13
and phenoDist version 1.0.0.
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