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Abstract

Background: Large datasets of protein interactions provide a rich resource for the discovery of Short Linear Motifs
(SLiMs) that recur in unrelated proteins. However, existing methods for estimating the probability of motif
recurrence may be biased by the size and composition of the search dataset, such that p-value estimates from
different datasets, or from motifs containing different numbers of non-wildcard positions, are not strictly
comparable. Here, we develop more exact methods and explore the potential biases of computationally efficient
approximations.

Results: A widely used heuristic for the calculation of motif over-representation approximates motif probability by
assuming that all proteins have the same length and composition. We introduce pv, which calculates the
probability exactly. Secondly, the recently introduced SLiMFinder statistic Sig, accounts for multiple testing (across
all possible motifs) in motif discovery. However, it approximates the probability of all other possible motifs,
occurring with a score of p or less, as being equal to p. Here, we show that the exhaustive calculation of the
probability of all possible motif occurrences that are as rare or rarer than the motif of interest, Sig’, may be carried
out efficiently by grouping motifs of a common probability (i.e. those which have permuted orders of the same
residues). Sig’v, which corrects both approximations, is shown to be uniformly distributed in a random dataset
when searching for non-ambiguous motifs, indicating that it is a robust significance measure.

Conclusions: A method is presented to compute exactly the true probability of a non-ambiguous short protein
sequence motif, and the utility of an approximate approach for novel motif discovery across a large number of
datasets is demonstrated.

Background
Short Linear Motifs (SLiMs) are abundant and ubiqui-
tous recurring protein subsequences that function lar-
gely independently of the tertiary structure of the
containing protein. SLiMs mediate tasks such as cell sig-
nalling, act as recognition sites for protein modification
and target proteins for subcellular localisation [1,2].
SLiMs are short (typically between three and ten amino
acids in length) and degenerate (positions are often flex-
ible in terms of possible amino acids) making motif con-
text important for specificity due to the limited number
of residues in the interaction interface [3]. This simpli-
city gives them an evolutionary plasticity that is

unavailable to globular protein domains, enabling de
novo motifs to evolve convergently through point muta-
tions, thereby adding new functions to proteins [4].
SLiMs preferentially occur in natively disordered regions
of proteins [5] challenging the long standing dogma that
structure equals function [6]. With 25% - 30% of the
human proteome natively disordered and large portions
of the interactome unexplained by known domain-
domain interactions [7] there is vast potential for novel
SLiM discovery [8].
Increased knowledge of SLiM attributes, through the

study of known functional motifs, has enabled advance-
ments in computational methods for SLiM discovery.
This culminated in the discovery of a Translin-binding
motif, the first novel functional motif to be discovered
by computational methods [9]. These methods can be
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split into two distinct classes; rediscovery of known
SLiMs and prediction of novel SLiMs. SLiM rediscovery,
which was pioneered by PROSITE [10], uses regular
expression or profile matching to search for novel
instances of previously known SLIMs. Tools such as the
ELM [1] and MnM [11] servers use context information
such as globularity, conservation or residue accessibility
to improve confidence in returned motifs. Motif redis-
covery techniques have also been used to search for
enrichment of known SLiMs in proteins that are asso-
ciated with particular protein functions, using statistical
enrichment to define motifs important for these func-
tions. These methods have been used to discover novel
instance of both KEN box and EH1 transcriptional
repressor motifs [12,13].
Several methods have also been suggested for the dis-

covery of novel SLiMs. The most successful of these
methods seek to find motifs that are over-represented in
evolutionarily unrelated proteins sharing a common
attribute (such as interacting with a common protein-
binding domain [14], those which have a common post-
translational modification [15] or which localise to the
same sub-cellular location [16]). Dilimot [17] and SLiM-
Disc [18] use this technique, to build upon the scoring
schemes of ASSET [19] and PRATT [20] respectively, to
successfully discover new, and rediscover known, func-
tional motifs. However, these first generation methods
have two important deficiencies: (a) their scores are
biased on motif length and dataset size, making them
incomparable across multiple datasets and between
motifs of different lengths; and (b) they do not offer an
indication of the likelihood that any motif could reach
such a score by chance.
In previous work, we introduced SLiMFinder [21], a

probabilistic method for SLiM discovery that heuristi-
cally accounts for these shortcomings with a two-step
scoring scheme. Both steps of this scoring scheme use
simplifying assumptions that are known to be violated
in real data. Given that motif probability calculations are
relatively approximate (it is difficult to model exactly the
amino acid or word count background distributions in a
set of proteins or protein regions under study) these
approximations seem at first glance to be satisfactory.
However, in practise we noted in studies searching for
motifs across many datasets that consistent biases were
emerging, that related to the complexity of the motif,
and to the size of the dataset searched. Since computa-
tional motif discovery is most usually struggling to iden-
tify a weak signal against a background of noise, we
were motivated to try and eliminate these biases by
improving the statistical calculations.
The first step of the SLiMFinder scoring scheme

applies the binomial probability mass function to mean
success probabilities across all proteins, denoted here as

pμ, to calculate the probability of a given motif occur-
ring by chance in the number of proteins it occurs in,
or greater. Therefore, this assumes that the proteins in a
search dataset all have the same length and composition.
Here, we introduce a more accurate calculation, pv
which incorporates unique success probabilities for each
protein, allowing for its length and composition. The
advantage of correcting for this effect is that the p-value
cut-offs from datasets that have varying sizes of proteins
become more comparable, as well as being more
realistic.
The second step of the SLiMFinder scoring scheme

computes an approximate significance, Sig. This is a
dataset-based score, which accounts for the multiple
testing inherent in motif discovery, by calculating the
probability that any motif in the dataset will be returned
with that p-value or less by chance. However, Sig
approximates the probability of all other possible motifs
occurring with a score of p or less as p. Here, we intro-
duce the true calculation, Sig’, that replaces this approxi-
mation, and present an efficient algorithm for its
calculation. The advantage of correcting for this effect is
that motifs of different length, or containing amino
acids of very different frequency, are treated equally, so
that there is not a bias towards any class of motif.
We investigate the impact of replacing both approxi-

mations with the more exact calculations on the overall
accuracy of the scoring scheme. Each step is indepen-
dent allowing them to be implemented and tested sepa-
rately, four significance scoring schemes are discussed
(Table 1), investigating the trade-off between accuracy
and efficiency. We discuss the optimal approaches for
large-scale studies of multiple datasets.

Methods
Motif discovery statistics can be defined by 3 basic
probabilities; p1+, the probability that there are 1 or
more occurrences of a motif in a protein; p, the prob-
ability in a dataset of N proteins that a given motif
would occur by chance with its observed support or
higher; and Sig, the probability that any motif would
reach p or less by chance. In this section, each probabil-
ity will be introduced and discussed, focussing on the

Table 1 The four scoring schemes investigated in this
study.

pμ pv

Approximate
probability of all
possible motifs

Sig (Eq. 3 & 6) Sigv (Eq. 5 & 6)

Exact probability of all
possible motifs

Sig’ (Eq. 3 & 8) Sig’v (Eq, 5 & 8)
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speed and accuracy of the statistics, and an efficient and
accurate method of calculating Sig is described.
Exact probability of a given motif support considering
unique success probabilities
Previous work: Mean Success Probability Heuristic
The probability, p1+, that there are one or more occur-
rences of a motif in a protein is calculated differently by
SLiMFinder and Dilimot. The former calculates p1+
based on amino acid frequencies, whereas the later cal-
culates p1+ based on word counts. The merits of each
method have been discussed previously [21]. Here, the
calculation of p1+, is based on amino acid frequencies
and allows ambiguous/degenerate positions to be evalu-
ated.

p = 1 - B( n,p )+ motif1 0,

where

p = f(mmotif
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Equation 1. p(1 or more instances of a given motif in a
given protein)
where the success probability, pmotif, is the probability
that the motif will occur at any position in the protein,
n is the number of positions in the protein that the
motif can occur, m is the motif, l is the number of non-
wildcard positions in the motif, mi is position i in motif
m, x is the number of degenerate/ambiguous possibili-
ties at position i, mik is the kth ambiguous possibility at
position i, f(mik) is the background frequency of the
amino acid mik and B is the binomial function. The cal-
culation is independent of alphabet and allows the use
of terminal characters “^” and “$” denoting N- and C-
termini respectively, which is taken into account in cal-
culating motif significance.
Equation 1 considers both amino acid composition

and the length of the protein to calculate the probabil-
ity. By considering the length (the variable n accounts
for the number of positions in a protein at which a
motif can occur) the calculations allow short proteins/
peptides (for example peptides returned by phage dis-
play screens) to be scored without bias. The amino acid
composition allows for any background amino acid fre-
quency to be incorporated, including the distribution
from within a protein, adding flexibility to the scoring
scheme.
Generally, each protein (or cluster of proteins when-

ever several homologous proteins are grouped or
weighted to correct dependencies introduced by diver-
gent evolution [22]) will have a unique success probabil-
ity, p1+. Previously, the mean success probability for the

motif to occur in any given protein in the dataset, p1+μ,
was approximated as the mean of the p1+ values.

p
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Equation 2. Approximate p (1 or more instances of a
given motif in any given protein)
The probability of k or more proteins in a dataset con-
taining a given motif one or more times, pμ, may be
estimated using I, the incomplete beta function, the
cumulative distribution function of the binomial prob-
ability mass function.

p k,N = B j,N,pp +
j=k

N
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Equation 3. Approximate p(k or more proteins with 1 or
more occurrences of a given motif)
where k is the support of the motif (i.e. the number of
proteins containing it), N is the number of proteins in
the dataset and p1+μ is the mean success probability of a
motif occurring in any protein in the dataset.
More exact calculation
The binomial function calculation in Equation 3,
assumes all success probabilities are equal to p1+μ
(Equation 2). The binomial equation can be expanded to
allow unique success probabilities for each protein, pv,
by summing the product of success and failure probabil-
ities for each possible combination of k successes, t, and
N-k failure probabilities, f. This computation increases
the number of calculations necessary NCk fold.

t = x , x x N,x < x < xk i 1 2 k1 ... :1 .....    
Equation 4. Set of all possible combinations of k suc-
cesses from N trials
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Equation 5. Exact p(k or more proteins with 1 or more
occurrences of a given motif)
Example
The error associated with pμ is most easily explained in
terms of occasions where p1+ for a protein is 0, a fre-
quent occurrence when masking techniques are used to
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improve motif discovery (e.g., a protein entirely lacking
W has zero probability of having the motif WxxS). Con-
sider a set of 6 proteins, with success probabilities for a
motif p1+ of {0.1, 0.1, 0.1, 0.0, 0.0, 0.0}. 3 proteins con-
tain an occurrence of the motif. The mean success
probability p1+ is 0.05 and the motif has a pμ of 1.64e-3.
When unique success probabilities are used a pv of
7.29e-4 is calculated. In this case, the motif occurring k
times or more is roughly twice as unlikely to occur as
approximated by pμ. The bias introduced by pμ can
therefore be considered conservative estimate.
Exact probability that any motif will be returned with a
given p-value or less
Previous work: Motif Binomial p-value Significance Heuristic
SLiMFinder introduced Sig, the probability of any motif,
with the same number of non-wildcard positions, occur-
ring with that probability p or less by chance.

Sig = ( p )Rl1 1  

Equation 6. Approximate probability (any motif will
occur with a binomial p-value of p or less)
where R is calculated as 20l(x+1)l-1, l is the number of
non-wildcard positions in the motif and x is the maxi-
mum length of a wildcard region allowed. Effectively,
this score assumes that all other possible motifs are
equally likely to give rise to a score equal to, or lower
than, the motif of interest. However, this is not always
true. For example, more likely motifs may have, for all
supports, a p-value greater than the observed motif’s p-
value, hence such motifs may never actually occur with
a probability as low as p. Sig will always score a given p
as being as likely or more likely than it is, making Sig a
conservative approximation.
More Accurate Significance
To calculate Sig’, the true probability of 1 or more fixed
position motifs (i.e. with the same number of non-wild-
card positions) in a dataset occurring with the observed
p or lower, it is necessary to calculate, for each possible
motif p’, the probability that the motif will occur with a
score of p or less. An efficient algorithm for the calcula-
tion of Sig’ is available in the Appendix.
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Equation 7. probability (any given motif will occur with
a p-value less than or equal to the p of the observed
motif)

Sig’ = pmotif

motif M

(1  

 )

Equation 8. probability (any motif will occur with a p-
value of p or less)
Example
Consider a search for dimers in a dataset with an alpha-
bet, A = {L, W}, of size a = 2 and proteins of length 5.
For the purposes of simplicity, the example uses global
amino acid frequencies for p1+ calculations, whereas the
typical case described earlier in the manuscript has indi-
vidual p1+ probabilities for each protein. The dataset
contains 4 proteins (N = 4) with sequences (LLLLL,
LLLLL, LWWLL, LLLLL) giving global amino acid fre-
quencies of fL = 0.9 and fW = 0.1. The probability that
any of the 4 possible dimer motifs in the motif space,
M, (M = {LL, WW, LW, WL}, S = 4) will occur at any
position in a protein are pLL = 0.81, pWW = 0.01 pWL =
pLW = 0.09 (see Equation 1, pmotif). The probability that
a protein will contain one or more occurrences of a
motif is p1+ (LL) = 0.9987, p1+ (WW) = 0.0394, p1+
(WL) = p1+ (LW) = 0.3143 (see Equation 1). Using the
binomial and cumulative binomial we can calculate,
using p1+ as the mean success probability (all protein
sequences are the same length and use the same global
amino acid frequencies so the success probabilities for
each protein for a given motif will be the same), the
probability that each motif will occur k times (Binomial
in Table 2) and the probability that each motif will
occur k or more times (pμ in Table 2).

Table 2 Cumulative binomial and binomial p-values for motif example described in Methods

Motif (k) pμ B(k, N, p1 +motif)

k 0 1 2 3 4 0 1 2 3 4

LL(4) 1 1 1 1 0.9948 0 0 0.0001 0.005 0.9948

WW(1) 1 0.1485 0.0088 0.0002 0 0.8515 0.1397 0.0086 0.0002 0

WL(1) 1 0.7789 0.3736 0.0949 0.0098 0.2211 0.4053 0.2787 0.0852 0.00948

LW(1) 1 0.7789 0.3736 0.0949 0.0098 0.2211 0.4053 0.2787 0.0852 0.00948

Incomplete beta and binomial shows the cumulative binomial and binomial p-values respectively for each motif for all supports between 0 and N = 4. p1+μ is the
success probability of the motif considered. The value in italics indicates the highest scoring motif in the example described. The bold values indicate the values
of k for which I(k, N, pm) < = 0.1485, the pμ value of the highest ranking motif. The five right hand columns are only shown to illustrate how the probabilities in
the left hand columns are calculated (with sums across the bold values in the right hand columns cells totaling the values in the left hand columns).
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Searching the dataset for over-represented motifs, the
support k for the motifs are LL = 4, WW = 1, WL = 1
and LW = 1. pμ of each motif in the motif space is pμ LL

= 0.9948, pμ WW = 0.1485, pμ LW = pμ WL = 0.7789
(Equation 3), making WW the top ranking motif occur-
ring in 1 protein with a probability, p, of 0.1485. From
Equation 6, the significance, Sig, of pμ WW is 0.474. For
the example in Table 2, the set of support values (Smotif)
are shown in bold. This gives the values of k for which I
(k, N, pm) < = p, as being SLL = {}, SWW = {1,2,3,4} and
SWL = SLW = {3,4}, therefore p’LL = 0, p’WW = 0.1485
and p’WL = p’LW = 0.0949 (see Equation 7). As expected,
the p’ values are all less than or equal to p, illustrating
the conservative nature of the Sig score. Calculating Sig’,
once the individual p’ values are known, is straightfor-
ward. The Sig’ for WW is 1 - (1 - 0)(1-0.0949)(1-0.0949)
(1-0.1485) = 0.302 (Equation 8).
Randomised test datasets
To test each of the 4 significance scoring schemes, 3
sets of 100 datasets containing 10, 30 and 60 proteins
were picked at random from the UNIPROT database
[22]. These datasets model random interaction networks
that are likely to have little or no enrichment for any
functional motifs. To allow for the calculation of Sig’v, a
process that is currently computationally intractable
using the calculations described here, a similar set of
proteins was created to artificially force p1+ values to be
equal for each protein thereby testing the scoring
schemes accuracy when no bias is present. A human
protein was chosen at random from the UNIPROT data-
base and the residues where shuffled to create datasets
of 10, 30 and 60 proteins, therefore each protein is same
length and has the same amino acid frequency and
hence, for any given motif, has the same p1+ for each
protein.
Datasets were analysed using SLiMFinder with default

settings with the exception of statistical calculations that
were completed as described in this paper. The statistics
described in this paper are implemented in freely down-
loadable software, as a modification to version 4.0 of the
previously described SLiMFinder software [21], with
additional command line switches introduced for the
two calculations (sigprime = T/F and sigv = T/F).
The programme is available at http://bioinformatics.

ucd.ie/shields/software/slimfinder. The version of the
SLiMSuite software package available at time of submis-
sion is also included as supplemental information with
this paper (Additional File 1).

Results and Discussion
Comparing the four statistical scoring schemes to
expectation
When tested on randomly created datasets, significance
scores for fixed motifs should ideally be uniformly

distributed [23] (i.e. if 100 datasets are analysed we
would expect to see 1 motif with a significance of 0.01
or less, and 50% of the datasets should have a signifi-
cance of 0.5 or greater). Using datasets of proteins ran-
domly selected from UniProt, we tested to what extent
each of the 4 scoring schemes rejected the null hypoth-
esis, that the top ranking significance scores from these
random datasets are uniformly distributed.
For all motif lengths and dataset sizes tested, Sig’v did

not reject the null hypothesis, consistent with it being a
true significance measure (Fig. 1a, top panel). The other
three statistics all reject the null hypothesis to differing
degrees, with Sig’ showing less departure from expecta-
tion compared to Sig and Sigv. Sig rejects the null
hypothesis for all the datasets. The statistics showed
similar effects when considering the divergence of the
observed p-values (root mean squared error) from the
uniform distribution (Fig. 1a, side panel). The degree of
rejection of the null hypothesis varies considerably
according to the dataset size and the motif length (Fig
1a, main panel). A heatmap illustrates these effects (Fig
1b), showing that the degree of rejection of the null
hypothesis for each of the three approximate statistics
depends on both the dataset size, and on the length of
the motif under consideration. Overall, the greatest
improvement over the Sig statistic is provided by con-
sidering the exact probability that any motif may have a
p-value of the observed significance or less (implemen-
ted in Sig’ and in Sig’v); while the correction for varying
protein lengths and composition in a dataset has a lesser
effect when calculating the p-value of the observed motif
(implemented in Sigv and in Sig’v).
How comparable are significance values of motifs of
differing length, or motifs discovered in different sized
datasets?
One of the major biases with using a binomial p-value,
pμ, which SLiMFinder attempted to improve upon, was
the incomparability of p-values for motifs of different
lengths. pμ is strikingly different for random datasets,
depending on whether it is the value for a 3mer or a
5mer (SF2 in Additional File 2). We were interested to
discover to what extent a given motif significance score
might be comparable for different discovered motifs,
and to what extent the score is biased, depending on
dataset size and motif length. For each scoring scheme,
we compared the returned significance scores obtained
with each motif size in each dataset size.
No biases are evident with the Sig’v scoring scheme

where the hypothesis that the significance scores were
sampled from the same distribution was only rejected (p
< 0.05) for one of the 36 comparisons (Fig. 2b), consis-
tent with expectations. The Sig statistic showed some
biases, but somewhat surprisingly, the Sigv statistic
appeared more biased than the Sig statistic (Fig. 2b): in
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Figure 1 Comparing the distribution of returned top ranking fixed position motifs to the uniform distribution for the 4 tested
significance scoring methods. (a) Scatterplot of the root mean square error (RMSE) for the distribution of returned top ranking motifs for each
dataset size and motif length (nine combinations in total) from the uniform distribution versus the p-value of a Mann-Whitney test for rejection
of the hypothesis that the distribution of top ranking motifs significance values were sampled from the uniform distribution. The top boxplot
describes the p-value of a Mann-Whitney test and the boxplot on the right describes the RMSE data. (b) Comparison of 4 tested significance
scoring methods for probability of being sampled from the uniform distribution. The heatmap plots, for each dataset size (horizontal axis) and
motif length (vertical axis), the p-value of a Mann-Whitney test for rejection of the hypothesis that the distribution of top ranking motifs
significance values was sampled from the uniform distribution.

Figure 2 Test for the comparability of the significance scores, for the 4 tested significance scoring methods, between fixed position
motifs of different length and datasets of different size. (a) Boxplot comparisons of the 4 tested significance scoring schemes, for each
dataset size and motif length, of the distribution of top ranking motifs significance values. The first boxplot in each panel is the uniform
distribution. (b) The heatmap describes the Mann-Whitney p-value for all-by-all comparisons of the 3 dataset sizes and 3 motifs lengths. The
Mann-Whitney, in this case, tests for rejection of the hypothesis that the distributions of Sig values of top ranking motifs of different length and
dataset size are sampled from the same distribution.
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particular, the larger datasets seemed to be biased in a
way that the smaller datasets are not (Fig 2a). However,
It can be seen that the majority of Sig correlation
between datasets relates to p-values in the range of 0.8
to 1.0 (Fig 2a) and is a related to the schemes conserva-
tive bias. The box-plots in Fig 2a indicate that Sig’ is
reasonably similarly distributed for all motif lengths and
dataset sizes, but it is noticeable that the mean p-value
varies more across datasets and motif sizes than Sig’v
does. What is not clear from these random datasets is
the extent to which these two statistics are biased for
motifs that are significantly over-enriched (i.e. in rank-
ing true positives, at the other end of the p-value scale).
Ambiguity
SLiMFinder considers subsets of pre-defined residue
groupings to allow ambiguity in motif positions; this
further adds to the complications of significance calcula-
tions and the probability calculations have not been
extended to consider these. In general, the true signifi-
cance calculations described in this paper, when used to
calculate the significance of an ambiguous motif, will
over-estimate the significance of the motif. In SF3 in
Additional File 2, this is illustrated. For these examples,
ambiguous motifs were defined as those with one or
more ambiguous position or with at least one variable
length spacer, using the default set of ambiguous group-
ings (KRH, DE, ILMV, FYWH, AGS, ST). Sig’v overesti-
mates the significance, ignoring the greatly increased
search space of potential ambiguous motifs, in addition
to the search space of fixed-position motifs (SF3 in
Additional File 2). We note that under the conditions
tested, the Sig calculation is also conservative in all of
the datasets considered here, even in the presence of
ambiguity. Thus, for ambiguous motifs the Sig statistic
may provide a more robust heuristic for very roughly
approximating absolute significance. However, it must
be noted that in general ambiguous motifs will still have
a relatively higher Sig score than non-ambiguous motifs,
so that a single model for ranking of ambiguous and
non-ambiguous motifs is not ideal. Accordingly, search
results within a dataset or across many datasets for
ambiguous and non-ambiguous motifs should be

considered as two separate rankings, given the current
available models.
Calculation redundancy
The level of redundancy in the brute force calculation of
Sig’ compared to the use of non-redundant motif group-
ings (Appendix, Equations 9-13) is provide in Table 3.
For 5mer motifs there is a 75-fold decrease in the num-
ber of calculations necessary for the calculation of the
same value. Since the level of redundancy increases as
the length of the motif increases, true Sig’ calculations
are possible for motifs which would been computation-
ally infeasible using brute force calculations.

Computational efficiency
For each motif length considered, the number of calcu-
lations necessary to calculate Sig’, with the algorithmic
speedup described (Appendix, Equations 9-13), increases
the number of calculations a+l-1Cl fold, compared to the
Sig calculation, where a is the alphabet size and l is the
motif length (without the speedup the increase is al

fold; see ST2 in Additional File 2). While Sig’ is in these
examples 3-50 times more computationally expensive
than Sig, its calculation is tractable, increasing approxi-
mately linearly as dataset size increases (ST2 in Addi-
tional File 2). For very large datasets, the computational
costs seem to be much less. Sigv increases the number
of calculations ∑nCj fold, for all values of j between k
and n, where n is the number of clusters in the dataset
and k is the support of the motif. The rapid increase of
Sigv calculation runtime as the dataset size increases
makes it impractical for larger datasets (ST2 in Addi-
tional File 2). Sig’v performs poorly compared to Sig, it
increases the number of calculations a+l-1Cl*∑

nCj fold,
for all values of j between k and n, for each motif length
considered. The computational cost of Sig’v calculation
is unsuitable for high throughput analysis in spite of its
superior accuracy; it took over a day on a standard
workstation for datasets with more than 10 proteins.
Comparison of the four scoring schemes with the ELM
benchmarking dataset
The ELM benchmarking dataset is a widely used stan-
dard by which motif discovery methods can be tested,
compared and trained. Although the dataset is

Table 3 Redundancy of motif probabilities (see Equations 9-13).

Motif length Number of partitions Number of motifs Number of non-redundant
motifs

Proportion of non-
redundant motifs

3 3 8000 1540 19.25%

4 5 160000 8855 5.53%

6 11 64000000 177100 0.27%

Motif length is the length of the motif. Number of partitions is the number of solutions in the set M for motifs of length n. Number of motifs is the number of
distinct motifs of length l where the order of the residues is important. Number of non-redundant motifs is the number of the non-redundant distinct motifs of
length l where the order of the residues is not important. Proportion of non-redundant motifs is the percentage of motif calculations needed to calculate the true
p-value Sig’ distribution.
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biologically unrealistic for most discovery situations
(each of the proteins in each dataset is guaranteed to
contain one or more instances of the functional motif),
the data allows direct comparison of the attributes of
scoring schemes. Table 4 compares the Sig’ and Sig
scoring schemes on the 16 ELM benchmarking datasets
(version - 8 April 2009). Residues with an IUPRED [24]
score of less then 0.2 were masked, as were under-con-
served residues by relative local conservation masking
using metazoan orthologues alignments retrieved by
GOPHER [24].
Sig’ scored the true positive motif as more significant

than the Sig scoring scheme in all datasets with the
exception of the highly significant TRG_ER_KDEL motif
which was scored as more significant by Sig. For one of
these, LIG_CYCLIN_1, this resulted in the returned
motifs becoming significant (cut-off of 0.01). Two false
positives (LIG_14-3-3_3 and LIG_NRBOX) were also
returned as significant by Sig’ which were not returned
by Sig, however in both cases these motifs were off tar-
get motifs, true functional motifs involved in the regula-
tion of the proteins in the datasets (See ST1 in
Additional File 2). One other example of an off target
motifs was significantly over represented by both scoring
schemes, two motifs with strong nuclear localisation,
LIG_RB and LIG_PCNA, returned arginine/lysine rich
nuclear localisation motifs.

Conclusions
We have shown how more exact calculations of short
non-ambiguous protein motif probabilities may be cal-
culated efficiently, and the computational cost associated
with these calculations. We propose the use of Sig’ cal-
culations as the scoring scheme for motif discovery with
current typical computational resources, as it offers the
best trade off between speed and accuracy. Although
not as accurate, the Sig score will, in circumstances
where a motif is obviously enriched, return a close
approximation of the true score. Thus, a useful techni-
que for high-throughput analyses is to recover datasets
of interest using the quicker Sig statistical framework at
low stringency (it is a conservative score) before re-run-
ning the data using the more accurate statistics. How-
ever, for more general use the Sig’ statistical framework
is both efficient and accurate enough to suffice.
Improving these statistical measures has a strong bear-

ing on how to efficiently rank potential novel motifs dis-
covered in searches of many datasets derived from
across the interactome. Future work will need to focus
on developing better statistical measures for ambiguous
motifs (ambiguous in terms of both alternative amino
acids at certain positions, and in terms of variable length
spacers). The problem is non-trivial as the combinatorial
explosion introduced by ambiguity and the complex
protein groupings that allow a motif to reach a given

Table 4 Comparison of the Sig and Sig’ scoring for the top ranking motifs matching the known interaction motif.

Dataseta Sig’b Sigc ELMd Motife k (N)f

LIG_CtBP 3.4E-13 2.5E-09 P. [DEN]L [VAST] P [ILM]DL (1) 15(30)

TRG_ER_KDEL_1 1.9E-11 3.0E-15 [KRHQSAP] [DENQT]EL
$

DE.$ (1) 9(11)

LIG_PCNA 2.2E-11 1.7E-09 Q.. [ILM].. [FHM] [FHM] Q.. [IL]..FF (1) 11(19)

MOD_SUMO 5.2E-11 1.1E-05 [VILAFP]K. [EDNGP] V.VK.EP (1) 4(29)

LIG_SH3_2 6.7E-05 5.1E-04 P..P. [KR] P. [LV]P. [KR] (1) 5(7)

LIG_AP_GAE_1 1.9E-04 4.0E-03 [DE] [DES].F. [DE]
[LVIMFD]

D.F..F.S..P (1) 3(7)

LIG_Dynein_DLC8_1 6.0E-04 7.0E-03 [KR].TQT K.TQ.P (1) 3(7)

LIG_RGD 9.6E-04 5.0E-03 RGD RGD (1) 6(13)

LIG_CYCLIN_1 2.0E-03 0.012 [RK].L.{0,1} [FYLIVMP] RR.L.{0,1}F (1) 4(18)

LIG_Clathr_ClatBox_1 0.011 0.054 L [ILM]. [ILMF] [DE] [FL].D [FLM] (1) 8(14)

LIG_14-3-3_1 0.013 0.186 R. [^P] [ST] [^P]P R.R..S (1) 4(4)

LIG_NRBOX 0.014 0.082 L..LL L..LL. [ST] (2) 5(8)

LIG_RB 0.96 1.00 [LI].C. [DE] E.L.C.E (29) 3(25)

LIG_14-3-3_3 0.95 1.00 [RHK] [STALV]. [ST].
[PESRDIF]

R [ST].S (13) 7(7)

LIG_HP1_1 P.V. [LM] 0(8)

MOD_N-GLC N [^P] [ST] 0(5)

TRG_LysEnd_APsAcLL_1 [DER]...L [LVI] 0(10)

(a) The ELM dataset used. (b) The Sig’ score of the top ranking motif matching the known interaction motif. (c) The Sig score of the top ranking motif matching
the known interaction motif. (d) The regular expression of the true functional motif. (e) The regular expression of the top ranking motif that matches the known
ELM. Significant motifs (p < 0.01) are shown in bold. (f) The number of proteins in the dataset containing the variant of the motif discovered and the number of
proteins in the dataset (in brackets)
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support makes a true ambiguous motif significance
computationally intractable. Advances in methodology
[21], dataset design [25] and motif enrichment [26], in
association with the statistical framework described
here, have put computational SLiM discovery in a posi-
tion where it can complement experimental methods for
the discovery of novel functional SLiMs. As our knowl-
edge of protein-protein interaction, cellular localisation
and keyword classification of proteins improves, these
methods should aid in the discovery of the vast number
of SLiMs remaining to be discovered by pinpointing
particular residues of strong biological interest within a
robust statistical framework.

Appendix
Improving the computational efficiency of the Sig’
calculation
The major bottleneck in the calculation of Sig’ for a
motif p-value, pμ, is the calculation of p’ of all motifs
with a cumulative p-value equal to or less than p. For
longer motifs the complexity can make search times
unfeasable, since the number of possible motifs grows
exponentially with motif length. However, methods can
take advantage of the inherent redundancy in the motif
space due to the commutative nature of the motif
occurrence probability calculations, pmotif (Equation 1).
Motifs which contain the same number of each residue
from the alphabet A (where each residue can have
between 0 and l occurrences in the motif) will have the
same pmotif. This means that the order of the residues in
the motif has no effect on a motif’s occurrence probabil-
ity (e.g. RGG, GRG, GGR all have the same pmotif).
Exploiting the redundancy by calculating motif group-
ings with the same value pmotif yields large increases in
the speed of calculations. The value p’ will be the same
for each motif in a grouping and therefore it is neces-
sary to only calculate this value once for each group,
p’group, rather than for each motif.

( )1  


 pgroup
Cm

group G

group

Equation 9. Sig’ calculation for non-redundant motif
groupings
A non-redundant Sig’ can be calculated using Equation
9. G is the set of all distinct unordered groupings of
residues for each partition in P. A partition describes
the number of unique residues occurring in a grouping.
For example, there are 3 possible partitions for motifs of
length 3, q = {(3),(1,2),(1,1,1)} meaning a 3-mer can
have 3 residues which are the same, two residues which
are the same and another different residue or 3 residues
which are different respectively. The set q corresponds

to the set P = {(0,0,1),(1,1,0),(3,0,0)}. For example, RGG,
GRG, GGR can be considered as a grouping R|GG,
which has a partition P = (1,1,0) and q = (1,2). RGD,
RDG, GRD, GDR, DGR and DRG can be considered as
a grouping R|G|D, which has a partition P = (3,0,0) and
q = (1,1,1) and RRR, can be considered as a grouping
RRR, which has a partition P = (0,0,1) and q = (3).

P = (x , x ) ix = l, x Nl i i o

i=

l

1

1

... : 













Equation 10. Set of all possible partitions for a motif of
length l
The number of possible partitions for a given motif
length can be described as the cardinality of set P and
follows the series {1,2,3,5,7,11,15,22} as l goes from 1 to
8. Each partition has Cgi distinct unordered groupings
of residues and each of these groupings has Cmi possi-
ble ordered motif combinations. For example, a group-
ing with P = (0,0,1), 3 of the same amino acids eg. RRR,
can only be chosen 1 way while P = (3,0,0), 3 different
amino acids, can be chosen 6 ways.

cg
acl
t i

t =
l

Pij
j=

li i


 
where

1

!

!

Equation 11. Number of distinct ordered groupings for a
partition

cm
l

qij
j=

len(P)i 



!

!
1

where

q f P

f x x x l
i i

l
x x




( ),

(( , ,.... )) ( , ,.....,1 2 1 1 2 2
1 2

,..., ,..., , ....,l
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)

Equation 12 Number of ordered motif combinations in a
grouping
To calculate the p’group value for each non-redundant
motif group, it is first necessary to define all such
groupings. This can be achieved efficiently using the
recursive algorithm described in the pseudocode found
in SF1 in Additional File 2. The total number of distinct
non-redundant motifs of length l and an alphabet of
size a, Rnr, is calculated as:
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R Cnr
a l

l  ( )1

Equation 13. Number of non-redundant motifs of
length l

Additional file 1: Slimsuite software package. This ZIP file contains
the slimsuite software package used with this submission.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
14-S1.ZIP ]

Additional file 2: Supplemental materials. This file contains all
supplementary tables and figures.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
14-S2.DOC ]
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