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Abstract

Background: Intrinsically disordered proteins play important roles in various cellular activities and their prevalence
was implicated in a number of human diseases. The knowledge of the content of the intrinsic disorder in proteins
is useful for a variety of studies including estimation of the abundance of disorder in protein families, classes, and
complete proteomes, and for the analysis of disorder-related protein functions. The above investigations currently
utilize the disorder content derived from the per-residue disorder predictions. We show that these predictions may
over-or under-predict the overall amount of disorder, which motivates development of novel tools for direct and
accurate sequence-based prediction of the disorder content.

Results: We hypothesize that sequence-level aggregation of input information may provide more accurate content
prediction when compared with the content extracted from the local window-based residue-level disorder
predictors. We propose a novel predictor, DisCon, that takes advantage of a small set of 29 custom-designed
descriptors that aggregate and hybridize information concerning sequence, evolutionary profiles, and predicted
secondary structure, solvent accessibility, flexibility, and annotation of globular domains. Using these descriptors
and a ridge regression model, DisCon predicts the content with low, 0.05, mean squared error and high, 0.68,
Pearson correlation. This is a statistically significant improvement over the content computed from outputs of ten
modern disorder predictors on a test dataset with proteins that share low sequence identity with the training
sequences. The proposed predictive model is analyzed to discuss factors related to the prediction of the disorder
content.

Conclusions: DisCon is a high-quality alternative for high-throughput annotation of the disorder content. We also
empirically demonstrate that the DisCon’s predictions can be used to improve binary annotations of the disordered
residues from the real-value disorder propensities generated by current residue-level disorder predictors. The web
server that implements the DisCon is available at http://biomine.ece.ualberta.ca/DisCon/.

Background
The intrinsically disordered proteins (IDPs), also
referred to as natively unfolded or intrinsically unstruc-
tured proteins, lack stable tertiary structure in vitro.
These proteins are implicated in numerous processes
including cellular signal transduction, transcriptional
regulation, and translation [1], and their prevalence was
demonstrated in several human diseases [2,3], including
cancer [4], cardiovascular disease [5], neurodegenerative
diseases [6,7], genetic diseases [8], and amyloidoses [9].

At the same time, the annotations of the IDPs are accu-
mulated at a relatively low pace when compared with
the growth of the number of known, non-redundant
protein sequences. Over the last decade numerous
sequence-derived characteristics, including low complex-
ity [10], which was proposed in [11], high net charge
and low content of hydrophobic amino acids [12,13],
lack of regular secondary structure [14], to name just a
few, were found to differentiate between disordered and
ordered regions. The abovementioned results suggest
that disorder can be predicted from the sequence and
they motivate the development of computational models
for the prediction of the disordered regions. Several
such predictors were already developed; see [15] for a
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recent review. Majority of the existing predictors gener-
ate the disorder predictions for each residue in the
input protein chain. These per-residue predictors can be
divided into 4 categories: i) methods that utilize the
relative propensity of amino acids to form disorder/
ordered regions which include GlobPlot [16], IUPred
[17], FoldIndex [18], and Ucon [19]; ii) methods that are
based on classifiers generated with the help of machine
learning algorithms, such as DISpro [20], DISOPRED
[21], DISOPRED2 [22], PrDOS [23], POODLE predic-
tors [24,25], PONDR predictors [10,26,27], Spritz [28],
PROFbval [29], DisPSSMP [30], DisPSSMP2 [31], IUP
[32], NORSnet [33] and OnD-CRFs [34]; iii) meta-
approach methods that are based on a consensus of
multiple base predictors including MULTICOM (also
called PreDisorder) [35,36], metaPrDOS [37] and recent
MD [38], MFDp [39], and PONDR-FIT [40] predictors;
and iv) approaches that find disordered residues through
an analysis of the predicted 3D structural models such
as PrDOS [23] and DISOclust [41]. There are also meth-
ods that predict the propensity of the entire protein
chain to be unstructured [13,42-44]. One of these
approaches is based on the charge-hydropathy plots [13]
and another utilizes distributions of the predicted per-
residue disorder scores [42-44]. The abovementioned
per-residue and per-chain methods perform the predic-
tions in a high-throughput manner and consequently

they can be used as a possible solution to close the
annotation gap.
Although the per-residue methods are successful in

the disorder prediction at the residue level, i.e., they
achieve AUC (area under the ROC curve) of about 0.8
[38-40] and MCC (Matthews Correlation Coefficient) of
about 0.45 [39] when tested on large benchmark data-
sets, we observe that they typically make relatively sub-
stantial mistakes at the sequence-level. More specifically,
these methods may over-or under-predict the overall
amount of disorder in the sequence. Tests of 10 recent
disorder predictors that include methods from all four
groups on a benchmark dataset of 200 chains, see
Table 1, show that the mean average (over the dataset)
squared errors between the native and the predicted
amount of disorder vary between 0.07 and 0.18 (see the
Results and Discussion sections). One of the potential
reasons for these errors is the fact that virtually all of
the most accurate recent predictors, such as NORSnet,
DISOPRED2, MD, PONDR-FIT, and MFDp, use a local
sequence window to predict the disorder while the
information encoded in the entire chain may reveal an
overall sequence-level disorder bias. The disorder pre-
dictors use identical (for all chains) cut-off values to
annotate disordered residues based on the predicted
real-value propensities, and we show that these annota-
tions can be improved if the cut-off is adjusted to match

Table 1 Comparison of predictive quality of the DisCon and the disorder content extracted from the predictions of the
10 considered modern disorder predictors on the test dataset.

Predictor Evaluation of the predicted disorder content Evaluation of the
predicted disorder at
the residue-level

MSE MAE PCC % of chains MAE

value stat.
signif.

value stat.
signif.

value stat.
signif.

over-
predicted

under-
predicted

over-
predicted

under-
predicted

AUC Accuracy MCC

PROFbval 0.178 ++ 0.387 ++ 0.38 ++ 0.86 0.14 0.41 0.27 0.696 0.528 0.196

NORSnet 0.112 ++ 0.206 ++ 0.34 ++ 0.22 0.74 0.23 0.21 0.711 0.763 0.269

DISOclust 0.103 ++ 0.256 ++ 0.54 ++ 0.84 0.16 0.26 0.24 0.778 0.672 0.351

IUPRedL 0.083 ++ 0.172 = 0.47 ++ 0.40 0.57 0.14 0.20 0.767 0.785 0.365

MD 0.079 ++ 0.182 + 0.61 ++ 0.54 0.44 0.24 0.12 0.816 0.790 0.424

DISOPRED
2

0.076 ++ 0.167 = 0.49 ++ 0.57 0.41 0.14 0.22 0.780 0.771 0.382

MFDp 0.074 ++ 0.177 = 0.58 ++ 0.67 0.30 0.18 0.19 0.795 0.764 0.425

IUPRedS 0.070 + 0.155 = 0.53 ++ 0.49 0.48 0.10 0.22 0.771 0.795 0.366

Ucon 0.069 + 0.177 = 0.52 ++ 0.63 0.35 0.14 0.26 0.732 0.739 0.284

PONDR-FIT 0.066 + 0.167 = 0.55 ++ 0.65 0.34 0.13 0.24 0.776 0.777 0.383

DisCon 0.050 0.156 0.68 0.62 0.37 0.14 0.18 N/A N/A N/A

We report the MSE, MAE, and PCC values, the percentage of chains that are over-predicted (predicted with content higher than the native content) and under-
predicted, and the MAE value for the over-and under-predicted chains. The methods are sorted in the descending order by the MSE values and the best values
are shown in bold font. Results of the tests of significance of the differences between DisCon and the other methods are given in the “stat. signif.” columns. The
tests compare the absolute and the squared errors per-chain over all 200 chains in our test dataset, and Pearson correlation computed for 200 randomly selected
sets of 100 proteins from the test dataset. The ++ and + denote that DisCon is statistically significantly better with p < 0.01 and p < 0.05, respectively, and =
denotes that the results are not significantly different. We also report their Area under curve (AUC), Accuracy (ACC) and MCC for the per-residue disorder
predictions generated by the ten considered predictors.
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the native amount of the disorder in the entire chain,
which suggests that the knowledge of this sequence bias
could be useful.
The overall disorder content was used in the past to

estimate the abundance of intrinsic disorder in several
protein databases [45,46], in various protein families and
classes [47-58], and in complete proteomes [59-62]. The
high values of the disorder content were reported for sev-
eral disease-related proteins [2-9]. The content was also
used for the analysis of intrinsic disorder-related protein
functions [63-65]. Importantly, in all these and similar
cases, the disorder content was evaluated based on the
results of either binary classifiers or was derived from the
per-residue disorder predictions. As mentioned above,
these per-residue disorder prediction methods may over-
or under-predict the overall amount of disorder in the
sequence. This observation and the fact that the knowl-
edge of the disorder content in a given protein or in a set
of proteins of interest or in an entire proteome can be
utilized to investigate numerous important hypotheses
motivate the development of new computational tools
for the accurate prediction of the disorder content.
We propose a novel method, named DisCon (Disorder

Content predictor), that aims to provide accurate
sequence-based predictions of the disorder content. Our
approach is based on the premise that sequence-level
aggregation of information may provide more accurate
content prediction when compared with the content

extracted from the local window-based residue-level dis-
order predictors. DisCon extends the capabilities of the
binary predictors from [13,42-44] as it provides a real-
value, instead of binary, estimates of the amount of the
disorder. Our solution has two key characteristics.
Firstly, we use a comprehensive selection of the input
information sources including sequence, evolutionary
profiles generated with PSI-BLAST, and predicted sec-
ondary structure, solvent accessibility, B-factors, signal
peptides and globular domains. The main reason to use
such a diverse set of inputs is to capture different
aspects/flavours of disorder [66]. The selection of the
first five sources is motivated by their successful use for
the residue-level disorder predictions, see Table 2. Simi-
larly as for the ordered proteins, for which the correct
folding into biologically active conformations is deter-
mined by their amino acid chain, the absence of rigid
structure in the intrinsically disordered proteins or
regions is also encoded in their amino acid sequences
[67,68]. The disordered regions are usually depleted in
so-called order-promoting residues (Trp, Tyr, Phe, Ile,
Leu, Val, Cys, and Asn) while they include larger num-
bers of the disorder-promoting residues (Ala, Arg, Gly,
Gln, Ser, Glu, Pro, and Lys) [10,42,67,69,70]. Moreover,
the disorder is often observed in parts of the sequence
that are characterized by low complexity, higher number
of Pro and charged residues, and lower amount of
hydrophobic and bulky amino acids [10,12,13,27,71],

Table 2 List of input information sources used by the disorder predictors considered in this work.

Prediction
method

Method
type

Inputs Data sources for the
training/benchmark

dataset(s)

Reference

AA
sequence

PSI-
BLAST

Secondary
structure
prediction

Solvent
accessibility
prediction

B-factor
prediction

Other

DISOPRED2 Machine
learning

X X X PDB x-ray structures [22]

IUPred Relative
propensity

X Energy profile PDB x-ray structures +
curated chains

[17]

PROFbval Machine
learning

X X X X PDB x-ray structures [29]

NORSnet Machine
learning

X X X X X Predicted protein-
protein interfaces,
predicted domains

DisProt + PDB x-ray
structures

[33]

Ucon Relative
propensity

X Predicted residue
contacts

DisProt + PDB x-ray
structures

[19]

DISOclust Predicted
3D
structure

X 3D models CASP7 + DisProt [41]

MD Meta
approach

X X X X X Predicted disorder DisProt + PDB x-ray
structures

[38]

PONDR-FIT Meta
approach

Predicted disorder DisProt + PDB x-ray
structures

[40]

MFDp Meta
approach

X X X X X Predicted disorder DisProt + PDB x-ray
structures

[39]

Methods are sorted in the ascending order by their year of publication.
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which motivates the use of the input protein chain. The
predicted secondary structure is useful since many of
the disordered regions are characterized by lack of the
secondary structure [14,33,66,69,71]. These unstructured
regions usually have a large solvent-accessible area [38]
which motivates the application of the predicted solvent
accessibility. High values of B-factors are often asso-
ciated with disordered regions [72], which is why we use
their predictions to implement inputs to DisCon. The
signal peptides were previously found relevant in the
context of analysis of differences between disorder pre-
dictors [73] and residues in domains are less likely to be
disordered and this information was used in the NORS-
net predictor [33]. Secondly, we perform a careful design
of the input features that are computed based on the
aggregation of values for each information source and
also by combining information sources. We also
designed several customized features that quantify the
size and relative location of the predicted secondary
structure segments.
We empirically demonstrate that the DisCon’s predic-

tions are more accurate than the content extracted from
the residue-level annotations generated by modern disor-
der predictors, including methods listed in Table 2. One
of the potential applications of the predicted disorder
content is to adjust the cut-offs used by the disorder pre-
dictors to annotate the disordered residues. We show
that these annotations can be improved when the thresh-
old values is adjusted for each chain such that the
amount of the predicted disordered amino acids matches
not only the native but also the predicted content.

Methods
Definition of Disorder
In the past CASP experiments the disordered residues
were defined as the amino acids that lack coordinates in
their crystal structures and, in the case of the structures
solved by NMR, as the amino acids that exhibit high
variability within an ensemble or that were annotated by
experimentalists as disordered in the REMARK 465
[74,75]. Another commonly used source for the disorder
annotations is based on the experimentally-validated and
biologically relevant disordered segments from the Dis-
Prot database [76]. We note that the assignment of the
disordered regions using different experimental methods
was previously shown to be potentially inconsistent [66].
Consequently, the disorder predictors that were devel-
oped using annotations provided with one method could
lead to larger errors when used to predict annotations
generated with the help of other methods [19,33]. There-
fore, we created a dataset that combines the CASP-
defined annotations with the DisProt annotations.

Datasets
The proposed method was designed and tested using a
dataset that was developed to validate a recent meta-
predictor of disordered residues, the MFDp [39]. The
protein chains were collected from the Protein Data
Bank (PDB) [77] and the DisProt [76] databases. The
culled PDB list [78] was used to derive a high-quality
and low sequence identity subset of the PDB protein.
More specifically, only the proteins for which the struc-
ture is characterized by R-factor < 0.2 and resolution <
2.0Å, and that are characterized by sequence identity <
25% were kept. We randomly selected 20% of the fully
structured proteins among the resulting chains. This is
motivated by the fact that many of chains selected using
the culled PDB list are annotated as ordered while a
recent study shows that completely ordered proteins are
not highly abundant in PDB [46]. The PDB chains were
combined with all 523 proteins from the release 4.9 of
the DisProt. The resulting dataset was filtered to reduce
the pairwise sequence identity to below 25% by remov-
ing similar sequence with fewer disordered residues.
Among the remaining 514 chains we removed four for
which MD failed to produce predictions; this also
resulted in lack of predictions from Ucon, PROFbval
and NORSnet that are bundled with the MD predic-
tions. Moreover, we improved the annotations of the
DisProt chains using the procedure described in [79].
We applied the approach based on the SL dataset [79]
that combines the disorder annotations from the Dis-
Prot with the annotations of disorder and order based
on the corresponding structural domains that can be
found in PDB. We note that in contrast to the SL data-
set that is based on the release 4.5 of DisProt, our anno-
tations are based on the newer release 4.9. Finally, we
also removed the HIS-tags that are introduced to ease
the crystallization. The resulting dataset includes 305
chains from DisProt and 205 from PDB. This dataset
was divided at random into two subsets, the training
dataset with 310 chains and the test dataset with the
remaining 200 chains.
We note that although there is some overlap between

the training and test sequences (depending on the align-
ment tool used), they are mostly independent at the
25% similarity level. The training dataset was used to
develop the predictor including selection of the input
features and the parameterization of the prediction
model, which were performed based on the 5-fold cross
validation protocol. Next, our predictor that was com-
puted using the training dataset was compared with the
existing per-residue prediction methods using the test
dataset. The training and test datasets are available at
http://biomine.ece.ualberta.ca/DisCon/.
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Evaluation criteria
The disorder content predictions are evaluated using
three measures:

Pearson Correlation Coefficient (PCC) =

n∑

i=1
(xi − avgX)(yi − avgY)

(n− 1)sxsy

Mean Squared Error (MSE) =

n∑

i=1
(yi − xi)

2

n

Mean Absolute Error (MAE) =

n∑

i=1

∣
∣yi − xi

∣
∣

n

where yi Î Y is the native and xiÎ X is predicted dis-
order content for the ith protein chain, avgX and avgY
are the sample means of X and Y, sx and sy are the sam-
ple standard deviations of X and Y.
Following [19,22,33,39] the binary, per-residue disor-

der predictions and the per-chain predictions of disorder
content (protein categorized based on a given disorder
content cut-off) were assessed using two measures:

Accuracy =
(TP + TN)

(TP + FP + TN + FN)

Mathews Correlation Coefficient (MCC) =
(TP × TN − FP × FN)

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where TP is the number of true positives (correctly
predicted disordered residues), FP denotes false positives
(structured residues that were predicted as disordered),
TN denotes true negatives (correctly predicted
structured residues), and FN denotes false negatives
(disordered residues that were predicted as structured).
Accuracy quantifies the overall success rate, i.e., fraction
of correct predictions among all prediction, but since it
may lead to misleading results when the dataset is unba-
lanced (which is the case here since majority of residues
are structured) we also use MCC. The MCC values
range between -1 and 1 and they are equal zero when
all residues are predicted to be structured or to be
disordered. Higher values of PCC, accuracy and MCC
and lower values of MSE and MAE correspond to
better predictions. We also evaluated the real-value,
per-residue disorder predictions based on the area
under the ROC curve (AUC) measure.

Overview of the proposed predictor
The prediction of the disorder content is performed in
three steps, see Figure 1. First, the input protein chain is
processed through PSI-BLAST [80] to generate Position
Specific Scoring Matrix (PSSM) and Weighted Observed
Percentage (WOP) profiles using the NCBI’s nr database
downloaded on Nov 19th 2009, which was filtered using
PFILT [81] to remove low-complexity regions, trans-
membrane regions, and coiled-coil segments. We use
PSIPRED [82] to obtain the 3-state predicted secondary

Figure 1 Architecture of the DisCon predictor.
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structure (SS), Real-SPINE3 [83] for the prediction of
the relative solvent accessibility (RSA), PROFbval [29]
for the B-factor and residue flexibility predictions, and
IUPred [17] to predict globular domains. The former
three methods use the PSSM profiles as their inputs.
Second, the above predictions, profiles and sequence are
used to generate a set of numerical descriptors/features.
These features quantify the information encoded in each
of the predictions/profiles and also between multiple
predictions/profiles. We performed feature selection to
select a small subset of 29 features that are relevant to
the prediction of the disorder content. Third, the
selected descriptors are fed into a ridge regression
model to generate the predictions.

Feature-based encoding of the input protein sequence
The input sequence is processed to generate predictions
of the 3-state SS, RSA, normalized [72] real-value B-
factors, binary annotation of the residue flexibility as
provided by PROFbval in two modes, the strict and the
non-strict [29], binary annotation of residues that form
globular domains, and sequence profiles encoded using
PSSM and WOP. We normalized the ASA values pre-
dicted by Real-SPINE3 using the maximal ASA values
provided in [83] and we preprocessed the 3-state SS by
converting the predicted helices that had < 3 residues
into coils. We also binarized the real-values RSA to
annotate the residues as either solvent exposed when
RSA > 0.25 or buried when RSA ≤ 0.25; this cut-off
value was used in past studies [72,84]. We also
attempted to use signal peptide prediction provided by
RPSP [85], but these features were removed during the
feature selection. Detailed description of features is
provided in Table A1 in the Additional File 1. We gen-
erated total of 614 features that are based on
- composition of amino acids
- length and relative location of predicted helix, strand

and coil segments
- composition of solvent exposed residues
- composition of flexible residues and sequence

segments composed of flexible residues
- number and size of sequence segments that corre-

spond to predicted globular domains
- composition of residue predicted as signal peptides
- fusion of the information coming from multiple pre-

dictions, including SS states, solvent exposure, flexibility,
and domain annotations. We consider all combinations
of two, three and four of the above predictions.
- aggregations of the sequence profiles using entropy

and relative (using background probability) entropy by
both rows and columns of the PSSM and WOP
- entropy-based aggregations of the sequence profiles

encoded with PSSM and WOP which is performed for
specific amino acid types, and for residues characterized

by specific SS state, solvent exposure, flexibility, and
domain annotations.
We emphasize that most of the features, in particular

the features that are based on the secondary structure
segments, flexible sequence segments, and that combine
multiple predicted properties, are novel and unique to
this work.

Design of the predictive model
The features were generated to comprehensively cover
information that can be extracted from each predicted
property, sequence and sequence profile, and their com-
binations. Consequently, some of these inputs may not
be relevant to the prediction of the disorder content and
some could be redundant with each other. We per-
formed two-step feature selection to find a small set of
non-redundant and relevant features; the second step
also includes computation and parameterization of the
predictive model. First, we remove the irrelevant and
redundant features using a coarse-grained evaluation
based on correlation, and next we perform a wrapper-
based selection using the remaining features.
In the first step, for each feature we compute its aver-

age PCC with the disorder content (the PCC values are
based on 5-fold cross validation on the training dataset
and they are averages of the coefficients computed in
the five training folds) and we remove the features with
average absolute PCC value < 0.2. We selected the 0.2
cut-off as this value corresponds to a visible dip in the
distribution of the correlation values, see Figure A1 in
the Additional File 1. Next, we filtered the remaining
322 features to remove redundancy by assuring that the
maximal average absolute PCC value between any pair
of these features is < 0.9. Starting with the feature that
has the highest average absolute PCC with the native
content, we added another feature into the set of filtered
features if the average (over the five training folds) abso-
lute PCC between this feature and each feature which is
already in the set of filtered features was < 0.9.
In the second step, we use the remaining 152 features

to perform wrapper-based selection in which a subset of
features that results in favourable performance in pre-
diction of the disorder content is retained. We consider
two types of predictors, ridge regression and Support
Vector Regression (SVR) [86]. The selection of the
regression model is motivated by its successful applica-
tion in several related areas, including evaluation of pep-
tide identification [87] and prediction of folding rates
[88,89], solvent accessibility [90], secondary structure
content [91], and affinity of protein-ligand complexes
[92], to name a few. Similarly, the SVR also enjoys a
wide range of relevant applications including prediction
of B-factors [93], solvent accessibility [94], and half-
sphere exposure [95]. The values of the regression
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coefficients and the SVR models were estimated from
the data in the training folds using WEKA workbench
[96]. We consider three types of kernel functions to
build SVR models, polynomial, Radial Basis Function
(RBF), and Pearson VII function-based Universal Kernel
(PUK) [97]. We parameterized each kernel and the com-
plexity constant C by performing grid search. We use
linear and quadratic polynomials, and C equal 2x where
x = -8, -7,..., 2; the RBF kernel with gamma (spread)
equal 2y where y = -11, -10,..., 2, and C values where x
= -3, -2,..., 6; and the PUK kernel with omega equal 2z

where z = -4, -3,..., 1, and C values where x = -4, -3,...,
5. We also parameterized the ridge parameter in the
ridge regression; we considered ridge values equal 10w

where w = -11, -9,..., 2. We first parameterized these 4
predictors (3 SVM types + 1 ridge regression) using a
representative subset of the 152 features. We selected
one features with the highest average absolute PCC
from each of the feature groups defined in Table A1 in
the Additional File 1. The representative subset includes
23 features since that number of groups was covered
among the 152 features. Next, these parameterized pre-
dictors were used to perform feature selection in which
we searched for a subset of features that results in the
best MSE value. We performed forward and backward
best first searches. The forward/backward best first
search starts with the empty/entire (152 features) set of
features, and it adds/removes one feature at the time if
it decreases/increases the MSE value. The search stops
when the entire list of features is scanned. As a result,
we obtained 8 configurations of 4 predictors with 2
search types. The predictors in each configuration were
parameterized using the grid search as described above.
The parameterizations and all steps of the feature selec-
tion were executed based on multiple repetitions of 5-
fold cross validations on the training dataset, and they
aimed to minimize the average MSE score between the
predicted and the native disorder content. We repeated
the cross validations for up to five times using rando-
mized division into the 5 folds for as long as the coeffi-
cient of variation (the ratio of the standard deviation to
the mean) was below 0.02; this approach should assure a
robust estimate of the MSE values. The parameters of the
four predictors and the corresponding number of the
selected features are given in Table A2 in the Additional
File 1. The predictive performance, which was evaluated
based on 5-fold cross validation on the training dataset,
for the eight configurations is summarized in Table A3 in
the Additional File 1. The best performance, in terms of
the MSE and PCC values, is achieved with the ridge
regression that uses 29 features selected using the for-
ward best first search, and this configuration is used to
implement the proposed DisCon predictor.

Results and Discussion
Disorder content prediction
We compare the performance of the DisCon with the
results obtained using the disorder content computed
from the disorder predictions generated by DISOPRED2,
IUPred (both versions, IUPredL and IUPredS), PROFb-
val, NORSnet, Ucon, DISOclust, MD, PONDR-FIT, and
MFDp methods. For the per-residue predictors we used
the web servers or standalone implementations provided
by the authors, and we calculated the content by count-
ing the number of residues predicted as disordered and
dividing it by the length of the corresponding protein
chain. The results are computed on the test dataset with
200 chains which shares low identity to chains in our
training dataset. We note that the methods we compare
with use training datasets that may share higher similar-
ity with the chains in our dataset, which could inflate
their predictive quality. We also analyze statistical signif-
icance of the differences between the content predicted
by DisCon and the other methods. We compare the
per-chain values of the absolute errors and the squared
errors over the 200 chains in the test dataset and the
Pearson correlation coefficients computed for 200 ran-
domly selected sets of 100 proteins from the test data-
set. Since the measurements follow normal distribution
(evaluated using Shapiro-Wilk test at 0.05 significance)
we apply the paired t-test and we measure significance
of the differences at 0.05 and 0.01 levels. We evaluate
the extent of the over-and under-prediction of the disor-
der content by quantifying the number of the over-and
under-predicted chains and the corresponding MAE
values and we also provide the AUC, accuracy, and
MCC values for the 10 considered per-residue predic-
tors. The results are summarized in Table 1.
The DisCon is shown to provide favourable predictive

performance. It obtains MSE equal 0.05 and PCC equal
0.68 on the test dataset. We note that these results are
consistent with the results obtained based on the 5-fold
cross validation on the training dataset (PCC = 0.70,
MSE = 0.05; see Table A3 in the Additional File 1). On
the test set, the best performing per-residue disorder
predictors are worse than DisCon by 0.016 MSE and
0.07 PCC for the disorder content prediction. The aver-
age absolute error of DisCon equals 0.156 when com-
pared with value at or over 0.167 obtained with the
current disorder predictors, except for IUPredS for
which MAE = 0.155. The improvements in MSE and
PCC offered by DisCon are shown to be statistically sig-
nificant when compared with all considered competitors.
The MAE values computed from our predictions are
significantly better than the errors based on the predic-
tions with four existing methods and are equivalent with
the remaining six predictors. Further analysis reveals
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that the quality of the DisCon predictions is better for
longer chains, while some other methods may produce
favorable predictions for short chains. Figure A2 in the
Additional File 1, which shows the relation between the
chain length and the absolute errors generated by the
DisCon and the top-three methods from Table 1, i.e.,
IUPRedS, Ucon, and PONDR-FIT, demonstrates that
the proposed predictor is characterized by smaller
absolute errors for longer chains, while the other three
predictors on average provide more accurate predictions
for short chains. DisCon provides relatively balanced
predictions with similar number of over-and under-pre-
dicted chains and low MAE values for these two types
of errors. We observe that PROFbval and DISOclust are
characterized by substantial levels of the over-prediction
of the disorder content that are expressed by the large
number of the over-predicted chains and/or high MAE
for the over-predicted chains. The under-prediction of
the disorder content is characteristic for the NORSnet
method. Table 1 also shows that the Ucon which
obtains relatively low MSE and mid-range PCC is char-
acterized by lower quality of the per-residue predictions
with MCC = 0.28.

Binary prediction of the disorder amount
We apply the predicted disorder content on the test
dataset to perform binary prediction of chains that are
characterized by the amount of the disorder below/
above a specific cut-off value. The cut-offs at 1 and 0
corresponds to detection of fully-disordered and fully-
ordered proteins, respectively, while the intermediate
cut-off values could be used to find partially struc-
tured chains. We measure the MCC of these binary
predictions defined using the cut-off values between
0 and 1 with step of 0.05, and the content predicted
by DisCon and extracted from the outputs of the 10
considered disorder predictors, see Figure 2. We
observe that the usage of the content predicted by
DisCon results in the highest MCC values, which
range 0.53 and 0.61, for cut-offs between 0.35 and
0.65 inclusive. The best results for the cut-off values
above 0.65 are achieved with the content predicted
with MD while several predictors do comparably well
for the cut-offs below 0.35. We note that the predic-
tion of the fully-structured and fully-disordered pro-
teins could be also accomplished using specialized
predictors, such as NN-CDF [44].

Figure 2 The MCC values (y-axis) for the binary prediction of chains that are characterized by the amount of the disorder below/
above a cut-off value shown on the x-axis. The binary predictions are computed by thresholding the predicted disorder content generated
by DisCon and the 10 considered disorder predictors on the test dataset.
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Content guided thresholding of the real-value disorder
prediction
The disorder predictors usually provide both the real-
value propensity of the disorder and the binary order/
disorder assignment for each residue. The binary assign-
ment is usually based on thresholding of the real-value
propensities with a fixed cut-off. We investigate whether
the predicted disorder content could be used to guide
the selection of the threshold value. This means that
instead of using the fixed cut-off we adjust the threshold
such that the amount of the residues annotated as disor-
dered equals to the amount of the disorder content pre-
dicted with DisCon (using the predictions on the test
dataset). We evaluate the binary residue-level disorder
prediction of the original and the content-adjusted dis-
order predictors using MCC, see Figure 3, and accuracy,
see Figure A3 in the Additional File 1. We note that the
10 methods that are considered in these figures provide
continuous (real-value) prediction values that represent
the propensity for a residue to be disordered. We com-
pare the original binary disorder predictions, predictions
that are based on a fixed cut-off that maximizes the
MCC of a given predictor on our test dataset (to remove
a potential bias due to the usage of a different or less
complete, i.e., older, disorder annotation to select the
original cut-off), and predictions where the cut-off is

selected to match the content predicted by DisCon.
Based on the Figure 2 that shows that MD outperforms
DisCon when the native content < 0.1 or > 0.65, we also
consider combining content predicted by the MD and
DisCon to adjust the threshold. If the content predicted
by MD is > 0.65 or < 0.1 for a given chain then we use
the MD predicted content; otherwise we use the content
predicted by the DisCon method.
The thresholding of the predicted real-value disorder

using the content predicted by DisCon leads to
improvements in both MCC and accuracy for all predic-
tors except for the MD, in which case the accuracy is
slightly improved but the MCC is lower. The average
(across all methods) improvement in MCC and accuracy
equal 0.03 and 0.05, respectively. When we use the com-
bination of the content predicted with DisCon and MD
the improvements are more substantial and they range
between 0.01 and 0.14 for the MCC (on average 0.06)
and 0.01 and 0.24 for the accuracy (on average 0.05);
the best MCC is obtained using the predictions from
the MFDp and it equals 0.45 when compared with 0.425
that was obtained without the content-based adjustment.
Interestingly, using this cut-off adjustment the MCC
values obtained by seven out of ten considered predic-
tors are > 0.4 while originally (with the default cut-offs),
see Table 1, only two methods have MCC > 0.4. This

Figure 3 The MCC values for the residue-level disorder prediction adjusted using content predicted by DisCon. The bar chart includes
the original predictions (densely dotted red bars), predictions with a fixed cut-off that is optimized to maximize MCC on the entire test dataset
(sparsely dotted blue bars), predictions where the content predicted by DisCon is used to adjust the cut-off (solid black bars) and where the
content predicted by MD if its values are > 0.65 or < 0.1 and otherwise content predicted by DisCon are used to adjust the cut-off (solid green
bars). The results were computed on the test dataset and the methods on the x-axis are sorted by their original MCC values.
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suggests that majority of the considered disorder predic-
tors differentiate between structured and disordered
residues based on their real-value propensities in a given
chain with relatively similar quality, but only a few of
them can accurately scale the range of the real-value
propensities between sequences. The content-guided
selection of the cut-offs alleviates the prediction bias, i.
e., the tendency to under-or over-predict the amount of
disorder. The binary predictions of PROFbval, DISO-
clust, and NORSnet that are originally characterized by
relatively low MCC values and a bias towards either
over-or under-prediction, see Table 1, are shown to
improve by a wide margin when using the disorder con-
tent predicted by DisCon or by the combination of Dis-
Con and MD. We observe that the relatively poor
performance of the Ucon method does not stem from
the prediction bias but rather from its overall problems
with the quality of the residue-level annotations, as evi-
denced by the relatively low AUC and MCC in Table 1
which is in contrast to the sequence-level amount of
disorder that is predicted quite accurately by this
method.
We visualize the improvements that result from the

cut-off adjustments using two case studies, one where
the original predictions over-estimate the native amount
of disorder and another where the predictions are
under-estimated. In both cases, we compare the original
binary annotations of disordered residues with the anno-
tations that are adjusted using the content predicted
with DiscCon, and we include predictions from the top
six methods from Table 1, i.e., Ucon, MD, MFDp,
PONDR-FIT, IUPredS, and DISOPRED2. The first
example is the apoptosis-inducing ligand 2 (Apo2L) pro-
tein (PDB ID 1DG6 chain A), see Figure 4. This protein
was solved using high-resolution (at 1.3 Å) X-ray crys-
tallography and the structure includes two relatively
short disordered segments in the vicinity of the N-ter-
minus [98]. Figure 4 reveals that all six predictors anno-
tate disorder at the N-terminus and that PONDR-FIT
and IUPredS also predict a short disordered segment at
the C-terminus. However, the disorder at the N-termi-
nus is over-predicted; the residues between positions 30
and 40 and between 52 to about 60 are predicted as dis-
ordered, while the X-ray structure shows them as struc-
tured. These over-predictions were minimized when the
cut-off was adjusted to match the content predicted by
the DisCon. Importantly, the adjusted predictions iden-
tify the two disordered segments, with particularly good
results for the MD and MFDp predictors that quite
accurately identify both of the disordered segments and
no other disordered residues. After the adjustment, the
predictions from PONDR-FIT show the two disordered
segments at the N-terminus, although the first segment
is predicted to be 11 residues too short, and the C-

terminus is predicted as structured. Similarly, the
adjusted predictions from IUPredS and DISOPRED2
show disorder in the vicinity of the N-terminus, while
the disorder predictions in other parts of this chain are
removed.
The second case is the inosine-5’-monophosphate

dehydrogenase (DisProt ID DP00399) which was also
solved using X-ray crystallography, see Figure 5. This
protein includes four disordered segments, one longer
between positions 102 and 221, and three shorter
towards the C-terminus [99]. Overall, the six predictors
under-predicted the disorder levels in this protein. They
predicted only a few disordered residues at both termini,
with the exception of Ucon that predicted about a dozen
of short disordered segments throughout the entire
chain and MFDp that predicted three disordered seg-
ments, including both termini and a segment between
positions 421 and 434. The DisCon predicted 28.6% of
residues to be disordered, when compared with 1%,
1.2%, 2.8%, 3%, 6.6%, and 12% that were predicted by
the DISOPRED2, MD, IUPredS, PONDR-FIT, MFDp,
and Ucon, respectively; the native amount of disorder is
33.7%. The content-adjusted annotation of the disor-
dered residues captures a large number of disordered
residues in the long segment between positions 102 and
221, as well as the two disordered segments nearest to
the C-terminus. These improvements come as a trade-
off for an over-prediction of the disorder at the N-ter-
minus, particularly for the PONDR-FIT and DIS-
OPRED2 predictors. Overall, we observe that the
adjusted predictions show a denser concentration of the
disordered residues around the natively disordered
regions.
We conclude that although predictions shown in the

two case studies should not be assumed typical, they
demonstrate that the content predicted with DisCon
offers valuable assistance in selection of the cut-offs to
annotate the disordered residues based on the real-
values predictions from modern disorder predictors.

Factors related to the amount of disorder/order
We convert the input protein sequence into a custom-
designed set of selected 29 numerical descriptors which
utilize information related to the evolutionary profiles,
sequence itself, and predicted secondary structure (SS),
solvent accessible residues (RSA), B-factors and globular
domains; see Table A4 in the Additional File 1. Majority
of the selected features combine multiple input sources.
For instance, the largest group of 5 similar features is
based on counting the residues in certain predicted SS
states, with certain levels of predicted solvent exposure
and B-factors which are located within the predicted
domains. For instance, the SSHEDOMinBFNSlowRSAB

feature counts the predicted helix and strand residues
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Figure 4 Prediction of disordered residues in the apoptosis-inducing ligand 2 (Apo2L) protein (PDB ID 1DG6 chain A) by Ucon (thin
blue line), PONDR-FIT (thin red line), MD (thin green line), MFDp (thin gray line), IUPredS (thin pink line), and DISOPRED2 (thin cyan
line) predictors. The original cut-offs are shown using dashed lines. The native disordered regions are annotated using black horizontal line. The
original binary predictions from Ucon, PONDR-FIT, MD, MFDp, IUPredS, and DISOPRED2 are denoted using blue (at the -0.1 point on the y-axis),
red (at the -0.2), green (at the -0.3), gray (at the -0.4), pink (at the -0.5), and cyan (at the -0.6) horizontal lines. The binary predictions that were
adjusted to match content predicted with DisCon are shown using horizontal bright green lines located immediately under the lines that show
the original predictions.
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Figure 5 Prediction of disordered residues in the inosine-5’-monophosphate dehydrogenase protein (DisProt ID DP00399) by Ucon
(thin blue line), PONDR-FIT (thin red line), MD (thin green line), MFDp (thin gray line), IUPredS (thin pink line), and DISOPRED2 (thin
cyan line) predictors. The original cut-offs are shown using dashed lines. The native disordered regions are annotated using black horizontal
line. The original binary predictions from Ucon, PONDR-FIT, MD, MFDp, IUPredS, and DISOPRED2 are denoted using blue (at the -0.1 point on
the y-axis), red (at the -0.2), green (at the -0.3), gray (at the -0.4), pink (at the -0.5), and cyan (at the -0.6) horizontal lines. The binary predictions
that were adjusted to match content predicted with DisCon are shown using horizontal bright green lines located immediately under the lines
that show the original predictions.
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that are in globular domains, have low B-factors (are
structurally rigid) and are buried. As expected, these
values are negatively correlated with the content of the
native disorder (with PCC = -0.54 in our dataset), see
Figure 6, since this descriptor highlights hallmarks of
well-structured proteins, i.e., they usually include con-
served domains with buried strands and/or helices that
are usually structurally rigid. Another feature that
attains negative, -0.34, correlation with the native con-
tent is BFNSlowSeg10, which quantifies the number of
predicted rigid residues (with low B-factor) that are
grouped together in the sequence in segments of size
at least 10. Figure 6 shows a cluster of BFNSlowSeg10
values between 0.4 and 0.7 for chains with low amount

of native disorder, which suggests that well-structured
proteins include significant amount of rigid residues
that are grouped together in the sequence, while
disordered chains contain fewer of such rigid residues.
We also discuss two features that have relatively high
positive correlation with the disorder content. The
SSCHBFNShighDOMnotin feature counts the number of
coil and helix residues with high B-factor that are not
in the globular domains. This feature that has PCC =
0.54 in our dataset, see Figure 6, agrees with character-
istic properties of the disorder, which often concerns
flexible residues that are outside of the domains. The
CHC...CHSeg feature (PCC = 0.45 in our dataset) com-
putes the number of residues in the longest segment in

Figure 6 Scatter plots of the relations between the values of selected four input features, SS_HE-DOM_in-BFNS_low-RSA_B (green
circle markers), BFNS_low-Seg_10 (red triangle markers), SS_CH-BFNS_high-DOM_notin (black × markers), and CHC...CHSeg (blue
hollow circle markers) shown on y-axis and the native disorder content given on x-axis. The lines correspond to linear regressions with
the corresponding R2 values.
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the predicted SS that does not include strands, i.e.,
stretch of the sequence that is composed only of a
coils or of alternating helix-coil-helix-coil... segments.
This feature demonstrates that disordered proteins are
often depleted of beta-sheets.
The input features also highlight the importance of

the relation between sequence conservation and the
amount of the disorder, i.e., 13 out of the 29 features
utilize entropy computed from the PSSM or WOP pro-
files. For instance, the EntAvePSSM feature, which com-
putes the entropy of the average PSSM scores for each
column (amino acid type) in the matrix along the
sequence, has PCC = -0.5. This means that well-struc-
tured proteins are characterized on average by a stron-
ger degree of sequence conservation when compared
with the disordered proteins. Our observation is in
agreement with the results of previous study, where the
evolution rates of ordered and intrinsically disordered
regions were compared using the pairwise genetic dis-
tances between the ordered and the disordered regions
of 26 protein families having at least one member with
a structurally characterized region of disorder of 30 or
more consecutive residues [100]. This study demon-
strated that the disordered regions evolved significantly
more rapidly than the ordered regions in 19 of the 26
families studied [100].

Conclusions
In spite of the fact that the quality of the high-through-
put disorder prediction continues to improve [75],
researchers recognize that new and more accurate pre-
dictors are still needed [38,39]. We address the shortage
of accurate methods that predict the overall amount of
disorder in a given protein chain, which is motivated by
the fact that current disorder predictors tend to provide
relatively inaccurate estimates of the disorder content.
We propose a novel approach, called DisCon, which
combines information derived from sequence, sequence
profiles, and predicted secondary structure, solvent
accessibility, flexibility, and annotation of globular
domains. We custom designed feature-based representa-
tion of the input protein chain that aggregates and com-
bines these inputs and we performed feature selection
that found a small set of 29 complementary features
that are well correlated with the native disorder. Using
these features and a ridge regression-based model, the
DisCon predicts the disorder content with low, 0.05,
mean squared error and high, 0.68, correlation, as evalu-
ated on an independent test dataset. These predictions
are empirically shown to be significantly better than the
disorder content estimates derived from outputs of ten
modern disorder predictors. The DisCon’s predictions
provide a high-quality alternative for high-throughput

annotation of the disorder content. They are also shown
to provide useful input to improve binary annotations of
the disordered residues from the real-value disorder
propensities generated by current disorder prediction
methods.

Additional material

Additional file 1: Supplementary tables and figures. This file includes
4 supplementary tables and 3 supplementary figures. The tables
summarize the input features and results obtained with alternative
designs of the proposed predictor. The figures summarize correlation
between the input features and the predictive target, the relation
between the predictive quality and the input chain length, and the
accuracy for the residue-level disorder predictions.
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