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Abstract
Background: MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger 
RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA 
degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this 
study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict 
miRNAs associated with particular diseases or conditions.

Results: Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine 
which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of 
miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these 
data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated 
with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma 
dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each 
case we were able to identified miRNAs of biological importance.

Conclusions: We describe a technique to integrate gene expression data and miRNA target predictions from multiple 
sources.

Background
MicroRNAs (miRNAs) are non-coding RNAs of approxi-
mately 22 nucleotides (nt) in length that regulate gene
expression through translational inhibition or mRNA
degradation [1,2]. MiRNAs have been shown to play an
important role in a wide variety of biological processes
such as apoptosis [3], cell proliferation [4] and carcino-
genesis [5]. Currently there are approximately 10,000
miRNAs from 115 species in miRBase, an online database
and repository for miRNAs [6].

Computational miRNA target prediction is a key com-
ponent in predicting miRNA action. Although miRNAs
are ~22nt in length, it has been shown that the ~6nt 5'
miRNA 'seed' region is the most crucial component for
recognising and binding to target sites in the 3'UTRs of
genes [7]. Most miRNA target prediction programs
exploit this complementarity as well as the fact that true

sites tend to be conserved between related species. Tar-
getScan, PicTar and miRanda all use cross species conser-
vation and different ways of measuring seed
complementarity in their prediction algorithms [8-11].
More recently there have been several prediction meth-
ods based on filtering or processing the above databases
e.g. MiRTif [12] and NBmiRTar [13].

Gene expression microarrays are widely used to mea-
sure mRNA gene expression levels in biological material.
When differences are observed between two conditions
or between and experiment and a control, most of these
differences are likely to be due to differences in transcrip-
tional activity. Some differences, however, may also be
due to the actions of miRNAs. Clearly, if a miRNA acts
through translational repression, then you do not expect
to see this reflected in differences in the mRNA levels of
its targets. However, the effects of miRNA directed
mRNA degradation may be detectable through changes
in the expression of miRNA target genes. This has been
exploited recently to analyse mRNA gene expression
datasets to predict miRNA activity. The basic principle is
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to search for overrepresentation of miRNA target sites in
sets of genes which are down regulated [14,15]. In each
case they linked gene expression data and miRNA target
predictions.

Arora and Simpson [14] used a combination of three
different statistical tests to detect miRNA signatures from
gene expression data, the wilcoxon rank sum test, the
'rank ratio test' [16], and the absolute expression t-test.
They used these tests to identify tissue specific miRNAs
in both human and mouse, based primarily around Tar-
getScan predictions. Cheng and Li [15], use an enrich-
ment score, where a ranked vector of genes is compared
to a ranked vector of degenerated binding score profiles
in which miRNA target prediction binding scores (from
miRanda [11]), above and below a certain threshold are
set to 1 and 0 respectively. This is similar to the gene set
enrichment algorithm (GSEA) [17]. They identified the
activity enhancement of miRNAs that were transfected
into HeLa cells and showed that their method performed
better then GSEA and the wilcoxon test.

In this paper we describe the use of a multivariate sta-
tistical technique called co-inertia analysis (CIA) [18,19]
that can be used to link gene expression data and miRNA
target predictions from multiple programs to associate
miRNAs with particular diseases or conditions. This is a
simple yet highly effective approach that allows us to
simultaneously analysis whole microarray datasets and
databases of miRNA target predictions, and visualise the
data in linked two dimensional plots. This allows us to
visually identify miRNAs that are associated with partic-
ular groups in the data. The analysis can be supervised
using a discriminant technique called Between Groups
Analysis (BGA) [20] to focus on groups of arrays that are
of a priori interest. This approach is especially useful as
there is no requirement for the filtering of gene expres-
sion data or the generation of gene lists or clusters. The
method can take an entire microarray dataset and cross
reference/integrate it with miRNA prediction databases
without the use of user defined thresholds. CIA can be
used in a supervised mode where we specify groups in
advance. It can also be used for data exploration in an
unsupervised mode. This is useful in cases where the
samples show great heterogeneity or are poorly charac-
terised, as happens, for example, in many cancer related
datasets.

In this paper we use CIA to predict miRNA activity in
three different gene expression microarray datasets. The
first is a papillary thyroid carcinoma (PTC) dataset [21],
where both mRNA microarray and miRNA expression
data for the same tissues, were available. This allows us to
compare our predicted miRNAs against those that are
actually observed to be highly expressed in the tissue. The
second is an in-house dataset where we measured gene
expression in mouse macrophages from wild type versus

MAL knockout mice, after treatment with lipopolysac-
charide. The results were confirmed by directly measur-
ing the levels of predicted miRNAs, using RT-PCR. The
third dataset was that used by Arora and Simpson [14] to
demonstrate their miRNA prediction method.

Results
For each dataset we used CIA to simultaneously analyse
mRNA gene expression data and predicted miRNA target
sites in the 3' UTRs of the same genes. The starting point
is two tables: one table of gene expression values for g
genes from n "samples" (n microarrays) and one table giv-
ing the counts of predicted target sites for m miRNAs in
the same g genes. These tables (gxn and gxm) are analysed
using Non-symmetric Correspondence Analysis (NSC)
and linked using CIA. The CIA analysis gives us diagrams
which can be visually inspected and show the relation-
ships between gene expression differences in different
"samples" and how these relate to differences in the
occurrence of miRNA target sites. This is unsupervised
and is used for data exploration and visualisation pur-
poses.

The analysis can be made supervised by applying
Between Group Analysis (BGA, [18,22]) which takes class
information and a NSC analysis and finds axes or vectors
that best discriminate pre-assigned groups by maximis-
ing the between group variance. We use this technique to
automate the analysis by specifying a predetermined split
in the microarray samples such as between those from
normal and cancer tissue, and so identify putative regu-
lating miRNAs associated with the split. The result of a
BGA analysis on 2 groups is a ranked list of miRNAs.

Papillary Thyroid Cancer Dataset
We first applied CIA to find miRNAs associated with
papillary thyroid cancer (PTC). He et al [21] produced
mRNA and miRNA gene expression data using microar-
rays from PTC and adjacent unaffected tissue for 9
patients. CIA was applied to the 18 microarrays (9 PCT
and 9 unaffected tissue), and the associated miRNA/gene
frequency tables. To simplify the comparison between
our prediction technique and the experimental data, only
those miRNAs present on the miRNA microarray, were
analysed (see additional file 1: 'MiRNAs on the
OSU_CCC version 2.0 miRNA microarray chip' for
details). The full analysis including all miRNAs predicted
by the target prediction software are available in addi-
tional file 2: 'Results of the CIA for PTC using all available
miRNAs'. This includes miRNAs that were not tested by
He et al. [21] but may be potential novel miRNAs
involved in PTC. Axes 1 and 2 of the resultant CIA for the
gene expression microarrays using the TargetScan gene/
miRNA frequency table can be seen in figure 1.
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In figure 1a we see the PTC and the normal thyroid tis-
sues highlighted in blue and red respectively. As you
would expect the normal samples are more homoge-
neous, than the PTC samples. Figure 1b, shows the
miRNA motifs associated with this split in the data. The
most extreme motifs along each axis are labelled and
named. Motifs that are in the opposite orientation (direc-
tion from the origin) as the PTC array samples are associ-
ated with PTC. This is counterintuitive, but reflects the
way in which miRNAs usually negatively regulate gene
expression. Genes that are upregulated in normal tissue
may contain predicted binding sites for miRNAs upregu-
lated in PTC. In other words, these genes are subse-
quently down regulated in the presence of these miRNAs.
Those miRNAs highlighted in blue (miR-221, miR-222,
and miR-146) are predicted to be upregulated in PTC,
from visual inspection of the plots.

In order to systematically identify the miRNAs specifi-
cally associated with the split we are interested in (9 PTC
vs 9 normal tissue), we performed a supervised analysis of
the data, combining CIA and BGA. Informally this is the
equivalent of plotting a line between the centres of the
two groups in figure 1a and then finding the equivalent
line in the lower panel (with the same orientation from
the origin) and plotting the miRNA motifs along this.
This is done automatically by BGA and produces a single
vector with the co-ordinate of every miRNA. This proce-
dure was repeated for each of the 5 miRNA/gene fre-
quency tables, one for each of the 5 miRNA prediction
programs. This returns 5 lists of miRNA motifs that are
ranked based on the motifs association with PTC. As
each of these programs has distinct characteristics, they
returned different lists of motifs. To allow for this, we
only considered those motifs which ranked highly (in the
top 20) with two or more of the programs.

Table 1 shows the results of the comparison between
PTC and normal thyroid tissue. It also contains the rank-
ing of each miRNA for each of the 5 programs and the
average ranking. The miRNAs that were identified by He
et al. [21] are highlighted in bold. Although we did not
predict all miRNAs that were upregulated in PTC, we did
identify the four mostly highly upregulated, based on
their analysis, miR-146, miR-221, miR-222, miR-21
(upregulated 19.3 fold, 12.3 fold, 10.9 fold and 4.3 fold
respectively) (Table 1). MiR-146, miR-221 and miR-222,
are an order of magnitude more upregulated than any of
the other miRNAs.

The above analysis was performed using computation-
ally predicted target sites. These predictions are noisy
with a high false positive and false negative rate. In order
to test our approach with experimentally verified miRNA
targets we also applied CIA to data from miRecords
[23].This is a resource which contains relatively small
numbers of high quality experimentally confirmed
miRNA targets. MiRecords currently contains target
information for 90 miRNAs across 599 human genes.
Although this is not the only database for experimentally
verified miRNA targets it is comprehensive, well curated
and comparable to other databases such as Tarbase [24].
Again this was used to find miRNAs associated with
PTC. Axes 1 and 2 of the resultant CIA can be seen in fig-
ure 2. In figure 2a we can see a plot of the 18 samples. The
plot is similar to figure 1a in that the more homogeneous
normal samples are clustered together (red), while the
PTC samples (blue) are more scattered. Figure 2b shows
the miRNAs associated with the split in the data. To the
right of the figure, along the horizontal axis, we can see
miR-221 and miR-222 highlighted in blue. Again these
motifs are in the opposite orientation relative to the ori-
gin of the PTC samples in figure 2a, and are predicted to

Figure 1 Unsupervised CIA of the papillary thyroid carcinoma 
dataset. Axis 1 (horizontal) and 2 (vertical) of the unsupervised CIA for 
the PTC dataset. The gene/miRNA frequency table generated from Tar-
getScanS was used to make the figure. (A) Shows the projection of the 
PTC (blue) and normal thyroid tissue (red). The first and second axes 
split the data with the more homogeneous normal tissue samples 
clustering in the top right hand corner. (B) Shows the projection of the 
miRNAs. MiRNAs that are in the opposite orientation relative to the or-
igin are associated with those samples. Highlighted in blue are miRNA 
associated with PTC identified on the miRNA microarray.
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be upregulated in PTC. Performing a supervised analysis
on this dataset using BGA confirms that miR-221 and
miR-222 are the miRNAs most highly associated with
PTC.

This analysis confirms that CIA is capable of integrat-
ing both predicted and experimentally confirmed miRNA
target information with gene expression data. Ideally it
would be preferable to focus on experimental rather than
predicted miRNA data, but at present this is not feasible
as currently available miRNA target data are limited. For
example, there are no confirmed targets of miR-146 in
miRecords. This is the most highly upregulated miRNA
in the PTC data set, and therefore we would only be able
to detect this miRNA using target predictions.

LPS Treated Macrophages Dataset
In this dataset, bone marrow derived macrophages from
wild type (WT) and MAL knockout (MALKO) mice were
treated with lipopolysaccharide (LPS). MAL (MyD88-
adaptor-like) is part of the Toll-like receptor (TLR) sig-
nalling pathway, a key signalling molecule of the innate
immune response [25]. The innate immune response is
triggered in the presence of the Gram-negative bacterial
product LPS. MAL-deficient mice are known to be defec-
tive in TLR2 and TLR4 signalling but show normal sig-
nalling with other members of the TLR family [26]. The
aim of this experiment was the identification of miRNAs
whose activation is independent of MAL i.e. is upregu-
lated in both MALKO and WT macrophages after expo-

sure to LPS. In total there were four replicates of LPS
treated WT arrays, and four replicates of LPS treated
MALKO arrays.

As with the thyroid cancer dataset, supervised CIA was
performed using BGA for each of the 5 gene/miRNA fre-
quency tables, on the two datasets to identify MAL-inde-
pendent miRNAs. This returns 5 lists of miRNAs that are
ranked based on their association with LPS treated cells.
The lists vary depending on the individual characteristics
of the prediction programs used. The resulting axes are
shown in figure 3 for the WT dataset and figure 4 for the
MALKO dataset. The motifs are ranked based on their
association with LPS treated macrophages. These plots
illustrate the overlap between the WT and the MALKO
results i.e. those miRNAs that are MAL independent.
They also demonstrate the variation between the differ-
ent miRNA target prediction programs. Again we
selected those motifs which ranked highly (in the top 20)
with two or more of the programs, as being most likely to
be true results. The results can be seen in table 2 for both
datasets and are highlighted in blue in figures 3 and 4.
Table two only contains those miRNAs that are MAL
independent, and gives the ranking for each of these miR-
NAs. From this table miR-155 and miR-126 were selected
for experimental confirmation of their induction by LPS
using quantitative RT-PCR. These miRNAs were chosen
as they were predicted to be upregulated in both MALKO
and WT by four of the programs, and they had a very low
average ranking in the two datasets. The consistently low

Table 1: miRNAs predicted to be associated with papillary thyroid cancer

Predicted 
miRNAs

Rank with 
PicTar4way

Rank with 
PicTar5way

Rank with 
TargetScan

Rank with 
TargetScanS

Rank with 
miRanda

Average 
Rank

Fold 
Change

miR-222 3 2 3 4 3 10.9

miR-221 6 4 2 3 3.75 12.3

miR-346 4 5 4.5 -

miR-142 7 3 10 2 5.25 -

miR-146 5 14 9.5 19.3

miR-144 13 6 9.5 -

miR-134 14 6 10 -

miR-183 13 16 9 6 11 -

miR-126* 20 3 12.5 -

miR-1 16 10 13 -

miR-206 17 11 14 -

miR-200a/
b/c

18 12 15 -

miR-21 18 16 17 4.3

miR-223 19 17 18 -

miR-100 20 18 19 -

The miRNAs which are also identified by the miRNA microarray are highlighted in bold
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ranking across all four programs in both MALKO and
WT cells suggested that these predictions were the most
likely to be correct and were therefore chosen as the most
suitable miRNAs for further experimental confirmation..
In figure 5 we can see that miR-155 is 23 fold and 25 fold
upregulated in WT and MALKO LPS treated mac-
rophages respectively. This is based on the expression of
miR-155 relative to time zero, in macrophages extracted
from MAL-deficient mice, after being treated with LPS
for two hours. MiR-155 has been previously shown to be
an LPS inducible miRNA [27], and this analysis confirms
that its induction is also MAL independent. Figure 6
shows that miR-126 is 5 fold and 2 fold upregulated in
WT and MALKO macrophages respectively. The upregu-
lation of the miRNA in this case is not as strong as with
miR-155 but is still consistent with the hypothesis that
this miRNA is MAL independent.

Comparison with Arora and Simpson
Previously Arora and Simpson developed an approach to
detect the effect of particular miRNAs on their target
mRNA gene expression levels [14]. As with our approach,
they used gene expression data and publicly available
miRNA target prediction data. Their analyses were based
primarily around TargetScan target predictions (version
3.1). They used three statistical tests to detect miRNA

signatures from gene expression data, the wilcoxon rank
sum test, the 'rank ratio test' [16], and the absolute
expression t-test. They used these techniques for the
identification of tissue specific miRNAs, using data from
a number of sources including GEO series GSE3256 [28-
30]. This dataset comprised 353 microarrays spanning 65
normal human tissues. Arora and Simpson focused on a
comparison of 8 tissue types using one representative
microarray from each tissue type (there were multiple
microarrays for each tissue type). Extensive literature
mining was used to identify evidence of tissue specific
expression profiles of the miRNAs. This evidence
included cloning, Northern hybridization and expressed
sequence tag mapping [14].

We applied unsupervised CIA to the same 8 tissues
used by Arora and Simpson [14]: midbrain, heart atrium,
kidney medulla, liver, lung, ovary, skeletal muscle, and
testis. In total there were 29 microarrays, as we included
all microarrays from each tissue in our analysis rather
than one representative microarray. These were com-
bined with the 5 miRNA/gene frequency tables in the
unsupervised CIA. Axes 1 and 2 of the resultant CIA for
the PicTar5way table can be seen in figure 7a. Visual
inspection of this plot reveals a number of interesting
splits in the data.

In figure 7a, the skeletal muscle (red) is separated from
the other tissues along the vertical axis. Figure 7b, shows
the miRNAs associated with each tissue type. As with the
PTC, it is the motifs that are in the opposite orientation
(direction from the origin) as the skeletal muscle, that are
associated with skeletal muscle. This can be seen in the
case of miR-1/206 (highlighted in red) located in the cen-
tre bottom of figure 7b. This is in the opposite orientation
relative to the origin and is a known muscle specific
miRNA [31]. This miRNA was not identified by Arora
and Simpson as being associated with skeletal muscle, but
was associated with heart tissue (grey in figure 7a).
Another major split in this data, is that of the midbrain
tissue (blue) along the horizontal axis. Again it is the
miRNAs in figure 7b that are in the opposite direction
relative to the origin that are associated with brain tissue.
These include miR-196a/b and miR-29a/c. These miR-
NAs were also identified by Arora and Simpson, although
only miR-29a/c has been previously characterised in
brain tissue [32,33].

In order to systematically identify tissue specific miR-
NAs we compared individual tissues against the rest e.g.
the 3 skeletal muscle microarrays vs. the rest. As before,
this supervised CIA was performed using BGA, and con-
sistency between miRNA prediction programs was
required. Table 3 summaries the miRNAs we identified,
and the overlap between our analysis and that of Arora
and Simpson, as well as information on available experi-
mental data. As can be seen from the table, there is a

Figure 2 Axes 1 and 2 of the CIA of the PTC dataset using miRe-
cords target data. Unsupervised CIA of the PTC dataset generated us-
ing the gene/miRNA frequency table from miRecords target data. (A) 
Shows the projection of the PTC (blue) and normal thyroid tissue (red). 
Axis 1 (horizontal) splits normal thyroid tissue samples from the PTC 
samples. (B) Shows the projection of the miRNAs. MiRNAs that are in 
the opposite orientation relative to the origin are associated with those 
samples. Highlighted in blue are miR-221 and miR-222, which are asso-
ciated with PTC.
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great deal of overlap between the two datasets. For exam-
ple, a known muscle specific miRNA, miR-1/206, was
identified by both techniques in the heart. However, only
our technique identified miR-1/206 in skeletal muscle,
while we did not identify brain specific miR-124. A direct
comparison between the two approaches is difficult as we
used more recent miRNA target predictions and a greater
number of microarrays were tested (we used more than
just a representative microarray for each tissue). How-
ever, approximately a quarter of the predictions overlap
between the two approaches with our approach identify-
ing approximately 15% less miRNAs. Also for both of the
techniques roughly half the results are supported by liter-
ature review (~44% vs 47%). This suggests that although
neither approach is exhaustive they are complementary.

Discussion
In this paper we describe a method for inferring the
action of miRNAs by integrating the information pro-
vided by miRNA target prediction programs with mRNA
gene expression data. This method can be used to predict
the activity of a miRNA when there is down regulation of
multiple potential target genes for that miRNA.

A drawback of this and similar approaches is that it
assumes that mRNA degradation instead of translation
repression is the primary mode of action of the miRNAs.
This will only be true for some miRNAs. MiRNAs which
act through repression will be undetectable using our
methodology. Instead, the action of the miRNA might be
inferred through correlating genomic locus with co-
expression of nearby genes [34,35].

A further drawback of the current method is that it
relies on predictions of target sites in potential target
mRNAs. Such predictions will contain false positives as
well as false negatives and it is often difficult to strike a
balance between sensitivity and specificity. Nonetheless,
we have shown the current method does provide good
quality predictions of miRNA activity. In the case of PTC,
the method was able to predict miRNAs which had been
experimentally measured as showing significant differen-
tial expression. In the case of the MAL knockout data set,
we were able to verify predicted miRNAs using RT-PCR.
In the third dataset, we obtained comparable results to
the method of Arora and Simpson [14] whose method
has already been partly validated, experimentally.

A major advantage of this method is that no pre-pro-
cessing of gene expression data, such as the generation of

Table 2: miRNAs predicted to be up-regulated in Macrophage cells treated with LPS

Predicted miRNAs Rank with 
PicTar4way

Rank with 
PicTar5way

Rank with 
TargetScan

Rank with 
TargetScanS

Rank with 
miRanda

Average rank

WT macrophages

miR-369/3p/5p 2 4 10 1 4.25

miR-155 5 1 7 7 5

miR-374 12 2 7

miR-126 15 14 2 2 8.25

miR-34/b/c 15 12 5 10.66

miR-33 20 5 8 11

miR-26/a 11 16 18 3 11.25

miR-18a 9 20 14.5

MALKO 
macrophages

miR-126 2 2 1 1 1.5

miR-155 3 3 6 3 3.75

miR-33 8 6 7 7

miR-26/a 13 4 8.5

miR-369/3p/5p 20 11 2 11 11

miR-34/b/c 19 13 14 15.33

miR-18a 15 18 16.5

miR-374 18 20 19

Experimentally verified miRNAs are in bold
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clusters or gene lists, is required. This is in marked con-
trast to most other methods such as those based on Gene
Set Enrichment Analysis (GSEA) [17]. The method can
take an entire microarray data set and cross reference/
integrate it with miRNA prediction databases. We also
use multiple miRNA target gene predictions. This allows

us to use consistency across target prediction programs
and so minimise the effect of weaknesses in any one pro-
gram, while maximising the number of miRNAs that can
be investigated. The congruence between the sets of pre-
dicted targets of miRNA sets can often be weak, particu-
larly between TargetScan/PicTar vs. miRanda. Even the

Figure 3 Supervised CIA results for the LPS treated WT macrophages. Supervised analysis using BGA was performed with the gene expression 
data and the 5 gene/miRNA frequency tables. Each axis shows the projection of the miRNAs that are predicted to be upregulated in LPS treated WT 
macrophages produced with each of the 5 target prediction programs. Highlighted in blue are miRNAs that are highly ranked by multiple programs.
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confirmed targets from miRecords [23] may often be con-
text specific due to tissue specific expression and 3' UTR
splice variants. Methods in the past have often used just
one of the predicted databases [14,15] and so it may be
assumed the results would vary depending on the choice
of miRNA target prediction software used. By using mul-
tiple miRNA target gene predictions we can use consis-
tency across target prediction programs to maximise the
reproducibility of the analysis, while retaining a large pro-

portion of the miRNAs. Creighton et al [36] also devel-
oped a technique that facilitated the use of multiple target
prediction algorithms, to associate miRNAs with gene
expression profiles of interest. However, they required
the user to specify a predefined list of genes, while our
approach does not require any pre-processing of gene
expression data.

The method can also be used to visualise and analyse
multiple groups of arrays. In the data sets that we tested

Figure 4 Supervised CIA results for the LPS treated MALKO macrophages. BGA was performed with the gene expression data and the 5 gene/
miRNA frequency tables. Each axis shows the projection of the miRNAs that are predicted to be upregulated in LPS treated MALKO macrophages. The 
axes were produced with the 5 target prediction programs. Highlighted in blue are miRNAs that are highly ranked by multiple programs.
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in this paper, we only compared two groups at a time, in
order to compare the method with other methods. The
visualisations are powerful as they allow simple graphical
representations of highly complex datasets and the rela-
tionships between them.

Conclusions
In this study we have shown how CIA can be used to inte-
grate gene expression data and miRNA target prediction
data from multiple sources to predict miRNAs associated
with particular diseases or conditions. Although this is
not the first attempt to predict miRNA expression pro-
files using gene expression data, we believe that it is com-
plementary to other currently available methods, and
would be a useful addition to the field. The method
allows clear visualisation and data exploration of complex
datasets. It can be used in a supervised or un-supervised
mode and can detect the activity of miRNAs which have
been experimentally measured as being expressed.

Methods
Co-inertia analysis
To study two linked data tables simultaneously, we used
CIA, a multivariate coupling approach that was first
introduced to study ecological data [18,19]. In this case
the two linked tables are expression data, and a miRNA

frequency table on the same set of genes. We treat these
as two sets of measurements on the same objects, the
genes. We have previously used this method to compare
gene expression data with transcription factor binding
site information [37], and proteomics data [38]. CIA is
used in conjunction with an ordination method such as
non-symmetric correspondence analysis (NSC) or princi-
pal components analysis (PCA). These methods sum-
marise a data table in a low dimensional space, by
projecting the samples onto axes which maximise the
variances of the coordinates of the projected points. CIA
performs two simultaneous NSCs on the two linked
tables, and identifies pairs of axes, from the two datasets
which are maximally covariant [37].

BGA is a supervised classification method which can be
used in combination with ordination methods, which
forces an ordination to be carried out on groups of sam-
ples rather than individual samples [20,22]. First a normal
NSC is performed, BGA then finds the linear combina-
tion of the NSC axes that maximizes between-group vari-
ance and minimizes within-group variance, for specified
groups.

Figure 5 miR155 is induced following LPS stimulation. Bone mar-
row derived macrophages (BMDM) were obtained from wild-type (WT) 
and Mal knockout mice. Cells were differentiated for 10 days and stim-
ulated with 100 ng/ml LPS for 2 h. RNA was extracted and miR155 lev-
els were tested by quantitative RT-PCR. Results are expressed as a 
mean ± S.D for triplicate determinations. All results are representative 
of 3 separate experiments.
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Figure 6 miR126 is induced following LPS stimulation. Bone mar-
row derived macrophages (BMDM) were obtained from wild-type (WT) 
and Mal knockout mice. Cells were differentiated for 10 days and stim-
ulated with 100 ng/ml LPS for 2 h. RNA was extracted and miR126 lev-
els were tested by quantitative RT-PCR. Results are expressed as a 
mean ± S.D for triplicate determinations. All results are representative 
of 2 separate experiments.
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Figure 7 Axes 1 and 2 of the unsupervised CIA for the tissue data-
set. The gene/miRNA frequency table generated from PicTar5way was 
used to make this figure. (A) Shows the projection of the tissue sam-
ples. Axis 1 (horizontal), separates the midbrain tissue (blue) from the 
rest of the samples, while axis 2 (vertical) separates skeletal muscle tis-
sue (red) and to a lesser extent heart tissue (grey) from the rest of the 
samples. (B) Shows the projection of the miRNAs. Motifs in the oppo-
site orientation relative to the origin are associated with that tissue. 
Highlighted in blue are miRNA associated with brain tissue, and in red 
are motifs associated with skeletal muscle.
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Table 3: Overlap between predicted tissue specific miRNAs, Arora and Simpson data, and available experimental data

Predicted miRNA Brain Heart Kidney Liver Lung Ovary Skeletal Muscle Testes

let-7/a/b/f Y*, 1,2,3 * * * * * * *

miR-1/206 Y*, 1,2,3 * Y, 2

miR-7 Y, 2 Y

miR-10/a/b * Y, 10 *

miR-15/a/b * Y*, 15 * Y*, 18 *

miR-18/a/b Y

miR-21 Y, 4 Y, 10

miR-22 Y, 3 Y Y

miR-23a/b Y, 2

miR-24/* * * Y*, 18

miR-29/a/b/c Y*, 2,3 *

miR-30 * * Y*, 2,15 * * Y*, 18 * *

miR-33 Y * *

miR-34/b/c * Y Y*, 16

miR-99/b Y, 1 Y

miR-101 * Y*, 2 *

miR-122/a Y*, 1,2,3

miR-125/a/b * Y*, 1,2 * * Y*, 18

miR-126 Y, 2 Y, 2

miR-127 Y Y

miR-128/b * * * * Y*

miR-129/3p Y

miR-133/a/b Y*, 2,3 Y*, 2,3

miR-134 Y

miR-135/a/b Y Y

miR-136 Y *

miR-137 * Y* Y* *

miR-141 Y, 8 Y

miR-142-3p/5p Y Y, 11 Y

miR-143 Y, 3

miR-146/a/b Y, 1 Y Y*, 12 *

miR-151 Y

miR-152 Y Y

miR-181a Y

miR-182/* Y Y Y

miR-184 Y, 17

miR-187 Y

miR-188 Y

miR-190 * Y

miR-191 Y

miR-195 Y, 18

miR-196/a/b Y* * * * * *

miR-199/b Y, 5 Y, 15 *

miR-200/a/b/c Y, 7,8 Y, 10 Y
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BGA can be used to perform a supervised NSC on the
gene expression data by directing the CIA to find the
maximum co-variance between the gene expression dif-
ference between groups of samples and the miRNA-gene
target frequency tables. We have two data tables. One
table gives genes by target sites and the second genes by
gene expression data. Two simultaneous NSCs are per-
formed on the two tables using BGA. We find two resul-
tant axes, one for each dataset with minimal between
group variance. This forces the analysis to rank arrays or
tissues along a first axis that best discriminates the two
groups of samples (e.g. PTC versus normal thyroid tissue)
and a second axis with ranked miRNAs. The two axes are
found as the ones that maximize their covariance. The
miRNAs that are upregulated in a group of samples are
those that are at the opposite end of the miRNA axis to
those samples. For example, genes upregulated in normal
thyroid, contain binding sites for miRNAs that are upreg-
ulated in PTC (e.g. miR-221). Therefore miR-221 is at the
opposite end of the miRNA axes to PTC on the sample
axes. This is indicative of the decrease in gene expression
caused by the miRNA that we are attempting to identify.
Thus, for each split in the data that we specify using
BGA, we get a ranked list of miRNA motifs.

We get a separate ranked list of motifs for each of the
miRNA prediction methods used. We used five predic-
tion methods (see below). The results are combined using
consistency among the prediction programs. To be con-
sidered a true result a motif was required to be highly
ranked (top 20) by two or more programs. This produces
a single ranked list of miRNAs expressed in a particular
disease or condition. All calculations were carried out
using the MADE4 library [39] of the open source R pack-
age. MADE4 can be downloaded freely from the Biocon-
ductor web site http://www.bioconductor.org. All the
scripts used are available upon request from the authors.

MiRNA target prediction
Five different miRNA target prediction programs were
used, TargetScan and TargetScanS [8,9], PicTar4way and
Pictar5way [10], and miRanda [11]. Each of these pro-
grams search for complementarity to the miRNA seed
region in the 3'UTRs of mRNAs and incorporate cross
species conservation into their target prediction calcula-
tions. The miRNA target prediction data were down-
loaded from the TargetScan website http://
www.targetscan.org/ (version 4.1), the UCSC genome
browser tract for pictar4way and pictar5way http://

miR-205 Y

miR-208 Y

miR-210 Y Y

miR-212 Y

miR-215 Y

miR-217 Y Y

miR-219 Y, 1 Y

miR-221 Y, 13 Y

miR-222 Y, 10 Y

miR-223 Y, 9

miR-299-3p/5p Y

miR-302 Y

miR-324-5p Y

miR-325 Y Y Y

miR-326 Y

miR-335 Y, 4 *

miR-340 Y

miR-361 Y

miR-369-3p/5p Y

miR-375 Y*

miR-411 Y

Y represents miRNAs predicted by CIA. * represents those miRNAs also predicted by Arora and Simpson. Those miRNAs in bold were not 
incorporated into TargetScan version 3.1 (used by Arora and Simpson). The numbers are the references from available experimental data. 
References: 1. Gu et al., [44], 2. Sempere et al., [33], 3. Lagos-Quint et al., [32], 4. Sathyan et al., [45], 5. Hua et al., [46], 6. Chan et al., [47], 7. Gregory 
et al., [48], 8. Nakada et al., [49], 9. Anglicheau et al., [50], 10. Ladeiro et al., [51], 11. Lui et al., [52], 12. Raponi et al., [53] 13. Navarro et al., [54], 
14.Lagos-Quint et al., [55], 15. Naraba et al., [56], 16. Yu et al., [57], 17. Nomura et al., [58], 18. Baskerville et al. [35].

Table 3: Overlap between predicted tissue specific miRNAs, Arora and Simpson data, and available experimental data 

http://www.bioconductor.org
http://www.targetscan.org/
http://www.targetscan.org/
http://genome.ucsc.edu/
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genome.ucsc.edu/, and from miRBase for miRanda
(http://microrna.sanger.ac.uk/sequences/[6]). The over-
lap between the target lists varied depending on the num-
ber of miRNAs being examined and the number of
predicted target genes. Two variations of the TargetScan
program were used, TargetScan and TargetScanS. Tar-
getScan predicted 7,611 target genes for 195 miRNAs,
while the more stringent TargetScanS predicted 4,769
target genes for 90 miRNAs. Two version of PicTar were
used, PicTar4way which incorporates conservation across
4 species and predicted 9,151 target genes for 178 miR-
NAs and PicTar5way which uses conservation across 5
species and predicts 3,454 target genes for 130 miRNAs.
MiRanda is the least selective of the prediction programs
used, predicting 17,759 target genes for 470 miRNAs. We
used these data to generate a gene/miRNA frequency
table of counts of predicted targets per gene, for each of
the five sets of target gene predictions.

MiRecords Data
Experimentally validated miRNA target information was
downloaded from miRecords http://mirecords.bio-
lead.org/. As with the miRNA prediction programs this
information was used to construct a gene/miRNA fre-
quency table of counts of miRNA targets per gene. In
total miRecords contains data for 90 miRNAs targeting
599 genes.

Gene Expression data
The Papillary Thyroid Cancer dataset
The thyroid cancer mRNA expression data were obtained
from He et al. [21]. The data were downloaded from
http://www.ncbi.nlm.nih.gov/projects/geo/ (Gene
Expression Omnibus (GEO), accession number:
GSE3467) as raw data files (.cel files). Gene expression
values were called using the robust multichip average
method [40] and data were quantile normalized using the
Bioconductor package, affy. Affymetrix Human Genome
U133 Plus 2.0 Array containing 54,675 Affymetrix probes
was used. The RefSeq ids that corresponded to the
Affymetrix probes were obtained using the hgu133plus2
annotation library. Probes that hit multiple genes were
filtered out. If there were multiple probes for the same
gene, the probes were averaged for that gene. The inter-
section between the target gene prediction software and
the hgu133plus2 gene set was as follows, TargetScan:
5,355genes, TargetScanS: 3,311 genes, miRanda: 10,819
genes, PicTar4way: 4,781 genes, and PicTar5way: 1,693
genes. In addition gene expression information was avail-
able for 385 of the genes in miRecords.
The Tissue Dataset used by Arora and Simpson
Roth et al. [28] generated gene expression profiles for 65
normal adult human tissues. In total this dataset com-
prises 353 microarrays (GEO series GSE3526). These
included 29 microarrays for the 8 tissues examined by

Arora and Simpson [14] (midbrain, heart atrium, kidney
medulla, liver, lung, ovary, skeletal muscle, and testis).
Although Arora and Simpson only chose a representative
sample for each tissue type we included all the available
microarrays for each tissue type in our analysis. The tis-
sue expression data were also downloaded from the GEO
database in the form of raw data files. The GEO sample
and platform accession numbers can be found in addi-
tional file 3: 'GEO sample and platform accession num-
bers'. The same normalisation and analysis procedure
was used as for the PTC data. Affymetrix Human
Genome U133 Plus 2.0 Array containing 54,675 Affyme-
trix probes was used. The intersection between the gene
prediction software and the hgu133plus2 gene set was the
same as above.

LPS Treated Macrophage Dataset
Materials
MAL-deficient mice were a gift from S.Akira (Osaka,
Japan) [26] and were backcrossed onto a C57BL/6 back-
ground for approximately 9 generations. LPS derived
from E.Coli strain O111:b4 was purchased from Sigma,
dissolved in deoxycholate, and re-extracted by phe-
nol:chloroform as previously described [41].
Cell culture and RNA isolation
Mice were anaesthetized with CO2 inhalation and then
killed by cervical dislocation. Bone marrow was isolated
from 6- to 8-week-old C57BL/6 wild type and MAL-defi-
cient mice. Macrophages from these marrows were cul-
tured in DMEM media supplemented with 10% FBS and
15% L929 conditioned media (a source for colony-stimu-
lating factor CSF-1) for 10 days. For mRNA expression
studies by quantitative reverse transcriptase PCR (QRT-
PCR) and microarray analysis in bone marrow derived
macrophages (BMDMs), cells were treated at day 10 ex
vivo for 2 hours with 10 ng/ml lipopolysaccharide and
their gene expression profiles were compared with that of
mock treated cells incubated for the same time. Cells
from four individual mice for each genotype were used,
and each mouse served as its own mock control. Total
RNA for microarray analysis was isolated using an
RNeasy extraction kit (Qiagen, Valencia, CA) according
to the manufacturer's recommendations. RNA quality
was assessed using the 2100 Bioanalyzer (Agilent Tea-
chologies, Palo Alto, CA).
Microarray analysis
The Operon Mus musculus ver. 1.1 probe set (Qiagen)
consisting of over 21,000 oligonucleotide probes (70-
mers) was printed in the Massachusetts General Hospital
(Cambridge, MA) microarray core facility using an
Omnigrid 100 (GeneMachines, San Carlos, CA) on
CodeLink activated slides (Amersham, Piscataway, NJ).
RNA was reverse transcribed and differentially labelled
with Cy3 and Cy5 dyes (Amersham) using the Atlas Pow-
erScript fluorescent labeling kit (BD Biosciences, Palo

http://genome.ucsc.edu/
http://microrna.sanger.ac.uk/sequences/
http://mirecords.biolead.org/
http://mirecords.biolead.org/
http://www.ncbi.nlm.nih.gov/projects/geo/
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Alto, CA). Labelled samples were hybridized overnight
using an automated hybridization station (Genomic Solu-
tions; Perkin-Elmer, Boston, MA). Fluorescent images
from the arrays were acquired using a microarray scanner
and its accompanying software (GenePix 4000B microar-
ray scanner; Axon Instruments, Union City, CA). Data
was stored and further quality controlled using the Gene-
Traffic software (Iobion Informatics, La Jolla, CA) and
the BioArray Software Environment (BASE) [42]. In total
there were 4 replicates for LPS treated WT cells and LPS
treated MALKO cells.

The raw gene expression data (the genepix.gpr files)
were read, background corrected with the "normexp"
option and quantile normalised, using the Bioconductor
package limma [43]. In the two datasets, the pre and post
LPS treated mRNA is hybridised to the same array. This
is a common experimental design for two colour arrays.
For our analysis we wished to compare two groups (e.g.
WT vs LPS treated WT cells), and identify which miR-
NAs are associated with each group using CIA. To do this
it is necessary to analyse the red and green channel inten-
sities separately i.e. as if they were two one colour arrays,
and we were comparing their log-intensities rather than
their log-ratios. Details for performing this analysis are
available in the limma user guide [43] and relevant scripts
are available upon request. The intersection between the
target prediction software and the microarray gene set
was as follows, TargetScan: 4,310 genes, TargetScanS:
2,879 genes, miRanda: 9,444 genes, PicTar4way: 5,205
genes, and PicTar5way: 2,000 genes.
RT-PCR
RT-PCR was performed using TaqMan Reverse Tran-
scription reagents (Applied Biosystems, Foster City, CA)
Kit following manufacturer's protocol and assayed on the
Applied Biosystems 7900HT. The primers for miR155,
miR-126 and U6 were obtained from Applied Biosystems.
Data was presented as fold differences relative to time 0
and were based on calculations of 2(-ΔΔCt). Ubiquitously
expressed U6 small nuclear RNA was used for normaliza-
tion.
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