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Abstract

Background: Cellular processes and pathways, whose deregulation may contribute to the development of cancers,
are often represented as cascades of proteins transmitting a signal from the cell surface to the nucleus. However,
recent functional genomic experiments have identified thousands of interactions for the signalling canonical
proteins, challenging the traditional view of pathways as independent functional entities. Combining information
from pathway databases and interaction networks obtained from functional genomic experiments is therefore a
promising strategy to obtain more robust pathway and process representations, facilitating the study of cancer-
related pathways.

Results: We present a methodology for extending pre-defined protein sets representing cellular pathways and
processes by mapping them onto a protein-protein interaction network, and extending them to include densely
interconnected interaction partners. The added proteins display distinctive network topological features and
molecular function annotations, and can be proposed as putative new components, and/or as regulators of the
communication between the different cellular processes. Finally, these extended pathways and processes are used
to analyse their enrichment in pancreatic mutated genes. Significant associations between mutated genes and
certain processes are identified, enabling an analysis of the influence of previously non-annotated cancer mutated
genes.

Conclusions: The proposed method for extending cellular pathways helps to explain the functions of cancer
mutated genes by exploiting the synergies of canonical knowledge and large-scale interaction data.

Background
Processes and pathways, whose deregulation may contri-
bute to the development of cancers [1], are often repre-
sented as cascades of proteins transmitting a signal from
the cell surface to the nucleus. However, the delineation
of the canonical members of these cellular pathways is
based on a multitude of experimental methods, and
some inconsistencies exist across databases [2]. Indeed,
the assignment of a protein to a pathway often relies on
the experimental procedure and on a subjective assess-
ment of the protein’s importance for the process. Many

closely associated regulators, effectors or targets of cellu-
lar pathways may therefore have been overlooked by
these classical approaches. Additionally, recent func-
tional genomics high-throughput initiatives have identi-
fied a large number of interaction partners for signalling
proteins, suggesting more complex relationships
between cellular pathways than in their traditional
representations [3]. In this context, the analysis of can-
cer mutated genes at the level of canonical cellular pro-
cesses and pathways may previously have missed
potentially interesting findings.
This paper introduces a new methodology to amalga-

mate the information from cellular process and pathway
databases with large-scale protein-protein interaction
data. Previous approaches for in-silico generation of cel-
lular processes based on molecular interaction data have
constructed pathways from scratch (see [4-7]), and
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related approaches for disease candidate gene prioritisa-
tion also rely on interaction network data to identify
molecules which are associated with a gene set [8-10].
However, to the best of the authors’ knowledge an
extension approach which preserves existing process
definitions has not yet been investigated.
Here, we present a procedure for extending cellular

pathways and processes by mapping them onto a pro-
tein-protein interaction network and identifying densely
interconnected interaction partners. Briefly, we map pro-
teins annotated for different cellular processes onto a
large protein-protein interaction network, and extend
each of these processes by adding their most densely
interconnected network partners (using various graph-
theoretic criteria). These added proteins display distinc-
tive network topological features and molecular function
annotations and can be proposed as putative new compo-
nents of the corresponding cellular process, and/or as
regulators of the communication between different cellu-
lar processes. This is illustrated by the prediction of new
Alzheimer disease candidate genes and the identification
of proteins with potential involvement in the crosstalk
between several interleukin signalling pathways.
Finally, we employ the extension procedure to investi-

gate mutated genes from a large-scale resequencing
study of pancreatic tumours. We identified many path-
ways and processes enriched in mutated genes, as well
as cancer mutated genes predicted to be involved in
specific pathway deregulations.

Implementation
All data processing and analysis steps were implemented
in the programming language R. The web-based
pathway visualisation on http://www.infobiotics.net/
pathexpand was implemented in PHP.

Interaction network construction
The human protein-protein interactions were combined
from 5 public databases, as of July, 2009. These include
MIPS [11], DIP [12], MINT [13], HPRD [14] and IntAct
[15]. We considered only experimental methods
dedicated to the identification of direct binary protein
interactions (see datasets section on the webpage
http://www.infobiotics.net/pathexpand). The final pro-
tein interaction network contained 9392 proteins
(nodes) and 38857 interactions (edges).

Process mapping
The gene/protein sets corresponding to cellular path-
ways/processes were extracted from the public databases
KEGG [16], BioCarta [17] and Reactome [18] and were
mapped onto the protein interaction network. Since the
interaction data does not represent the entire proteome,

on average about 60% of the pathway proteins could be
mapped onto the network.

Process extension procedure
Original cellular pathways/processes containing at least
10 proteins were used as seeds and mapped onto the
protein-protein interaction network. The direct neigh-
bours of these seed nodes were then considered as can-
didates for the extension procedure, and filtered
according to multiple criteria to assess the strength of
their association with the pathway nodes. More specifi-
cally, in the first filtering step, a candidate-node v has to
fulfill condition (1) below and at least one of the follow-
ing conditions (2-4) to be added to a pathway p
(an illustration of these conditions is shown in Figure 1).
node degree:

degree v( ) > 1 (1)

direct pathway/process association:

process links v p

outside links v p
T

_
_

( , )
( , )

> 1 (2)

Process extension procedure:

triangle links v p

possible triangles v p
T

_
_

( , )
( , )

> 2 (3)

pathway/process node coverage:

process links v p

process nodes p
T

_
_

( , )
( )

> 3 (4)

where degree(v) is the number of direct links of node
v, process_links(v, p) is the number of direct links from
v to a node in the process p and outside_links(v, p) is
the number of direct links from v to a node outside of
process p. triangle_links(v, p) is the number of triangles
in which v occurs together with a node in p and another
candidate-node, and possible_triangles(v, p) is the num-
ber of these triangles which could potentially be formed,
if all other candidate nodes would be part of a triangle
formed together with v and p. T1, T2 and T3 are defined
here as T1 = 1.0, T2 = 0.1 and T3 = 0.3 (this selection
provided a reasonable trade-off between the number of
extended pathways and the average size of the exten-
sion). For T1 = 1.0, equation 2 corresponds to a well-
known condition in graph theory introduced to define
“strong communities” in networks (stating that the
number of connections to the pathway/community must
exceed the number of connections to the rest of the
graph, see [19]). Given that a candidate node can have
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connections with all the original pathway nodes, the
threshold T3 always has to be smaller than 1 (i.e. the
maximum pathway node coverage is 1).
Since we expected the extension procedure to be more

meaningful if it results in a more compact pathway-
representation in the network, we apply a second filter to
the candidate nodes which passed the first fillter based on
the above criteria. A candidate node is only accepted if the
following compactness-score, given by the mean of the
shortest path lengths between all pairs of proteins belong-
ing to a protein set P, is reduced after adding the candidate:

compact score P

dist P P

P P

i j

i j P i j_ ( )

( , )

| |*(| | ) /
, ;=

−
∈ <
∑

1 2

(5)

Thus, the proteins that are added to a pathway by the
procedure are both strongly associated with the original
pathway members and provide an extended pathway
with a compact network representation. Specifically, we
expect that added proteins which increase the compact-
ness by connecting disconnected proteins in the original
pathway are more likely to be functionally similar to the

pathway members. The order in which proteins are
added to extend a pathway is given by a greedy strategy,
i.e. the protein that increases the compactness the most
is always added first.

Topological network analysis
To quantify local and global topological properties of
proteins in the network, we used the web-application
TopoGSA [20] to compute five topological descriptors:
the number of connections to other nodes (degree), the
tendency of nodes to form clusters (clustering coeffi-
cient), their centrality in the network (betweenness and
eigenvector centrality) and the distances between them
(shortest path length). For a detailed explanation of
these topological characteristics, see [21].

Cross-validation
We applied the following cross-validation strategy to
analyse the extent to which randomly deleted proteins
in the original pathways/processes can be recovered by
our extension procedure:

1. 10% of the proteins from each pathway were
removed randomly among those proteins that are

Figure 1 Filtering criteria. Visualisation of graph-based filtering criteria used to extend the cellular processes (the process nodes are shown in
black, coloured and circled nodes represent cases in which different filtering criteria are fulfilled by a candidate node).
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connected to at least one other protein in the path-
way. If the set of proteins that are connected to
other pathway members covers less than 10% of the
total number of proteins, we iteratively remove ran-
dom proteins from this set and recompute the set
until it is empty.
2. To each reduced pathway the proposed extension
procedure was applied as well as 100 alternative ran-
dom extensions, computed by sampling randomly
the same number of proteins from the candidate
proteins of the reduced pathway (see definition of
candidates in the process extension section above).
3. P-value significance scores are estimated as the
relative frequency of cases where more proteins were
correctly recovered by a random extension than by
the proposed extension procedure across all path-
ways in a database.

Semantic similarity analysis of Gene Ontology terms
We quantified pairwise similarities between protein
annotations based on Jiang and Conrath’s semantic
similarity measure for GO terms [22]. Using this simi-
larity score, we computed the average GO-term similari-
ties between all pairwise combinations of GO biological
process (BP) terms for the original proteins in the cellu-
lar pathway and the added proteins. A random exten-
sion model was created by randomly sampling the same
number of proteins from the candidate proteins of the
pathway (see definition of candidates in the pathway
extension section) as in the real extension, excluding the
proteins from the extended cellular pathway under con-
sideration. The reader should note that it is not possible
to compare the extensions of real pathways to exten-
sions of random gene/protein sets with similar connec-
tivity in the network, because in most cases these sets
would largely overlap with other pathways.

Enrichment Analyses
• The enrichment of molecular functions among the
proteins added to the cellular pathways/processes by
the extension procedure was tested for all databases
independently using the DAVID functional annota-
tion clustering tool [23] (Gene Ontology Molecular
Functions and InterPro protein domains), with the
proteins from the interaction network. Functional
annotation clusters with a more than 2-fold enrich-
ment were selected and manually labelled.
• To estimate the probability of observing certain
overlaps between extended or original protein sets
representing pathways and other protein sets of inter-
est, e.g. cancer-related proteins, we used a classical
over-representation analysis (ORA) based on the

one-tailed Fisher exact test. To adjust for multiple
testing, we employ the approach by Benjamini [24].

Results and Discussion
In the following we discuss the results obtained by
applying our pathway extension approach to cellular
pathway and process datasets from the databases KEGG
[16], BioCarta [17] and Reactome [18]. Across all data-
bases, 1859 different processes were considered (with a
minimum size of 10 proteins) and mapped onto a net-
work containing 38857 interactions (see Methods).

Extension of cellular pathways/processes with protein
interaction data predicts new putative components
Our procedure has been able to extend 159 pathways
from BioCarta, 90 from KEGG and 52 from Reactome
(Table 1 http://www.infobiotics.net/pathexpand). The
pathway sizes increased on average from 113% to 126%
of the original size.

Network properties of the proteins added to the cellular
pathways/processes
The added proteins in the interaction network had a
more than one standard deviation higher node degree,
betweenness and average local clustering coefficient
(Methods) than 10 matched size random protein sets
[20] (Table 2). Moreover, the shortest path lengths
between the added proteins were smaller by several
standard deviations (Table 2). This tendency of proteins
added by the extension method to occur in more central
and dense regions of the network is consistent with
similar trends observed for the topological properties of
proteins from the original cellular pathways and pro-
cesses (Table 2).

Functional annotations of the proteins added to the
cellular pathways/processes
A semantic similarity analysis of the GO terms was used
to compare the functional annotations of the original
cellular process proteins with the annotations of the
proteins added during the extension procedure (Meth-
ods). For almost all cellular pathways, the GO-terms of
the added proteins are more similar to the GO-terms of
the original cellular pathway proteins than those
of matched-size random protein sets (Figure 2). These
results confirm that the added proteins belong to similar
functional categories as the proteins from the cellular
processes they were assigned to. Furthermore, a func-
tional enrichment analysis of the combined set of pro-
teins added to all cellular processes (applied to each
database separately) reveals an enrichment in proteins
annotated for regulatory activity (Table 1). More
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interestingly, for the databases KEGG and BioCarta, the
added proteins are enriched in phosphatases. This result
could indicate that phosphatases, which might corre-
spond to negative regulators, have previously been over-
looked in the definition of canonical pathways.

The extension procedure can recover known pathway
proteins after deletion
A cross-validation procedure (Methods) showed that the
cellular pathway extension recovers a Significantly larger
number of randomly deleted pathway- nodes in the net-
work than a simplistic extension based on random selec-
tion among the candidate nodes (p-values smaller than
0.01 for all databases). Specifically, the distribution of
the number of recoveries across the 100 random model
extensions never provided a higher number of recoveries
than the proposed extension method.

Prediction of new components
Based on the observations that 1) The proteins added by
our method are well connected and central in the pro-
tein interaction network, 2) The added proteins display
gene ontology annotations matching better to the origi-
nal cellular pathway/process annotations than random

proteins, and are enriched in processes known to be
related to cellular signalling, and 3) Our method is able
to recover known cellular pathway/process proteins in a
cross-validation experiment, we propose to consider the
proteins added by the extension procedure as new can-
didate components with a functional role in the corre-
sponding cellular processes.
To illustrate the utility of our extension procedure for

the prediction of new components, we analysed a cellu-
lar map modelling the process likely to be deregulated
by the most penetrant Alzheimer susceptibility genes
(created manually from the literature [25] and available
in the KEGG database [16]). Our extension method
added 5 different proteins to this cellular map
http://www.infobiotics.net/pathexpand. Interestingly,
three of them have previously been implied in Alzhei-
mer disease (TMED10, APH1B and PITX3). Two other
proteins, METTL2B and MMP17, which are also added
to the Alzheimer cellular map by our method, have not
been linked to the disease so far, to the best of our
knowledge. MMP17 is a member of the metallopepti-
dase protein family involved in the breakdown of the
extracellular matrix. According to the Huge navigator
[26], 6 other members of this protein family have been

Table 1 Statistics on added proteins across different databases

Property BioCarta KEGG Reactome

no. of examined pathways 322 199 79

no. of extended pathways 195 140 62

avg. pathway size 19 49 75

avg. size after extension 24 61 85

total no. of added proteins 935 1745 622

no. of unique added proteins 280 623 409

Molecular function categories of proteins added
by the extension method (2-fold enrichment, see
methods)

Phosphatase activity, Regulator activity, Binding,
Kinase inhibitor/regulator, Cytokine binding/TNF

receptor

Phosphatase activity, Regulator
activity, Cytokine binding/TNF

receptor

Regulator
activity

Statistics on the number of pathways that could be extended, the average extension size, the number of added (unique) proteins and their molecular function
categories.

Table 2 Topological properties of BioCarta pathway/process extensions 17

Property Proposed extension: Added
proteins only (mean)

Random model: Added proteins
only (mean/stddev.)

Original cellular processes
(mean/stddev.)

All network proteins
(mean/stddev.)

Shortest path
length

3.68 4.11(0.03) 3.77 (0.51) 4.12(0.94)

Node
betweenness

21998 14545(4751) 49888 (153173) 14669(68893)

Degree 10.3 8.11(0.94) 21.53 (32.64) 8.27(16.2)

Clustering
coefficient

0.34 0.11(0.01) 0.12 (0.17) 0.11(0.21)

Eigenvector
centrality

0.04 0.01(0.04) 0.05 (0.09) 0(0.57)

Comparison of different numerical topological properties for the proteins added by the proposed extension method (column 1) or the random model (column 2),
as well as a comparison of these properties for the nodes corresponding to the original cellular processes (column 3) and the entire protein-protein interaction
network (column 4).
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associated with the Alzheimer disease. The other candi-
date is a methyltransferase-like, METTL2B. Another
member of this family, MMETL10 has been associated
with Alzheimer disease in a case-control study [26].
Thus, using the Alzheimer disease pathway as a first test
case of our method, we can propose MMP17 and
METTL2B as new candidate disease genes.

The extension of cellular processes points to extensive
communication
The involvement of some proteins in multiple processes
suggests that extensive communication exists between
different cellular processes. Indeed, before applying the
extension procedure, about 50% of the cellular process
proteins are annotated for more than one cellular pro-
cess. Interestingly, after the extension procedure, the
percentage of unique proteins among all proteins added
to the cellular processes ranged from 30% (BioCarta) to
66% (Reactome), revealing that many proteins are added
to more than one cellular process. In agreement with
our observations for the original process proteins, again
about 50% of the added proteins belong to more than
one cellular process. Accordingly, many proteins in the
protein interaction network are well connected with dif-
ferent cellular processes, and might therefore be
expected to have a functional role in the communication
between the cellular processes.
As an example for these type of connections, we con-

sider the class of Interleukins (ILs). ILs are secreted pro-
teins mainly involved in the immune system to regulate

the communication between immune cells. They acti-
vate different signalling pathways, which can share intra-
cellular signalling cascades (e.g., MAPK, Ras or STAT),
but which also display distinct properties (e.g. by bind-
ing to different receptors). In this context, some
IL-pathway proteins are annotated only for one IL path-
way (Figure 3 each colour corresponds to an IL path-
way), while other proteins occur in multiple pathways
(Figure 3 multiple colour node proteins). Furthermore,
all the IL pathways share protein-protein interactions
(Figure 3 blue links). Thus, the analysis of protein-
protein interactions between the members of different
IL pathways highlights the complexity of this signalling
system. We applied our pathway extension method to
extend the seven interleukin signalling pathways
depicted in Figure 3 (between 1 to 10 proteins were
added to each signalling pathway). The figure shows
that some proteins were added to only a single IL path-
way. For instance, the CTAG1B (cancer/testis antigen
1B) protein was added to the IL5- signalling pathway
(Figure 3 green proteins). Interestingly, the added pro-
tein is an antigen expressed only in cancer cells and in
normal testis cells, and could represent a regulatory
member of this pathway in these two particular condi-
tions. Moreover, four other proteins were added jointly

Figure 2 Semantic similarity analysis. Similarities in Gene
Ontology Biological Process terms between original BioCarta
pathway proteins and added proteins (red) and between original
pathway proteins and matched-size random protein sets (blue).

Figure 3 Crosstalk between interleukin signalling pathways.
Protein interaction sub-network containing the proteins annotated for
7 different Interleukin (IL)-related pathways from the BioCarta database
(each colour represent a pathway, proteins annotated for multiple
pathways display more than one colour). Proteins added by our
method are highlighted by surrounding circles and coloured
according to the pathway(s) they were added to (they appear mostly
within peripheral clusters or as links between process members). They
were not annotated for any of the IL-related pathways before applying
the extension procedure, and the original pathway members did not
become members in further IL-related pathways. Therefore, to simplify
interpretation and provide a compact data representation, the node
colours are only used to visualise the pathway memberships after the
application of the extension procedure.
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to more than one IL pathway. Three of them are added
to the IL2, IL3 and IL6 pathways, which are all activat-
ing the STAT and Ras/MAPK signalling cascades. These
proteins are known regulators of these cascades and can
also participate in the regulation of the communication
between the different interleukin signalling pathways.

Functional enrichment of tumour mutated genes in
extended cellular pathways reveals new putative
regulators of cancer pathways
Large-scale tumour resequencing projects have revealed
a large number of genes mutated in different cancer
types [27-29]. To understand the biological significance

Table 3 Cellular processes enriched in pancreatic mutated genes

Cellular
Process
database

Cellular process ORA Q-value
before/after
extension

Pathway size
before/after
extension

Number of mutated
genes in new

pathway

Number of mutated
genes among added

genes

Mutated genes among
added genes

Reactome Hemostasis 0.475/5.18e-06 221/278 19 4 LRP1B, TFPI2 PON1,
SIGLEC11

KEGG Tight junction 1.48E-4/4.5e-05 106/126 14 3 RASIP1, RASGRP3,
PLEKHG2

KEGG MAPK signaling
pathway

3.35E-4/4.87e-05 225/279 21 6 DOCK2, MAPKBP1,
SLC9A5 RASIP1, DUSP19,

PLEKHG2

KEGG Cell adhesion
molecules

2.87E-4/1.03E-4 109/116 12 2 TNR, SEC14L3

KEGG Wnt signaling
pathway

3.35E-4/1.39E-4 123/147 14 3 MAPKBP1, PLEKHG2,
ANKRD6

KEGG Neuroactive ligand-
receptor
interaction

3.35E-4/1.72E-4 198/217 17 3 EML1, ACE

BioCarta MAPKinase
Signaling Pathway

1.33E-3/2.89E-4 81/111 8 2 MAPKBP1, DUSP19

Reactome Apoptosis 3.7E-2/4.42E-4 124/146 11 2 BCL2A1, RASGRP3

Reactome Signaling by PDGF 5.72E-3/4.43E-4 61/121 10 3 VPS13A, LIG3 FMR2

BioCarta Cell Cycle G1/S
Check Point

1.7E-3/5.06E-4 27/34 5 1 TGIF2

BioCarta Agrin Postsynaptic
Differentiation

1.27E-2/8.21E-4 27/38 5 2 PGM5, PLEKHG2

BioCarta p38 MAPK
Signaling Pathway

3.25E-3/1.13E-3 34/42 5 1 PLEKHG2

BioCarta ALK in cardiac
myocytes

2.89E-3/1.25E-3 32/44 5 1 TBX5

KEGG Fc epsilon RI
signaling pathway

2.69E-2/2.71E-3 67/114 10 5 DOCK2, MAPKBP1,
DUSP19, ATF2, RASGRP3

KEGG ErbB signaling
pathway

2.32E-2/3.52E-3 86/196 13 7 VPS13A, MAPKBP1, NEK8,
LIG3, DUSP19, AFF2,

GLTSCR1

KEGG Regulation of actin
cytoskeleton

4.94E-3/2.72E-3 184/236 15 4 RASIP1, CDC42BPA,
PLEKHG2, CYFIP1

BioCarta HIV-I Nef negative
effector of Fas and
TNF

7.88E-3/4.78E-3 50/66 5 1 DUSP19

KEGG p53 signaling
pathway

5.62E-3/5.44E-3 59/64 7 1 PPP2R4

Reactome Signaling in
Immune system

0.459/7.02E-3 228/266 12 1 SEC14L3

The complete list of cellular processes that display a statistically significant enrichment in pancreatic cancer mutated genes after applying the proposed
extension method (Q-value < 0.01) and improved significance scores in relation to the original pathways (i.e. Q-values decreasing after the extension). The
significance scores for the overrepresentation analysis (ORA) and the pathway sizes are shown before and after the extension, and the total number of mutated
genes in the extended pathways is provided, as well as the size and the annotations for the set of mutated genes among the genes that were added to these
pathways.
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of these mutated genes, those cellular processes contain-
ing more mutated genes than expected by chance have
been identified (see for instance [28]).
We applied an enrichment analysis on cancer mutated

genes extracted from a pancreatic large-scale resequen-
cing study [28], with extended cellular processes from
BioCarta, KEGG and Reactome, and identified signifi-
cant associations between different cancer types and the
extended pathways (Methods).
Interestingly, we retrieve 8/12 core signalling

pathways that have previously been identified as signifi-
cantly associated with this disease [28]. An over-
representation analysis (ORA) shows that some cellular
pathways and processes are more significantly enriched
in mutated genes in the extended versions than in the
original versions (Table 3). These include signalling
pathways, such as MAPK, p38 MAPK, p53, Wnt,
PDGF, FC epsilon receptor I, ErbB or functions such
as apoptosis and cell cycle G1/S check point (Table 3).
Interestingly, some of the proteins added to these pro-
cesses during the extension procedure are also pan-
creatic mutated genes (Table 3). These proteins
include, for instance, the BCL2-related protein A1,
which is added by our method to the Apoptosis Reac-
tome pathway (indeed, this protein is annotated as
being involved in apoptosis). A less obvious example is
the dual specificity phosphatase 19 (DUSP19), a phos-
phatase added by the extension procedure to MAPK
pathways, the Fc epsilon receptor I signalling pathway
and to a pathway known to be activated in response to
HIV Nef protein (negative effector of Fas and TNF).
This protein is highly expressed in the pancreas [30]
and displays a frameshift mutation in pancreatic
tumours [28].
Finally, new insights can be gained when analysing the

BioCarta cell cycle G1/S check point process (Figure 4).
This process contains several proteins that were found
mutated in large-scale pancreatic resequencing studies
(Figure 4 red nodes), as well as many other proteins
known to be involved in cancerogenesis. Our extension
procedure adds seven proteins to this process (Figure 4
circled nodes). All of these proteins are either transcrip-
tion factors, kinases or other signal transduction regula-
tors, and six of them are known to be involved in cell
cycle regulation (all except TGIF2), though not belong-
ing to the BioCarta canonical cell cycle G1/S check
point proteins. Interestingly, the cancer resequencing
study showed the TGIF2 gene to be mutated in a pan-
creatic tumour (Figure 4 circled red node). This tran-
scriptional repressor gene has also been reported to be
amplified in some ovarian cancers, and can be recruited
by TGF-b-activated Smads [31]. We predict both the
involvement of the corresponding TGIF2 protein in the

cell cycle G1/S check point process, and its involvement
in cancer through the deregulation of this process.
In conclusion, the extensions of the cell cycle G1/S

and other processes provide useful explanatory informa-
tion for the cancer association of these pathways/pro-
cesses by adding new regulators that increase the
connectivity between cancer mutated genes and other
process members in the interaction network. For
instance, in the G1/S process, SMAD3 is connected to
other process members by adding the proteins TGIF2,
GRB2 and PLAGL1, and SMAD4 is connected to the
process member CDK2 by adding UHRF2. Thus, the
overall coherence of the processes is increased and an
expanded view of the influence of different cancer genes
in these processes is obtained.

Conclusions
The extension of known cellular pathways and processes
with densely interconnected interaction partners in a
protein-protein interaction network leads to the propo-
sal of new putative components and to the identification
of mediators of the communication between the pro-
cesses. Thus, by taking into account canonical knowl-
edge as well as large-scale interaction data, the extended

Figure 4 Cell cycle G1/S check point subnetwork. Protein-
protein interaction subnetwork corresponding to the proteins
annotated for the BioCarta pathway “Cell cycle G1/S check point”
and proteins added by our extension procedure (circled). Proteins
whose corresponding genes have been found mutated in
pancreatic whole-genome resequencing studies [28] are highlighted
in red.
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pathways help to explain the functions of cancer
mutated genes.

Availability and requirements
The web-based pathway visualisation, details about the
generation of the human protein-protein interaction
network and the complete enrichment analysis results
are freely available at http://www.infobiotics.net/
pathexpand.
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