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Abstract

Background: Multidimensional scaling (MDS) is a widely used approach to dimensionality reduction. It has been
applied to feature selection and visualization in various areas. Among diverse MDS methods, the classical MDS is a
simple and theoretically sound solution for projecting data objects onto a low dimensional space while preserving
the original distances among them as much as possible. However, it is not trivial to apply it to genome-scale data
(e.g., microarray gene expression profiles) on regular desktop computers, because of its high computational
complexity.

Results: We implemented a highly-efficient software application, called CFMDS (CUDA-based Fast MultiDimensional
Scaling), which produces an approximate solution of the classical MDS based on CUDA (compute unified device
architecture) and the divide-and-conquer principle. CUDA is a parallel computing architecture exploiting the power
of the GPU (graphics processing unit). The principle of divide-and-conquer was adopted for circumventing the
small memory problem of usual graphics cards. Our application software has been tested on various benchmark
datasets including microarrays and compared with the classical MDS algorithms implemented using C# and
MATLAB. In our experiments, CFMDS was more than a hundred times faster for large data than such general
solutions. Regarding the quality of dimensionality reduction, our approximate solutions were as good as those
from the general solutions, as the Pearson’s correlation coefficients between them were larger than 0.9.

Conclusions: CFMDS is an expeditious solution for the data dimensionality reduction problem. It is especially
useful for efficient processing of genome-scale data consisting of several thousands of objects in several minutes.

Background
Multidimensional scaling (MDS) is a technique for repre-
senting objects (or data points) in a low-dimensional
space based on their similarity. Main purposes of MDS
include exploratory data analysis by visualization and fea-
ture selection for subsequent analysis such as classifica-
tion. In bioinformatics and related areas, MDS has been
applied to diverse problems such as gene expression pat-
tern visualization [1,2], drug responses profiling [3], and
p53 transactivation prediction [4].

Among various MDS methods, the classical MDS is
based on the idea of finding coordinates appropriate for
describing dissimilarities as distances [5]. The classical
MDS finds coordinates by a set of matrix operations.
Roughly speaking, it decomposes the squared distance
matrix by solving the eigenpair problem, of which com-
plexity is proportional to the cube of the number of data
points [6]. This heavy computational burden is a bottle-
neck for quick processing of large-scale datasets having
thousands of objects. Meanwhile, massive parallel proces-
sing based on graphics processing units (GPUs) for general
computing applications, a.k.a. GPGPU (general purpose
computation on graphics processing units) has risen as a
reasonable option for expediting computationally-intensive
jobs on normal desktop computers equipped with a
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graphics card [7]. CUDA (compute unified device archi-
tecture) is one of the most pervasively-used frameworks
for GPGPU developed by NVIDIA, Inc. [8]. In the CUDA
environment, linear algebra packages such as CUBLAS [8]
and CULA [9] are provided. In bioinformatics, CUDA has
been deployed for diverse applications such as sequence
alignment [10-12], protein substructure search [13], RNA
microarray analysis [14], and a non-classical MDS [15].
One problem with CUDA is the relatively small memory

size of most graphics cards (usually less than 1 gigabyte).
General graphics cards do not have sufficient memory for
storing and processing large-scale datasets containing tens
of thousands data points. For circumventing this problem,
we exploit a famous engineering principle, i.e., divide-and-
conquer. Divide-and-conquer approach to the classical
multidimensional scaling has drawn much attention for
reducing its computational complexity and has been
applied in serial computing environments [6,16].

Implementation
We implemented CFDMS by extending our previous work
[17]. Our software application has two operating modes. If
a graphics card allows sufficient memory for reading and
processing all data points, it runs in “one-shot” mode.
When available memory is not enough, it operates in
“divide-and-conquer” mode and produces an approximate
solution. The available memory size is automatically
detected and the two operating modes are accordingly
toggled on and off.

One-shot MDS
In the one-shot mode, the classical MDS on a dissimi-
larity matrix D, of which size is n × n, proceeds as
follows.
1. D(2) = [dij

2], where dij denotes the element of D on
the ith row and the jth column, i.e., the dissimilarity
between the ith and jth points.
2. J = I - n-11, where I is the identity matrix and 1

denotes the n × n matrix of which elements are all one.

3. B = − 1
2
JD(2)J .

4. Calculate the first m eigenvectors e1, e2, ..., em and
the corresponding eigenvalues l1, l2, ..., lm from B.
5. Calculate the m-dimensional coordinates of the n

data points by XT = [e1, e2, ..., em]�

1
2
m , where �

1/2
m = diag

(
λ
1/2
1 , λ

1/2
2 , ..., λ

1/2
m

)
.

Each column of X corresponds to the coordinate of
each data point in the reduced (m-dimensional) space.
The above procedure has been implemented using
CUBLAS [8] and CULA [9].

Divide-and-conquer MDS
The divide-and-conquer MDS based on [6] divides a
given set of objects into several subsets of manageable

size. Then, another subset of manageable size is made
by sampling from each of the previous subsets. The
same MDS routine of the one-shot mode is applied to
each of the submatrices. Finally, each result is merged
into an approximate MDS solution for the entire
objects. More precise steps are as follows (see Figure 1).
1. Randomly decompose an n × n dissimilarity matrix

Dall along the diagonal into p submatrices, i.e., D1,
D2, ..., Dp.
2. Sample s objects from each of the submatrices.
3. Merge the sampled objects and construct a new dis-

similarity submatrix Malign of which size is (sp) × (sp).
4. Apply the one-shot MDS method to D1, D2, ..., Dp

as well as Malign. Denote the resulting coordinates by
dMDS1, dMDS2, ..., dMDSp as well as mMDS,
respectively.
5. Extract the objects sampled at step 2 from the

above results, obtaining subdMDS1, subdMDS2, ...,
subdMDSp as well as mMDS1, mMDS2, ..., mMDSp.
6. For each pair subdMDSi and mMDSi (i = 1, 2, ...,

p), solve the following linear least squares problem, arg-
minAi ||AisubdMDSi - mMDSi||, where || · || denotes
L2 norm.
7. Linearly transform the objects of Di as follows.

AidMDSi = newdMDSi.
8. Combine newdMDS1, newdMDS2, ..., newdMDSp

into an approximate MDS solution to the entire objects.
Since the size of submatrix is determined by the avail-

able memory size of a graphics card, the number of sub-
matrices p and the number of sampled objects from
each submatrix s are determined automatically by our
software application. Two ways of sampling from the
submatrices (Step 2 of the algorithm above) are “Ran-
dom” and “MaxMin”. Random denotes usual random
sampling without replacement. In the MaxMin
approach, data points are chosen one at a time, and
each new point maximizes, over all unused data points,
the minimum distance to any of the previously-sampled
points [18]. As in the one-shot mode, all the matrix
operations have been implemented using CUBLAS and
CULA.

Results
CFMDS has been tested using five benchmark datasets.
Table 1 describes the data source and simple characteris-
tics of each dataset. As shown in Table 1, diverse datasets,
ranging from a simple dataset with four attributes to com-
plicated microarrays and handwritten digits, were used to
demonstrate the performance of CFMDS. Experiments
were performed using a commodity PC equipped with an
Intel Core2 Quad Processor Q6600 (2.4 GHz), 4 GB of
RAM, and GeForce 8600 GT (graphics card). The operat-
ing system was Windows XP (32-bit version). CFMDS was
run on this PC. For comparison, a general solution for the
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classical MDS was implemented using C# on this compu-
ter. However, the C#-based implementation was not able
to process S. cerevisiae Microarray and MNIST datasets
due to a memory shortage on the PC (4 GB only). For
these large datasets, the classical MDS algorithm was
implemented using MATLAB on a 64-bit Linux PC Server
equipped with two Intel Xeon Processors E5506 (2.13
GHz) and 32 GB of RAM. It should be noted that the per-
formance of matrix operations in MATLAB are known to
be generally better than those implemented by other effi-
cient languages such as C++ [15]. Parameter settings for
the experiments are shown in Table 2. The size of dissimi-
larity matrix is n × n, where n is the number of instances

in Table 1. The number of submatrices (p) and the num-
ber of objects sampled from each submatrix (s) were set
based on the available memory size of the graphics card
for S. cerevisiae Microarray and MNIST datasets. For IRIS,
Dermatology, and M. musculus Microarray datasets, these
parameters were set arbitrarily because they can be pro-
cessed by the one-shot mode of CFMDS.

Execution time of CFMDS
The execution time was compared to demonstrate the
speed-up of the proposed application. Figure 2 shows the
execution time of each method including CFMDS with
Random sampling, CFMDS with MaxMin sampling, one-

Figure 1 Process of divide-and-conquer mode. First, a dissimilarity matrix is randomly decomposed into p submatrices along the diagonal, D1,
..., Dp. Second, s objects are sampled from each of the submatrices. Then, the sampled objects are merged to construct a new dissimilarity
submatrix Malign. The one-shot MDS method is applied to D1, ..., Dp as well as Malign. The resulting coordinates are dMDS1, ..., dMDSp as well as
mMDS, respectively. After that, the objects sampled from each of D1, ..., Dp are extracted from the resulting coordinates matrices, comprising
subdMDS1, ..., subdMDSp as well as mMDS1, ..., mMDSp. For each pair, subdMDSi and mMDSi (i = 1, 2, ..., p), a linear transformation matrix Ai is
obtained by minimizing ||AisubdMDSi - mMDSi||, where || · || denotes L2 norm. The linearly transformed objects newdMDSi on a reduced
dimension are obtained by AidMDSi. Finally, newdMDS1, ..., newdMDSp are combined to produce the MDS result for the entire objects.

Table 1 Benchmark datasets

Dataset Source Number of
Attributes

Number of
Instances

Pearson’s Median Skewness
Coefficient

Coefficient of
Variation

IRIS UCI ML
Repository

4 150 0.34 0.64

Dermatology UCI ML
Repository

33 366 -0.61 0.42

M. musculus
Microarray

GEO 4,000 2,000 0.94 1.08

S. cerevisiae
Microarray

GEO 1,000 9,300 0.73 0.56

MNIST MNIST 784 10,000 -0.13 0.14

UCI ML Repository is UCI Machine Learning Repository http://archive.ics.uci.edu/ml/datasets.html. GEO is Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/
geo/. MNIST is the MNIST Database of handwritten digits http://yann.lecun.com/exdb/mnist/. M. musculus Microarray is a modified dataset from Mus musculus
microarrays in GEO and S. cerevisiae Microarray is a modified dataset from Saccharomyces cerevisiae microarrays in GEO. MNIST dataset is from scanned
handwritten digit images of 28 × 28 pixels.
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shot CFMDS, and conventional solutions for the classical
MDS in serial computing environments. In the figure, the
y-axis is in log scale. As expected, CFMDS showed signif-
icant improvement in running time for large datasets
such as the two microarray and MNIST datasets. For the
most time-consuming dataset, MNIST, the conventional
MDS algorithm took almost 6 hours to get the result.
However, CFMDS with Random or MaxMin sampling
produced the results from the same dataset within 3

minutes. CFMDS with Random sampling was more than
100 times faster than the conventional MDS algorithm
for M. musculus and S. cerevisiae datasets. CFMDS with
MaxMin sampling was more than 66 times faster than
the conventional MDS algorithm for these microarray
datasets. CFMDS also achieved significant speed-up for
even small datasets such as IRIS and Dermatology, ran-
ging from 3 to 22 times faster. These results confirm the
fact that the proposed application is very useful for fast

Table 2 Experimental setting

Dataset Size of Dissimilarity Matrix No. of Submatrices
(p)

No. of Samples
in Each Submatrix (s)

IRIS 150 × 150 3 20

Dermatology 366 × 366 3 60

M. musculus Microarray 2,000 × 2,000 10 100

S. cerevisiae Microarray 9,300 × 9,300 10 150

MNIST 10,000 × 10,000 10 150

These parameters were set for comparison experiments of the divide-and-conquer mode of CFMDS. In fact, the CFMS application automatically detects the
available memory size and these parameters are subsequently determined. For IRIS, Dermatology, and M. muculus Microarray datasets, these parameters were set
arbitrarily, because they can be processed by the one-shot mode of CFMDS.

Figure 2 Comparison results of execution time. Average running time in seconds is shown. The y-axis is in log scale. Random (MaxMin)
means the divide-and-conquer mode of CFMDS with Random (MaxMin) sampling. One-shot MDS represents CFMDS without divide-and-
conquer. Conventional MDS represents the classical MDS implemented using C# or MATLAB in serial computing environments. “0.00” denotes
“not applicable.” For S. cerevisiae and MNIST datasets, we were not able to apply the one-shot mode of CFMDS due to the memory limitation in
our graphics card.
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multidimensional scaling of diverse datasets, not only of
genome-scale data. We also verified the necessity of our
divide-and-conquer strategy for large data. Both the one-
shot and divide-and-conquer modes of CFMDS required
similar computational time for small datasets such as
IRIS and Dermatology. However, the one-shot mode
needed much more computational time than the divide-
and-conquer mode for M. musculus Microarray dataset.
Further, the one-shot mode was not able to process S.
cerevisiae Microarray and MNIST datasets due to the
limitation of memory in the graphics card. “0.00” in
Figure 2 means “not applicable.”

Accuracy of CFMDS
To examine the accuracy of the divide-and conquer
mode of CFMDS, Pearson’s correlation coefficient
between the results from the classical MDS and CFMDS
was used. More precisely, vectors, consisting of the Eucli-
dean distance between each object pair on a reduced
dimension, were generated from the results of the classi-
cal MDS and CFMDS, respectively. Then, Pearson’s cor-
relation coefficient between these vectors was calculated.
As the correlation coefficient is close to 1, the result
from the divide-and-conquer mode of CFMDS is similar
to the result from the classical MDS. The accuracy com-
parison results are shown in Figure 3. The figure depicts
average values of 100 independent runs with error bars
representing standard deviation. As shown in Figure 3,
the divide-and-conquer mode of CFMDS produced
highly accurate results from all datasets. Pearson’s

correlation coefficients were larger than 0.9 in Random
or MaxMin samplings. For the simplest IRIS dataset,
which has 4 attributes and 150 instances, CFMDS
achieved almost identical results compared to the classi-
cal MDS (Pearson’s correlation coefficient: about 0.99)
both in Random and MaxMin sampling modes. Derma-
tology and S. cerevisiae Microarray datasets showed simi-
lar trends with decrease in accuracy compared to the
IRIS dataset.
However, CFMDS with Random and MaxMin sampling

modes showed different results for M. musculus Microar-
ray and MNIST datasets. For M. musculus Microarray
dataset, Random sampling mode showed the worst result
among all benchmark datasets with the largest standard
deviation, although MaxMin sampling method produced
almost identical results compared to the result from the
classical MDS (Pearson’s correlation coefficient: about
0.97). On the contrary, MaxMin mode showed a relatively
low performance with high variance for MNIST dataset.
For the same dataset, Random sampling mode achieved
relatively accurate results (Pearson’s correlation coefficient:
about 0.93). The difference in performance of Random
and MaxMin sampling methods of CFMDS could be due
to the skewness or dispersion of data. The MaxMin sam-
pling mode is suitable for datasets with high skewness or
dispersion, because it could sample data points which are
far apart from each other [18]. We checked the skewness
and dispersion of our experimental datasets using Pear-
son’s median skewness coefficient and coefficient of varia-
tion of distances between data points. The Pearson’s

Figure 3 Comparison results of accuracy. Pearson’s correlation coefficient was used as accuracy. The mean value and standard deviation from
100 independent simulation results are shown. Random (MaxMin) means the divide-and-conquer mode of CFMDS with Random (MaxMin)
sampling.
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median skewness coefficient (PMSC) is defined as 3(mean
- median)/standard deviation and measures asymmetry of
a distribution. Coefficient of variation (CV) is defined as
standard deviation /mean and is a normalized measure of
dispersion. Among the five datasets, M. musculus Microar-
ray showed the highest skewness and dispersion (PMSC =
0.94, CV = 1.08). For this dataset, MaxMin sampling
mode of CFMDS generated relatively accurate results.
MNIST dataset showed the lowest skewness and disper-
sion (PMSC = -0.13, CV = 0.14). For this dataset, Random
sampling mode showed relatively accurate results. As a
conclusion, we suggest the use of MaxMin sampling for
highly skewed or dispersed data and Random sampling for
symmetric and lowly dispersed data.

Discussion
We implemented a software application, CFMDS (CUDA-
based Fast MultiDimensional Scaling) for efficient dimen-
sionality reduction of large-scale genomic data. CFMDS
adopted CUDA programming library and divide-and-con-
quer strategy to handle several thousands of features in
less than several minutes on a commodity PC equipped
with a graphics card. CUDA was applied as a parallel com-
puting method and divide-and-conquer principle was used
to circumvent the small memory size problem of usual
graphics cards. By combining these two techniques,
CFMDS enables that a regular PC with a CUDA-support
graphics card handles the large-scale genomic data dimen-
sionality reduction problem which can be efficiently
executed only on high performance computers. The simu-
lation results confirmed that our approach can perform
MDS more than a hundred times faster with a comparable
accuracy for genome-scale data. Therefore, CFMDS is
especially useful to visualize and analyze data consisting of
several thousands of objects in less than several minutes.
We implemented two sampling options for the divide-
and-conquer mode of CFMDS such as Random and Max-
Min samplings. As shown in Results section, CFMDS with
Random sampling approach usually works quite well in
practice. MaxMin sampling method is especially useful in
some contexts where data distribution is highly skewed or
dispersed. Further work includes optimizing our applica-
tion with respect to data transfer between graphics cards
and host computers.

Availability and requirements
Project name: CFMDS
Project home page: http://ml.ssu.ac.kr/CFMDS/

CFMDS.html
Operating system(s): Windows XP or higher (32-bit

and 64-bit), Linux (tested on Ubuntu Linux 9.04, Red
Hat Enterprise Linux 5.3/4.7, Fedora 11)
Programming language: CUDA

Other requirements: NVIDIA’s GPU with CUDA,
CUDA toolkit 2.3 (not support CUDA 3.0 toolkit yet),
The latest version of CULA basic libraries
License: GNU GPL v2
Any restrictions to use by non-academics: none
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