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Abstract

Background: Unsupervised segmentation of multi-spectral images plays an important role in annotating infrared
microscopic images and is an essential step in label-free spectral histopathology. In this context, diverse clustering
approaches have been utilized and evaluated in order to achieve segmentations of Fourier Transform Infrared (FT-IR)
microscopic images that agree with histopathological characterization.

Results: We introduce so-called interactive similarity maps as an alternative annotation strategy for annotating
infrared microscopic images. We demonstrate that segmentations obtained from interactive similarity maps lead to
similarly accurate segmentations as segmentations obtained from conventionally used hierarchical clustering
approaches. In order to perform this comparison on quantitative grounds, we provide a scheme that allows to identify
non-horizontal cuts in dendrograms. This yields a validation scheme for hierarchical clustering approaches commonly
used in infrared microscopy.

Conclusions: We demonstrate that interactive similarity maps may identify more accurate segmentations than
hierarchical clustering based approaches, and thus are a viable and due to their interactive nature attractive
alternative to hierarchical clustering. Our validation scheme furthermore shows that performance of hierarchical
two-means is comparable to the traditionally used Ward’s clustering. As the former is much more efficient in time and
memory, our results suggest another less resource demanding alternative for annotating large spectral images.

Keywords: Hierarchical clustering, Cluster validation, FT-IR microscopy, Raman microscopy, Image analysis,
Similarity maps

Background
In recent years, it has been well-established that label-
free Fourier transform infrared (FT-IR) microscopy can
resolve pathologically relevant information from histo-
logical tissue samples [1-3], as surveyed in [4]. Unveiling
histopathologically relevant structures from localized
absorbance spectra yielded by an FT-IR microscope,
schematically illustrated in Figure 1, is typically achieved
through a combination of unsupervised and supervised
learning approaches [5,6]. First, certain number of spec-
trally measured tissue sections are being annotated based
on pre-segmented spectral images, typically based on
unsupervised clustering [6-8]. These annotations are then
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used to extract spectra as training data for supervised
classifiers. Obviously, the quality of the annotation deter-
mines what tissue components can be resolved and how
reliably they can be recognized by spectral classifiers. In
this context, we introduce a novel interactive approach
to annotation and quantitatively validate this approach in
comparison to established annotation schemes. In partic-
ular, we provide novel algorithms to perform such quan-
titative comparison. As utilizing Raman [9] or CARS [10]
microscopy often underlies the same workflow of data
processing as FT-IR microscopy [11], the ideas discussed
here may equally apply to these other types of label-free
multispectral microscopy.
For annotating spectral images, at least two strate-

gies are commonly employed. The first straightforward
approach is to cluster all image spectra into a suitable
number of k clusters. Each cluster is then identified

© 2013 Zhong et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/2.0


Zhong et al. BMC Bioinformatics 2013, 14:333 Page 2 of 11
http://www.biomedcentral.com/1471-2105/14/333

10001100120013001400150016001700
0

0.2

0.4

0.6

0.8

1

Wavenumber (cm−1)

A
bs

or
ba

nc
e

Tumor
Submucosa
Binding tissue
Support cells
Mucosa
Crypts
Muscle
Inflammatory tissue
Blood
Out
Slime
Fat remainders
Lumen of crypts
Follicles

10001100120013001400150016001700
0

0.2

0.4

0.6

0.8

1

Wavenumber (cm−1)

A
bs

or
ba

nc
e

Tumor
Crypts

Image raster

Tissue sample

FT-IR absorbance spectraA B C

Figure 1 Principle of FT-IR microscopy. (A) At each pixel (indicated by circles), the infrared absorbance spectrum is measured, reflecting the
biochemical status of the sample at the corresponding position. (B) Average spectra for different tissue components from a well established
training dataset [3] exhibit relatively subtle differences on an absolute scale. (C)Mean spectra of crypts and tumor regions, with shaded areas
around the mean spectra indicating standard deviation. Spectral variability within each class is small even in relation to the subtle differences
between average spectra, so that differences between classes (here exemplified by crypts vs. tumor) remain distinguishable by classifiers.

with one index color, so that a pathologist may identify
regions in the corresponding index color image with tissue
components. As a second and typically complementary
approach, the spectral image can be overlaid with a Hema-
toxylin and Eosin (H&E) stained image of the same tissue
region. Pathologists can identify relevant tissue compo-
nents in the H&E stained image, whose location patterns
can be carried to the corresponding locations in the spec-
tral image in order to extract spectra belonging to a certain
tissue component. In practice, the accuracy in overlay-
ing H&E stained images with FT-IR spectral images is
limited, e.g. due to slight distortions of the tissue dur-
ing the staining procedure. Also, there are limitations
in identifying and marking up precise borders between
certain tissue components, so that most approaches to
FT-IR based spectral histopathology combine the two
approaches [2,7,8]: A presegmentation of the spectral
image is overlaid with the H&E stained image of the same
sample, and then clusters in the spectral image are iden-
tified with tissue components based on their overlap with
relevant regions in the H&E stained image, as identified
by a pathologist. In general, the relation between clus-
ters and tissue components is not one-to-one, but one
tissue component may often be associated with several
clusters. Thus, the number of clusters is usually chosen
relatively large, so that the image is rather oversegmented.
For obtaining presegmentations, hierarchical cluster anal-
ysis (HCA) [7] as well as k-means or fuzzy c-means [2,8]
are common choices.

Spectral image segmentation using similarity maps
As our main contribution, we introduce a novel interac-
tive method for annotating FT-IR spectral images. Based
on so-called similarity maps [12] and utilizing the concept
of certain similarity measures between high dimensional
vectors, annotations result from interactively choosing
reference pixel spectra for the tissue components that can

be identified in the tissue sample. By overlaying the inter-
active similarity maps (ISMs) with an H&E stained refer-
ence image, this allows to interactively take into account
both spectral similarity and histopathological informa-
tion from the stained image. This method is implemented
in our so-called Lasagne software that has been origi-
nally proposed [13] and implemented [14] for multi-label
fluorescence microscopy, while the present contribution
adapts and quantitatively validates it for the use in vibra-
tional microspectroscopy.

Clustering and its validation for spectral image
segmentation
In order to convincingly establish similarity maps as a
suitable tool for infrared image annotation, it is essen-
tial to compare them to the currently predominant
approach using clustering-based presegmentations. Clus-
tering methods such as Ward’s method or k-means have
been used extensively in infrared image segmentation
and compared on a qualitative level for their suitabil-
ity in vibrational microspectroscopy [7]. Yet, as has been
noted prominently [15], “the validation of clustering is
the most difficult and frustrating part of cluster analysis”.
In fact, different applications and different clustering
algorithms — in particular hierarchical ones — require
different validation approaches. One application-specific
consideration when employing and validating clustering
in the context of infrared image annotation is that the
correspondence between tissue components is not one-
to-one, but rather one-to-many. Such considerations are
rarely accounted for in existing validation procedures, and
may be a reason that current comparisons of clustering
approaches [7] are qualitative rather than quantitative.We
address the lack of quantitative evaluation through intro-
ducing a validation scheme for hierarchical clustering
based on so-called tree-assignments which were intro-
duced in [16,17] in the context of tracking cells in live cell
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imaging. A very brief and preliminary validation ofWard’s
clustering in FT-IR image segmentation was given in [3]
and is fully detailed and systematically elaborated in the
present work. In particular, we evaluate the suitability of
hierarchical clustering approaches that are more efficient
in terms of computational resources.
To identify a suitable validation scheme for unsuper-

vised infrared image segmentation, it is important to
consider in some more detail how clustering based seg-
mentations are commonly used in this context. While not
commonly described in detail, one typically attempts to
choose a number of clusters that oversegments the image
in a presegmentation. Then, the task of the human anno-
tator is to identify each tissue component with one or
several of these clusters. In some approaches, clusters may
be extended or divided by navigating along the hierarchy
of a given dendrogram. Using a ground truth segmenta-
tion as a reference, a validation scheme thus should aim to
identify the best possible segmentation obtained from this
workflow from a given clustering algorithm under realistic
side assumptions.
One such side assumption is that there is a limit to the

number of clusters that can be merged to represent one
tissue component, which essentially represents a cognitive
limit of a human annotator. Obviously, starting annota-
tion from a crudely oversegmented image in general will
allow more precise annotations. However, this comes at
the cost of requiring the annotator to identify many small
segments that merge into one tissue component. As there
is no fixed limit to the degree of oversegmentation, we
propose a validation scheme that takes the degree of over-
segmentation into account as a parameter. We will refer
to the degree of oversegmentation utilized during annota-
tion as the depth of segmentation obtained from a dendro-
gram, and will introduce a validation scheme that allows
to control segmentation depth through a parameter.
As surveyed in [18], a large diversity of validation mea-

sures for clustering algorithms has been proposed. Our
main concern in this work is to validate clusters against a
ground-truth reference segmentation, which is commonly
referred to as external validation. While for external val-
idation, one can principally rely on measures such as
accuracy known from the validation for supervised clas-
sifiers, measures such as the Rand index and the Jaccard
index [19,20], both in eventually normalized forms, are
well established and commonly used. Furthermore, so-
called variation of information [21] can be considered a
well established information theoretic measure. However,
these measures can only be applied to fixed segmenta-
tions, but not to dendrograms obtained from hierarchical
clustering, and do not account for one-to-many relations
between reference classes and clusters.
In infrared image annotation and other applications it

is commonplace to use the dendrogram for obtaining a

fixed partitioning into a certain number of classes. In this
context, a straightforward and widely used approach hori-
zontally cuts dendrograms into a fixed number of clusters
[22]. In other words, given a dendrogram, one identifies
edges e1, . . . , ek so that each ei contains a point vi that
has same distance δ from the root for all i. Now, subtrees
below these k edges define a partitioning into k classes. In
general, however, there are numerous non-horizontal cuts
supported by the same dendrogram that yield a different
partitioning into the same number of clusters, which has
been considered only recently in literature [23-25].
As illustrated in Figure 2, a segmentation based on

a non-horizontal cut will generally reflect tissue com-
ponents much better than a horizontal cut. Thus, vali-
dating different approaches to clustering in this context
should take into account such non-horizontal cuts. Our
contribution elaborates an approach that allows to sys-
tematically identify such non-horizontal cuts, yielding a
corresponding validation scheme for hierarchical cluster-
ing. In particular, we utilize this scheme to quantitatively
compare different hierarchical clustering approaches to
interactive similarity maps. An important property of
our validation scheme is that it can measure validity
under different depths, i.e., different degrees of initial
oversegmentation.

Methods
Interactive Similarity Maps (ISMs)
To introduce the concept of similaritymaps following [12],
let F(x, y) denote the FT-IR absorbance spectrum at posi-
tion (x, y) in the spectral image. By choosing a reference
spectrum R = F(xR, yR) at position xR, yR, one can mea-
sure the similarity between any position spectrum F(x, y)
and the reference spectrum R = (R1, . . . ,Rn) using a
suitable measure of spectral similarity. Now, interpreting
the spectral similarity at each position as an intensity, we
obtain the similarity mapM as an intensity image through

MR(x, y) = σR(F(x, y)),

where σR measures the spectral similarity to the reference
spectrum R. We follow the suggestions from [12] in using

σR(S) :=
∏

i=1,...,n
(1 − |Ri − Si|α) (1)

as our similarity function between reference spectrum
R = (R1, . . . ,Rn) and pixel spectrum S = (S1, . . . , Sn).
Here, α is a non-negative real-valued parameter to adjust
the sensitivity of the similarity measure. Note that Eq. 1
only makes sense if Ri and Si range between 0 and 1. In
practice, we achieve this by rescaling a dataset, and setting
the minimum absorption occurring at any wavenumber
in any spectrum to 0, and correspondingly setting the
maximum absorption occurring in the dataset to 1.
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Figure 2 Schematic overview of the cross-validation scheme for hierarchical clustering. (A) Composition of training data set, indicating an
index color and proportion of spectra per class. (B) Dendrogram of the training data set and result of an optimal class assignment under a horizontal
cut (indicated by dashed line in the left dendrogram) and an optimal tree assignment (right dendrogram) where each class is identified with the
subtree colored according to its associated index color. Tree-assignment based segmentation not only achieves a much higher accuracy, but
exhibits substantial differences in the assignment of several classes. The classes of crypts and submucosa are even identified as disjoint sets of
spectra in both approaches, while substantial differences exist in the classes of tumour, inflammatory tissue, follicles, and support cells. The two
segmentations indicate that even on well-curated training data, non-horizontal cuts in the dendrogram represent tissue classes much more reliably
than horizontal cuts.

Interpreting σR(S) as a similarity measure between vec-
tors R and S, it has been shown that Eq. (1) satisfies metric
properties, which turns out to be a metric obtained by
natural and systematic scheme to induce new metrics as
products of other metrics [12]. A major advantage from a
practical point of view is that Eq. (1) can be implemented
on graphics hardware, so that the similarity map for all
spectra from one image w.r.t. a given reference spectrum R
can be computed within fractions of a second. This allows
an interactive exploration of a spectral image by setting
and moving the coordinate for the reference spectrum R
with the mouse pointer.
In general, the product in Eq. (1) may vanish towards

0 rapidly if the difference is large for only a few features.
The parameter α can be used to control this effect. Large
values α lessen the tendency of the product to vanish
towards 0 in datasets with heterogeneous features. Choos-
ing a small α close to 0, on the other hand, can be used
to amplify the tendency for the product to vanish when
working on datasets with little variability. In practice,
the parameter can adapted interactively, where common
choices range between 1 and 2.
As demonstrated in Additional files 1, 2, 3, 4 and 5,

an image can be annotated through similarity maps by
interactively mouse-clicking one (or several) reference
positions for each tissue component. This yields one refer-
ence spectrum R for each tissue component in the spectral
image. Once a reference spectrum R is chosen, an intensity
cutoff in the similarity map MR can be set interactively.
All positions (x, y) exceeding this threshold will be con-
sidered part of the same tissue component. If there are K
different types of tissue components in the spectral image,
annotation now reads as interactively identifying refer-
ence pixel spectra R1, . . . ,RK . In practice, as discussed in

further detail in Results Section, some tissue components
need to be represented by two rather than one reference
spectrum. In case one position exceeds the threshold of
several reference spectra, the position is assigned to the
similarity map of highest intensity.
As an implementation, we utilized a version of the

Lasagne software [13,14] adapted to the requirements of
vibrational microspectroscopic data. A key feature of the
Lasagne software is to perform computation of Eq. (1) on
graphics hardware, so that the similarity maps M can be
displayed in real-time. In our adapted version, the Lasagne
software may also display overlays between the similar-
ity maps and a reference image such as an H&E-staining
image. In practice, annotation of an FT-IR microscopic
dataset using the Lasagne software works as follows (see
Additional files 1, 2, 3, 4 and 5): The annotator uploads
both the FT-IR dataset and an H&E staining image of
the same sample in the same coordinate system into the
Lasagne software. Now, the spectrum at the current posi-
tion of the mouse cursor in the image is interpreted as
the reference spectrum to interactively display a similar-
ity map. When moving the cursor to a suitable reference
point, the similarity map may highlight a particular tissue
compartment, which can be visually aligned by toggling
between the similarity map and the H&E image. Once the
correspondence between the similarity map and the tis-
sue structure identifiable from the H&E image is visually
well matched by varying the reference point, the annotator
sets a suitable intensity threshold in the similarity map, so
that the above-threshold positions can be used as training
spectra for the corresponding tissue compartment. This
may not only be done for one tissue compartment, but the
annotator may set one (or even several) reference point for
each tissue compartment that is identifiable in the given
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tissue sample. Each tissue compartment may be associ-
ated with an index color, so that the annotation can be
interpreted as an index color image that resolves the tissue
structure. In case of a conflicting position where several
tissue compartments match the annotation, the position
may be associated with the tissue compartment whose
similarity map achieves the highest intensity.
In order to validate similarity maps for image anno-

tation, we overlaid the spectral image with a reference
segmentation obtained from a supervised classifier using
a well-established set of training spectra [3]. Reference
points for the different tissue components were set by a
human operator, aiming to reproduce the reference seg-
mentation as good as possible. While the annotation thus
achieved may not be optimal in the sense that a differ-
ent choice of reference points achieve a higher accuracy,
it simulates a segmentation that may realistically achieved
by a histopathologist.

Hierarchical clustering
We employed two variants of hierarchical clustering. First,
we hierarchically clustered spectra usingWard’s approach
[26] based on two different distance measures. First, we
employed the well-established andwidely used correlation
distance (i.e., one minus correlation coefficient) and, sec-
ond, we used the power metric dP(X,Y ) = 1 − σX(Y )

obtained using Eq. (1). As a further flavor of hierar-
chical clustering, we performed hierarchical two-means,
i.e., recursively bipartitioning the dataset into two groups
using two-means clustering in a top-down fashion. In
each round of two-means clustering, the best subdivi-
sion among five repetitions on different random initial-
ization was used for the next round of subdivision. For
Ward’s clustering, we utilized the (parallelized) implemen-
tation provided by the Statistics toolbox ofMatlab version
7.11. Hierarchical two-means clustering was implemented
using k-means clustering provided byMatlab.

Validation of hierarchical clustering
When performing hierarchical clustering on curated
training data with training spectra for tissue components
1, . . . ,K , a dendrogram obtained from an “ideal” hierar-
chical clustering would contain one vertex vi for each
i = 1, . . . ,K such that all spectra below vi belong to class
i. In order to measure to what degree a dendrogram D
obtained by Ward’s clustering achieves this criterion, we
identify vertices v1, . . . , vK in D that approach this goal
as far as possible. As detailed below, this can be achieved
based on ideas behind so-called tree-assignments recently
introduced in a different context in [16,17,27].
The main idea behind validating how well a given den-

drogram reflects a given reference partitioning of a set
of spectra is to utilize measures for comparing partition-
ings, such as accuracy or the popular Rand index (RI).

Once such a measure is chosen, we determine a par-
titioning supported by the dendrogram that maximizes
this measure. This approach is in line with the VI-Cut
introduced in [24], which determines a partitioning that
maximizes variation of information as an information the-
oretic measure for cluster validity. In terms of validation
of infrared image segmentation and annotation, however,
VI-Cut does not allow to control the depth of annota-
tion. In fact, VI-Cut may in the end perform its validation
on a segmentation derived from the dendrogram that
realistically may not be recoverable by a human annotator.

Measures for comparing partitionings
As ourmain validity measure for comparing partitionings,
we use the Rand index [19], which is a well-established
measure to compare two partitionings in the context of
cluster validation [28]. The Rand index is defined for two
partitionings C and C′ that partition the set {1, . . . , n} =
C1∪· · ·Ck = C′

1∪· · ·C′
�. Following the notation from [28],

the Rand index (RI) is based on the indicator function

e(i, j) =
{
1 i, j ∈ Ca for some a ∈ {1, . . . , k}
0 otherwise.

and e′(i, j) correspondingly equal to one if i and j are in
the same class in C′ and 0 otherwise. We can now further
define

n11 = |{(i, j) | e(i, j) = e′(i, j) = 1}|
n00 = |{(i, j) | e(i, j) = e′(i, j) = 0}|,
n01 = |{(i, j) | e(i, j) = 0, e′(i, j) = 1}|
n10 = |{(i, j) | e(i, j) = 1, e′(i, j) = 0}|,

which finally yields the Rand index

R(C, C′) = 2(n11 + n00)
n(n − 1)

.

We will also utilize the Mirkin metric, which as a close
relative to the Rand index is defined as

M(C, C′) =
k∑

i=1
|Ci|2 +

�∑
j=1

|C′
j |2 − 2

k∑
i=1

�∑
j=1

m2
ij,

where mij = |Ci ∩ C′
j |. Obviously, one can compute the

Rand index easily from the Mirkin metric [28] using

R(C, C′) = 1 − M(C, C′)
n(n − 1)

. (2)

Determining optimal partitionings supported by a
dendrogram
Given a dendrogram with n leaves and a reference parti-
tioning C′ that partitions the numbers {1, . . . , n}, we now
aim to use the dendrogram to obtain a partitioning C that
maximizes the Rand index between C and C′. We allow to
derive a partitioning from the dendrogram by assigning a
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class label to vertices in the dendrogram, so that all leaves
below a labelled vertex v will belong to the assigned class.
To prevent assignments of leaves to more than one class,
no ancestor or descendant of an assigned vertex can be
further assigned to a class.
Eq. (2) shows that indeed it is sufficient to minimize the

Mirkin metric rather than maximizing the Rand index.
Furthermore, the Mirkin metric is composed of 3 parts.
Since C′ is the reference partitioning,

∑�
j=1 |C′

j |2 is con-
stant. Thus we only need to minimize the left 2 parts:

M′ =
k∑

i=1
|Ci|2 − 2

k∑
i=1

�∑
j=1

m2
ij

=
k∑

i=1

⎛
⎝|Ci|2 − 2

�∑
j=1

m2
ij

⎞
⎠ .

Let wi = |Ci|2 − 2
∑�

j=1m2
ij. Then

M′ =
k∑

i=1
wi.

Here wi is the weight associated with class Ci. |Ci| is the
number of leaves underneath vertex vi andmij is the num-
ber of points shared by cluster Ci and C′

j . Thus, the values
wi can be computed easily and quickly. The terminol-
ogy introduce above suggests the following integer linear
programming to identify an optimal partitioning:

min
p∑

i=1
wiXi (3)

s.t.
k∑

q=1
Xvq = 1 for each root-leaf path (v1 . . . vk)

(4)
p∑

i=1
Xi = Q (5)

Xi ∈ {0, 1} ∀1 ≤ i ≤ p (6)

Here, p is the number of vertices in the dendrogram, wi
is the gainedMirkin metric if there is a cut at vertex vi and
Xi is a binary variable. Xi = 1 indicates that there is a cut
at vertex vi. Finally, Q is the parameter that controls how
many vertices may be assigned overall in the partitioning,
thus controlling the depth of annotation: A small value of
Qmeans the “annotator” has to choose large high vertices
in the dendrogram to obtain the partitioning, a large value
of Q means that the partitions can be merged from many
small segments in lower parts of the dendrogram.
Once a tree-assignment has been obtained, it is useful to

obtain a partitioning of the dataset where each partition

is assigned one of the classes in the reference partition-
ing C′. Such class assignment can be used to associate an
accuracy of the segmentation C, and in case of an image
dataset can be used to produce an index color image.
In order to obtain such class assignment, we follow a
straightforward majority vote approach: Whenever a ver-
tex vi is active, i.e., Xi = 1, we need to associate the data
points at the leaves below vi with a class. By considering
the labels of these q data points xi,1, . . . , xi,q in the refer-
ence partitioning C′, we determine the label which occurs
most often, and associate it with all leave data points
xi,1, . . . , xi,q.
Our tree-assignment implementation is based on the

Matlab interface to version 5.5 of lpsolve. In order to limit
the size of the ILP and avoid assignments to very low-level
vertices, only the topmost 255 vertices in each dendro-
gram were allowed to be assigned. Note that this cutoff
is far beyond what could be utilized in an HCA based
annotation by histologists, as the resulting pre-segmented
index color image involves at most 128 different index col-
ors and thus appears highly fragmented. Thus, vertices
located even lower in the dendrogram can be considered
as un-identifiable in practice by an annotator. Meanwhile,
we only need to compute the topmost 255 vertices in hier-
archical two-means, which can reduce the running time
even further.
If applied to a training dataset where each spectrum

is assigned with a class label, the result of the tree-
assignment reads as a re-classification of the training
dataset. Thus, we can apply any validation measure used
for measuring the quality of supervised classifiers. In
particular, we can mimic validation schemes such as
Monte-Carlo-type cross validation by repeatedly subsam-
pling from the training dataset. In Results Section, we
extensively utilize this idea to validate hierarchical clus-
tering in comparison to both supervised classifiers and
similarity-map based annotation.

Datasets
For our computational studies, we utilized a colon tissue
spectral dataset derived from [3]. The dataset consists of a
training data set comprising 23, 278 pixel spectra grouped
into 14 classes of tissue components, along with three
large spectral images displaying 854× 502, 576× 672 and
832×416 FT-IR pixel spectra of three tissue sections. The
images will henceforth be referred to as 120514, 88180
and colon_p53_active, respectively. The spatial resolution
is 5.5 μm/px. Following common practice in infrared
image analysis, spectra exhibiting a weak signal or strong
noise, e.g. resulting from holes or cracks in the tissue
section or other artifacts, are discarded in a preprocess-
ing step. This affects roughly 10% of all image spectra;
for image 120514, e.g., 8.24% of the image spectra are not
considered for further analysis.
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Based on the training dataset, a Random Forest classi-
fier has been trained (for details, refer to [3]), yielding a
segmented version of the spectral images that assigns one
of the 14 trained classes to each pixel, see Figure 3(A). The
training data set contains well-curated spectra and has
been validated in detail in [3] by further experimental evi-
dence using fluorescence microscopy. Furthermore, it was
shown in [3] that the segmentations obtained from this
supervised classifier resolve histopathologically relevant
details such as the lamina muscularis mucosae. Following
the general difficulty to obtain ground truth for biologi-
cal image data [29], we used this fluorescence-validated
and histopathologically well supported segmentation as
a ground truth segmentation to quantitatively compare
with segmentations obtained from similarity maps and
hierarchical clustering algorithms. We may consider the
cross-validation accuracy of the random forest of 94.92%
on the training data as an estimate on the accuracy of our
reference data.

Results and discussion
To measure the performance of the classification and seg-
mentation methods introduced here with other methods,
we used the mean accuracy achieved in a Monte-Carlo
type validation scheme whenever applicable.

Validation of tree assignments
We compared segmentations obtained from tree assign-
ments, k-means and horizontal cut (see Figure 4). In
this case, horizontal cut performs slightly better than
k-means. While non-horizontal cut using tree assign-
ments gets much higher Rand index than the other two
methods. Our results further confirmed the previous find-
ings [7] in a systematic and quantitative way.

Validation of similarity maps
We applied the Lasagne software to all the three spec-
tral images, using the random forest classifications based
on well-curated training data as reference segmentations.
These RF-based reference segmentations were visually
reconstructed as good as possible using the Lasagne soft-
ware by a human operator. We allowed the operator to
specify up to two reference pixel spectra per class. In
the resulting segmentation of image 120514 (Figure 3),
376, 718 (95.76%) out of the 393, 378 non-background
pixel spectra were assigned to one of the classes in the
training dataset. The smallest five classes, namely out, fat
remainders, follicles, blood and slime could not be prop-
erly identified as either too few spectra belong to this class
(36 spectra for slime) or their location patterns were spec-
trally not unambiguously resolved by the Lasagne soft-
ware. Yet, the resulting segmentation assigns 53.94% out
of 393, 378 pixel spectra to the correct class. This accuracy
is higher than the accuracy achieved by either variant of
HCA, where at most 53.35% of the spectra were assigned
correctly by Ward’s clustering with the power metric.
From the confusion matrices, we can see that both HCA
based segmentations and similarity maps based segmen-
tation perform better for big classes than for small classes.
What is different is that for small classes that are diffi-
cult to identify, Lasagne rejects to assign any class label
while HCA based methods make wrong assignments. In
Figure 3(B), submucosa was totally mistakenly identified
as either support cells or muscle, which is undesirable.
Figure 3 shows the RF-segmented reference image,

tree assignments based segmentation and the Lasagne-
reconstruction image for dataset 120514. Correspond-
ing results for the other two datasets 88180 and
colon_p53_active are shown in Additional files 6 and 7.

RF-based segmentation (reference image)

HCA+correlation based segmentation (Q=14)

Hierarchical two-means based segmentation (Q=14 )

Similarity map based segmentationRI=0.82 Accu=46.94%

RI=0.83 Accu=52.93%

RI=0.83 Accu=53.94%

A 

B

C

D

Figure 3 Indexed spectral images and confusion matrices of image 120514. (A): Random-forest classified reference image. (B-D):
Segmentations and confusion matrices obtained by different annotation approaches. In the confusion matrices, the numbers beside the tissue
names indicate class sizes, and the tissues are sorted by size in descending order. Ward’s clustering in combination with the power metric achieves
an Rand index of 0.83 and accuracy of 53.35% (data not shown).
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Figure 4 Comparison of tree assignments, k-means and
horizontal cut. Clustering the training dataset into 14 classes using
k-means (left) or Ward’s clustering using a horizontal cut (middle)
leads to partitionings with a Rand index of around .9 with relatively
high standard deviation. A partitioning obtained from Ward’s
clustering using tree-assignments leads to a significantly higher Rand
index (right). Note that the Rand index approaches 1 for datasets with
many classes. Yet, the difference after Monte-Carlo type validation is
clearly significant.

For dataset 88180, the Rand index is equivalent between
similarity maps and either variant of HCA (.75), while
the accuracy is slightly higher for HCA based segmenta-
tions (≥ 59.39% for HCA vs. 56.23% for similarity maps).
For dataset colon_p53_active, HCA accuracies are signifi-
cantly higher (≥ 69.21% vs. 41.68%). AlthoughHCA based
segmentations received higher overall accuracies than
similarity map based segmentation, many details of the
tissue structure are lost. Due to themajority vote approach
of class assignment subsequent to the tree-assignment
based validation, they are more likely to mistakenly recog-
nize small tissue classes as big tissue classes. This property
may cause problems for samples containing unbalanced
proportions of tissue classes. Furthermore, our validation
is conservative in the sense that HCA is validated by a seg-
mentation that algorithmically mimics the annotation that
the “best possible annotator” could obtain from the given
dendrogram, whereas the similarity map relies on a real
human annotator to visually reproduce the ground truth
segmentation.

Validation of different hierarchical clustering approaches
We applied and evaluated tree assignments using different
depths of segmentation Q = 14, 16, . . . , 42 (see Figure 5
and Additional file 8). Both Rand index and accuracy
increase with larger values of Q in essentially all cases.
However, accuracy increases faster than the Rand index,
which may be due to the relatively large number of 14
groups in our dataset, where the Rand index tends to
approach 1. Hierarchical two-means performs worse than

Ward’s method on training data, while comparable or even
slightly better on image 120514. In general, we may con-
clude that hierarchical two-means works well on image
data, and using the power metric gives a slight, but not
significant advantage over the established and widely used
correlation distance on both image and training data. As
to be expected, the accuracy achieved by unsupervised
HCA using either distance measure is much smaller than
the 94.92% accuracy obtained from a supervised random
forest.
Beside validation measures, the running time required

for obtaining clustering results is of high practical rele-
vance. While not investigated in further detail, clustering
roughly half a million image spectra using hierarchical
two-means takes only few hours without parallelized com-
putation, while Ward’s clustering consumes more than
one week of computation time using up to 64 CPUs in
parallel.

Conclusions
We have introduced two novel concepts in the context
of annotating FT-IR microspectroscopic images. First, we
proposed a quantitative validation of hierarchical cluster-
ing schemes commonly employed during spectral image
annotation. Second, we described and validated interac-
tive similarity maps as an alternative to clustering-based
image annotation.

Similarity maps for vibrational microscopy image
segmentation
Our contribution on interactive similarity maps sug-
gests that there are viable alternatives to this “clustering
paradigm”. As our findings suggest, annotations obtained
using similarity maps may achieve similarly accurate as
annotations based on hierarchical clustering. Compared
to the costs of computing time and memory that are
still significant even for the more efficient hierarchi-
cal two-means, similarity maps require no preprocessing
beyond the commonly performed low-level normaliza-
tion or baseline correction. Implemented on a GPU, re-
computing the similarity map after an interactive change
of a reference point can be done within fractions of
a second even on large (> 500, 000 spectra) infrared
images.
While visually identifying reference points is an intu-

itive concept addressing the histologist or pathologist not
requiring any explicit computational expertise, this con-
tribution provides a proof of concept based on quantita-
tive validation. Establishing it to the level of a routine task
for histologists or pathologists in larger scale studies is
a perspective that should be encouraged by our positive
quantitative validation of the approach. Both similarity-
map based exploration and annotation and the concept of
tree-assignments introduced here may be equally useful
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Rand index vs. Q on training dataset Accuracy vs. Q on training dataset 

Rand index vs. Q on image 120514 Accuracy vs. Q on image 120514

A B

C D

Figure 5 Comparison of different hierarchical clustering approaches under varying the depth of segmentationQ. Three hierarchical
clustering schemes are evaluated in terms of Rand index and accuracy on both the training dataset (A-B) and image 120514 (C-D). 10-fold
Monte-Carlo cross validation is performed on the training dataset (the error bar indicates standard deviation).

for Raman [9] and CARS [10] microscopy, which is worth-
while to explore in future contributions.

Clustering in vibrational microscopy image segmentation
Along our contribution to quantitatively compare unsu-
pervised infrared image segmentation strategies, we have
provided a validation scheme for hierarchical cluster-
ing that matches the assumptions behind spectral image
annotation, which turned out to be a non-trivial task
in itself. As hierarchical clustering is arguably the most
commonly used basis for infrared image annotation, this
contribution is particularly important for systematically
quantifying performance of different methods, rather

than comparing by qualitative visual inspection. One of
the immediate consequences we obtain is that the tradi-
tionally usedWard’s clusteringmay be substituted without
significant loss of quality by hierarchical two-means for
image segmentation. As the latter is much more time and
memory efficient, this finding will make it much more
practical to work with large spectral images. Being able to
handle larger numbers of spectra without compromising
in terms of accuracy becomes increasingly important in
multispectral microscopy. In fact, the sizes of images keep
growing with new generations of FT-IR microscopes and
array detectors, or when working on confocally measured
stacks of Raman or CARS images.
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Turning dendrograms into segmentations or partitionings
Finally, the idea of determining non-horizontal cuts in
dendrograms and the cross-validation scheme based on
this idea may be of further interest in infrared microscopy
and beyond. Although not explored in this contribution,
tree assignments also allow to compare two (or more)
dendrograms by identifying an optimal set of classes sup-
ported by both dendrograms, rather than matching a
fixed segmentation into one dendrogram. While this can
achieved by relatively simple modifications of the integer
linear programming and the weighting scheme provided
here, exploration is left for future contributions.

Additional files

Additional file 1: A video showing interactive annotation of a
spectral image using Lasagne (part 1).

Additional file 2: A video showing interactive annotation of a
spectral image using Lasagne (part 2).

Additional file 3: A video showing interactive annotation of a
spectral image using Lasagne (part 3).

Additional file 4: A video showing interactive annotation of a
spectral image using Lasagne (part 4).

Additional file 5: A video showing interactive annotation of a
spectral image using Lasagne (part 5).

Additional file 6: Indexed spectral images and confusion matrices of
image 88180.

Additional file 7: Indexed spectral images and confusion matrices of
image colon_p53_active.

Additional file 8: Comparison of different HCA approaches on image
88180 and colon_p53_active.
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