BMC
Bioinformatics

Image Segmentation Image Segmentation

Benchmark for multi-cellular segmentation of
bright field microscopy images
Zaritsky et al.

( BioMVled Central Zaritsky et al. BMC Bioinformatics 2013, 14:319
http://www.biomedcentral.com/1471-2105/14/319



Zaritsky et al. BVIC Bioinformatics 2013, 14:319
http://www.biomedcentral.com/1471-2105/14/319

BMC
Bioinformatics

DATABASE Open Access

Benchmark for multi-cellular segmentation of
bright field microscopy images

Assaf Zaritsky', Nathan Manor', Lior Wolf', Eshel Ben-Jacob®** and llan Tsarfaty”"

Abstract

Background: Multi-cellular segmentation of bright field microscopy images is an essential computational step
when quantifying collective migration of cells in vitro. Despite the availability of various tools and algorithms, no
publicly available benchmark has been proposed for evaluation and comparison between the different alternatives.

Description: A uniform framework is presented to benchmark algorithms for multi-cellular segmentation in bright
field microscopy images. A freely available set of 171 manually segmented images from diverse origins was
partitioned into 8 datasets and evaluated on three leading designated tools.

Conclusions: The presented benchmark resource for evaluating segmentation algorithms of bright field images is
the first public annotated dataset for this purpose. This annotated dataset of diverse examples allows fair
evaluations and comparisons of future segmentation methods. Scientists are encouraged to assess new algorithms
on this benchmark, and to contribute additional annotated datasets.
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Background

Characterizing and quantifying collective migration phe-
notypes of a monolayer of cells in vitro is an important
step in understanding physiological processes such as de-
velopment, wound repair and cancer motility. The preva-
lent approach is to acquire still or time-lapse images using
bright field microscopy, followed by manual or automated
extraction of quantitative measures of cellular morphology
or dynamics (e.g., [1-3]).

The vast numbers of microscopic images acquired in
high throughput studies preclude manual annotation and
hence automatic computational tools become indispens-
able. Indeed, several tools to tackle these tasks were
recently reported; some exploit local motion-estimation to
quantify dynamic intercellular phenomena [4,5], whereas
others are designed to quantify only global motion of
complete colonies or confluent monolayers [6-15]. The
basic common computational step in all approaches is
segmentation of an image into cellular and non-cellular
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regions, the accuracy of which is crucial for further
analysis. It is inherently a foreground-background seg-
mentation task: no explicit cell segmentation is per-
formed; each pixel is rather assigned a binary label as
being part of either a cellular or a non-cellular region.

The high variability in imaging conditions and cells’
appearance requires robust algorithms that can deal
with this imaging diversity automatically, accurately
and preferably without the need for parameter-tuning.
It is difficult to systematically select the most appropri-
ate segmentation tool from the available options
[16,17]. Proposed methods are usually evaluated on in-
house benchmarks that are not freely available to the
public. These evaluations often compare accuracy to
human-annotations and rarely to alternative computa-
tional methods, hence are not subjected to a thorough
comparative assessment of extant methods [18].

We therefore propose a uniform framework to bench-
mark algorithms for multi-cellular segmentation in
bright field microscopy images.

Construction and content

A set of 171 manually segmented images of 5 different cell
lines at diverse confluence levels, acquired in several labora-
tories under different imaging conditions, were partitioned
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into 8 datasets as follows (example images are presented in
Figure 1, detailed description of the cells and imaging con-
ditions can be found on the benchmark website):

e TScratch: 24 bright field images of confluent cells
available at the TScratch site, http://www.cse-lab.ethz.
ch/index.php?&option=com_content&view=article&
id=363 [6];

e Melanoma: 20 bright field images of confluent
populations of brain metastatic melanoma cells
acquired during a wound healing experiment [19];

o Init: 28 differential interference contrast (DIC)
images of confluent DA3 cells, derived from the
mouse mammary adenocarcinoma line D1-DMBA-
3, acquired during wound healing experiments;

e SNI5: 54 DIC images of confluent DA3 cells acquired
during a multi-well wound healing experiment;

e Scatter: 6 DIC images of Madin-Darby Canine Kidney
(MDCK) epithelial cells acquired during a multi-well
scatter experiment (unpublished data);

e Microfluidics: 13 DIC images of MDCK cells grown
in a microfluidic plate acquired during a scatter
assay experiment with a Hepatocyte growth factor/
scatter factor gradient (unpublished data);

e HEK293: 12 DIC images of confluent HEK293T cells
acquired during a multi-well wound healing experi-
ment (unpublished data);

e MDCK: 14 DIC images of confluent MDCK cells
acquired in a multi-well wound healing experiment
(unpublished data).
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Four out of eight datasets (“TScratch”, “Melanoma”,
“Init”, “SN15”) were previously reported before in our
study comparing TScratch to MultiCellSeg [15]. The
other four are published here for the first time.
“TScratch” is the only dataset that was already publi-
cally available.

Two freely available tools (TScratch, [6]; MultiCellSeg,
[15]) and one implementation of a designated algorithm
[10] were evaluated on these datasets; a brief description
of these algorithms is found in the Additional file 1:
Supporting Text. Each of the algorithms was evaluated
using the same set of parameters on all datasets to as-
sess robustness. All raw images, manual segmentations,
algorithm segmentation results, performance measure-
ments and an evaluation Matlab script are freely avail-
able at the Broad Bioimage Benchmark Collection
(BBBC, http://www.broadinstitute.org/bbbc/) [20].

The algorithms were ranked by mean F-measure (i.e., the
harmonic mean of precision and recall) of the pixel labeled

across all images in each dataset (%f rﬁneasure([magei)),
f

where n is the number of images in the given dataset).
F-measure is the evaluation measure used for foreground-
background datasets in the BBBC. Evaluation results
are found in Table 1, which also present the median F-
measure as a more robust (less sensitive) evaluation.
Additional file 2: Table S1 displays the average preci-
sion and recall measures, Additional file 3: Figure S1
plots the performance on each of the images in each
dataset.

Image

Segmentation

Figure 1 Examples of images from the presented benchmark and their corresponding manual segmentations.
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Table 1 Evaluation of the three designated tools on the eight available datasets
Algorithm/Dataset Init SN15 Melanoma TScratch Scatter Microfluidics HEK293 MDCK
Mean F-Measure (N=28) (N=54) (N =20) (N=24) (N=6) (N=13) (N=12) (N=14)
(Median F-Measure)
[F-Measure Adjusted]
Tscratch (Geback et al. 2009) 0.96 0.96 0.88 0.94 047 042 0.90 092
(0.96) (0.97) (0.90) (0.93) (047) 041) (0.91) (0.93)
MultiCellSeg (Zaritsky et al. 2011) 0.98 0.97 0.85 0.93 0.55 0.35 0.95 0.96
(0.98) (0.98) (091) (0.95) (0.56) (045) (0.95) (0.98)
Topman et al. 2011 0.98 0.95 0.93 0.78 0.58 0.63 0.85 0.89
(0.98) (0.97) (0.93) (0.76) (0.60) (0.63) (0.87) (0.93)
[0.97] [0.96] [0.93] [0.84] [0.52] [0.61] [0.84] [0.93]

F-measure was used for evaluation in three forms: mean F-measure of images in the dataset, median, and mean after threshold adjustment on the training set (for [10]).

Best mean F-measure performance is marked in bold.

To assess the baseline variance that should be ex-
pected when scoring the results of an algorithm, a sec-
ond expert annotated an arbitrary partial set of the
images (64 images from all datasets, excluding the “Scat-
ter” dataset). The two annotations were evaluated using
mean and median F-measures compared with the pri-
mary annotated ground truth. The results are reported
in Additional file 4: Table S2, and in the Additional file 1:
Supporting Text. The annotators were instructed to pay
special attention to small isolated cells and voids between
groups of cells; this is important for some applications
and can be later excluded via post-processing if not rele-
vant. Most inconsistencies found were in defining the
exact border contours of the cells, as described in the
Additional file 1: Supporting Text and in Additional file 5:
Figure S2.

Twenty arbitrary images were selected as a training set
for algorithms that apply supervised learning [15], or for
adjusting parameters’ values. Use of different arbitrarily
selected training images did not significantly change the
algorithms’ performance. Comprehensive assessment of
[10] is presented in Additional file 6: Table S3 and dis-
cussed in the Additional file 1: Supporting Text; Table 1
contains the optimal results achieved considering a single
set of parameters for all datasets.

Utility
The benchmark includes two directories:

e train: 20 images (images directory) and the
corresponding manual annotations (manual
directory). These images can be used as a training
set for algorithms that apply supervised learning or
for adjusting parameters’ values.

e datasets: 8 different datasets, each consists of
images (images directory), ground truth manual
annotations (manual directory), results masks of
the 3 algorithms we compare (tscratch,

multiCellSeg, topman directories), a measures file
(measures.mat) containing evaluation summary,
and a second annotation for a partial set of the
images.
o A documented Matlab script
(bbbcCalcMeasures.m) that compares the different
algorithms (and can easily be adjusted for
comparing new algorithms).

Benchmark structure is described in the README file
in the main directory.

Discussion

The wound healing assay (aka scratch assay), the trad-
itional method used to study collective cell motility and
migration [21,22] in the life sciences, is performed by in-
ducing a sudden injury created by removal of a sheet of
cells from a confluent monolayer [19]. This assay can be
performed using multi-well plates, with up to 384-wells
[23], providing a large amount of data for high-quality
quantitative analysis. The scratch is imaged and mea-
sured periodically during the healing process, and rate of
change in the wound area is recorded and can be com-
pared with other cell lines, environmental conditions or
chemical treatments. Quantifying wound healing assays
is a natural application of multi-cellular segmentation
algorithms. The availability of a benchmark to evaluate
algorithms on a variety of cell lines and imaging condi-
tions will enable educated algorithm selection. The gen-
eral segmentation of cell clusters in bright-field images
has additional applications (e.g., quantifying scatter as-
says [15]), thus emphasizing the importance of evaluat-
ing the segmentation of non-confluent cells images. The
dataset provided is diverse in terms of cell lines, image
acquisition parameters, cellular confluence levels, and
was collected from several laboratories, and can thus ad-
dress the need for public access to image repositories
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[24] as well as the general concern regarding poor algo-
rithmic comparisons [17,18,25,26].

Conclusions

A variety of software tools and imaging apparatuses exist to
enable high throughput multi-cellular segmentation in
bright field images. This is the first and currently only freely
available public annotated dataset for evaluations. We en-
courage scientists to evaluate new algorithms and to con-
tribute additional annotated datasets to this benchmark.

Availability and requirements

All raw images, manual segmentations and evaluations
are freely available at the Broad Bioimage Benchmark
Collection (BBBC), http://www.broadinstitute.org/bbbc/
BBBCO019/.

Additional files

Additional file 1: Supporting Text. This file contains a brief description
of the evaluated algorithms, notes on parameter tuning, details on
evaluation of Topman's thresholding method, and details on assessing
the baseline variance in the annotated data.

Additional file 2: Table S1. Precision/recall. Precision/recall of all
algorithms on all datasets.

Additional file 3: Figure S1. Direct comparison of algorithms on all
images. Image-by-image evaluation. Scatter plots displaying for each image
the F-measure produced by the 3 algorithms. Each x-axis entry represents
an image (ordered by the filename), y-axis is the F-measure. Red -
Tscratch, Green — MultiCellSeg, Cyan — Topman'’s algorithm. a, Init. b, NN15.
¢, Melanoma. d, TScratch. e, Scatter. f, Microfluidics. g, HEK293. h, MDCK.

Additional file 4: Table S2. Baseline variance. An arbitrary partial set of
the images (62 images from all datasets, excluding the “Scatter” dataset)
was selected to be annotated by another expert. This annotation was
compared with the primary annotated ground truth by calculating the
mean F-measure to assess the baseline variance of each dataset.

Additional file 5: Figure S2. Baseline variance examples. Visualization
of inconsistencies between manual annotations by different experts.
Annotations shown were selected from the dataset with higher baseline
variance (“Melanoma”, "Miscrofluidics”). The green channel is the raw
image, the blue channel is the official annotation of cells, and the red
channel is the second annotation. Thus, light-magenta represents agree-
ment in annotation of cells, green represents agreement in annotation of
non-cellular regions, light-red represents regions annotated as non-
cellular in the ground truth but as cellular by the second expert, light
blue represents regions that were annotated as cellular according to the
ground truth but non-cellular according to the second expert. It is clear
from this visualization that most inconsistencies appear at cell borders.

Additional file 6: Table S3. Adjusting Tompan's algorithm. The
automatic threshold extraction method in Topman'’s algorithm was
evaluated compared to a constant threshold. Evaluation of different
values demonstrated that a constant threshold surpasses the automatic
adjustment for most datasets. The best value found was used to evaluate
this algorithm’s performance in the main text.
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