RESEARCH

Open Access

The tangent spherical image and ccr-curve of a time-like curve in \mathbb{L}^3

Esen İyigün*

*Correspondence: esen@uludag.edu.tr Department of Mathematics, Art and Science Faculty, Uludağ University, Bursa, 16059, Turkey

Abstract

In this work, we define the tangent spherical image of a unit speed time-like curve lying on the pseudohyperbolic space $H_0^2(r)$ in \mathbb{L}^3 . In addition, we calculate a ccr-curve of this curve in \mathbb{L}^3 . Besides, we determine a relation between harmonic curvature and a ccr-curve in \mathbb{L}^3 , and so we obtain some new results.

Introduction

Let $X = (x_1, x_2, x_3)$ and $Y = (y_1, y_2, y_3)$ be two non-zero vectors in the three-dimensional Lorentz-Minkowski space \mathbb{R}^3_1 . We denoted \mathbb{R}^3_1 shortly by \mathbb{L}^3 . For $X, Y \in \mathbb{L}^3$,

 $\langle X, Y \rangle = -x_1 y_1 + x_2 y_2 + x_3 y_3$

is called a *Lorentzian inner product*. The couple $\{\mathbb{R}^3_1, \langle , \rangle\}$ is called a *Lorentzian space* and denoted by \mathbb{L}^3 . Then the vector X of \mathbb{L}^3 is called

- (i) time-like if $\langle X, X \rangle < 0$,
- (ii) space-like if $\langle X, X \rangle > 0$ or X = 0,
- (iii) a null (or light-like) vector if $\langle X, X \rangle = 0$, $X \neq 0$.

The norm of a vector X is given by $||X|| = \sqrt{|\langle X, X \rangle|}$. Therefore, X is a unit vector if $\langle X, X \rangle = \pm 1$. Next, vectors X, Y in \mathbb{L}^3 are said to be orthogonal if $\langle X, Y \rangle = 0$. The velocity of a curve $\alpha(s)$ is given by $||\alpha'(s)||$. Space-like or time-like $\alpha(s)$ is said to be parametrized by an arclength function s if $\langle \alpha'(s), \alpha'(s) \rangle = \pm 1$ [1]. For any $X = (x_1, x_2, x_3)$, $Y = (y_1, y_2, y_3) \in \mathbb{R}^3_1$, the pseudo-vector product of a X and Y is defined as follows:

$$X\Lambda Y = (-(x_2y_3 - x_3y_2), x_3y_1 - x_1y_3, x_1y_2 - x_2y_1)$$

[2].

1 Basic concepts

Definition 1.1 An arbitrary curve $\alpha : I \longrightarrow \mathbb{L}^3$ in the space \mathbb{L}^3 can locally be space-like, time-like or a null curve if, respectively, all of its velocity vectors $\alpha'(s)$ are space-like, time-like or null [3].

Definition 1.2 Let $\alpha \subset \mathbb{L}^3$ be a given time-like curve. If the Frenet vector $\{V_1(s), V_2(s), V_3(s)\}$ which corresponds to $s \in I$ is defined as

$$k_i: I \longrightarrow \mathbb{R}, \quad k_i(s) = \langle V'_i(s), V_{i+1}(s) \rangle,$$

© 2013 jyigün; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

then the function k_i is called an *i*th curvature function of the time-like curve α , and the real $k_i(s)$ is also called an *i*th curvature at the point $\alpha(s)$ [4].

Definition 1.3 Let $\alpha : I \longrightarrow \mathbb{L}^3$ be a unit speed non-null curve in \mathbb{L}^3 . The curve α is called a Frenet curve of osculating order d ($d \le 3$) if its 3rd order derivatives $\alpha'(s)$, $\alpha''(s)$, $\alpha'''(s)$ are linearly independent and $\alpha'(s)$, $\alpha''(s)$, $\alpha'''(s)$, $\alpha^{i\nu}(s)$ are no longer linearly independent for all $s \in I$. For each Frenet curve of order 3, one can associate an orthonormal 3-frame $\{V_1(s), V_2(s), V_3(s)\}$ along α (such that $\alpha'(s) = V_1$) called the Frenet frame and $k_1, k_2 : I \longrightarrow \mathbb{R}$ called the Frenet curvatures, such that the Frenet formulas are defined in the usual way:

$$\begin{split} V_1' &= \nabla_{\nu_1} \alpha' = \varepsilon_2 k_1 V_2, \\ V_2' &= \nabla_{\nu_1} V_2 = -\varepsilon_1 k_1 V_1 + \varepsilon_3 k_2 V_3, \\ V_3' &= \nabla_{\nu_1} V_3 = -\varepsilon_2 k_2 V_2, \end{split}$$

where ∇ is the Levi-Civita connection of \mathbb{L}^3 .

Definition 1.4 A non-null curve $\alpha : I \longrightarrow \mathbb{L}^3$ is called a *W*-curve (or helix) of rank 3, if α is a Frenet curve of osculating order 3 and the Frenet curvatures k_i , $1 \le i \le 2$, are non-zero constants.

2 Harmonic curvatures and constant curvature ratios in \mathbb{L}^3

Definition 2.1 Let α be a non-null curve of osculating order 3. The harmonic functions

$$H_i: I \longrightarrow \mathbb{R}, \quad 0 \leq j \leq 1,$$

defined by

$$\begin{cases} H_0 = 0, \\ H_1 = \frac{k_1}{k_2} \end{cases}$$

are called harmonic curvatures of α , where k_1 , k_2 are Frenet curvatures of α which are not necessarily constant.

Definition 2.2 Let α be a time-like curve in \mathbb{L}^3 with $\alpha'(s) = V_1$. $X \in \chi(\mathbb{L}^3)$ being a constant unit vector field, if

 $\langle V_1, X \rangle = \cosh \varphi$ (constant),

then α is called a general helix (inclined curves) in \mathbb{L}^3 , φ is called a slope angle and the space $Sp\{X\}$ is called a slope axis [5].

Definition 2.3 Let α be a non-null of osculating order 3. Then α is called a general helix of rank 1 if

$$H_1^2 = c$$
,

holds, where $c \neq 0$ is a real constant.

We have the following results.

Corollary 2.1

- (i) If $H_1 = 0$, then α is a straight line.
- (ii) If H_1 is constant, then α is a general helix of rank 1.

Proof By the use of the above definition, we obtain the proof. \Box

Proposition 2.1 Let α be a curve in \mathbb{L}^3 of osculating order 3. Then

$$\begin{split} &V_1' = \varepsilon_2 k_2 H_1 V_2, \\ &V_2' = -\varepsilon_1 k_2 H_1 V_1 + \varepsilon_3 \frac{k_1}{H_1} V_3 \\ &V_3' = -\varepsilon_2 \frac{k_1}{H_1} V_2, \end{split}$$

where H_1 is harmonic curvature of α .

Proof By using the Frenet formulas and the definitions of harmonic curvatures, we get the result. \Box

Now, we will give the relation between harmonic curvature and a ccr-curve in \mathbb{L}^3 .

Definition 2.4 A curve $\alpha : I \longrightarrow \mathbb{L}^3$ is said to have constant curvature ratios (that is to say, it is a ccr-curve) if all the quotients $\varepsilon_i(\frac{k_{i+1}}{k_i})$ are constant, where $\varepsilon_i = \langle V_i, V_i \rangle = \pm 1$.

Corollary 2.2 For i = 1, the ccr-curve is $\frac{\varepsilon_1}{H_1}$.

Proof The proof can be easily seen by using the definitions of harmonic curvature and ccr-curve. $\hfill \Box$

Corollary 2.3 Let $\alpha: I \longrightarrow \mathbb{L}^3$ be a ccr-curve. If $\frac{\varepsilon_1}{H_1} = c$, c is a constant, then $(\frac{\varepsilon_1}{H_1})' = 0$.

Proof The proof is obvious.

3 Tangent spherical image

Definition 3.1 [1] Let $n \ge 2$ and $0 \le v \le n$. Then the pseudohyperbolic space of radius r > 0 in \mathbb{R}^3_1 is the hyperquadric

$$H_0^2(r) = \left\{ p \in \mathbb{R}^3_1 : \langle p, p \rangle = -r^2 \right\}$$

with dimension 2 and index 0.

Definition 3.2 Let $\alpha = \alpha(s)$ be a unit speed time-like curve in \mathbb{L}^3 . If we translate the tangent vector to the center 0 of the pseudohyperbolic space $H_0^2(r)$, we obtain a curve $\delta = \delta(s_{\delta})$. This curve is called the tangent spherical image of a curve α in \mathbb{L}^3 .

Theorem 3.1 [6]

- (i) Let α = α(s) be a unit speed time-like curve and δ = δ(s_δ) be its tangent spherical image. Then δ = δ(s_δ) is a space-like curve.
- (ii) Let $\alpha = \alpha(s)$ be a unit speed time-like curve and $\delta = \delta(s_{\delta})$ be its tangent spherical image. If α is a ccr-curve or a helix (i.e. W-curve), then δ is also a helix.

Proof From [6] it is easy to see the proof of the theorem.

4 An example

Example 4.1 Let us consider the following curve in the space \mathbb{L}^3 :

$$\alpha(s) = (\sqrt{2}s, \cos s, \sin s),$$

$$V_1(s) = \alpha'(s) = (\sqrt{2}, -\sin s, \cos s),$$

where $\langle \alpha'(s), \alpha'(s) \rangle = -1$, which shows $\alpha(s)$ is a unit speed time-like curve. Thus $||\alpha'(s)|| = 1$. We express the following differentiations:

$$\alpha''(s) = (0, -\cos s, -\sin s),$$

$$\Rightarrow \quad \alpha'''(s) = (0, \sin s, -\cos s)$$

and

$$V_2(s) = \frac{\alpha''(s)}{\|\alpha''(s)\|} = \alpha''(s).$$

So, we have the first curvature as

$$k_1(s) = \langle V'_1(s), V_2(s) \rangle = 1 = \text{constant.}$$

Moreover, we can write the third Frenet vector of the curve as follows:

$$V_3(s) = V_1(s) \Lambda V_2(s) = (-1, \sqrt{2} \sin s, -\sqrt{2} \cos s).$$

Finally, we have the second curvature of $\alpha(s)$ as

$$k_2(s) = \langle V'_2(s), V_3(s) \rangle = \sqrt{2} = \text{constant.}$$

Now, we will calculate a ccr-curve of $\alpha(s)$ in \mathbb{L}^3 . If the vector V_1 is time-like, then $\varepsilon_1 = -1$,

$$\varepsilon_1 \frac{k_2}{k_1} = -\sqrt{2} = \text{constant.}$$

Thus $\alpha(s)$ is a ccr-curve in \mathbb{L}^3 .

Competing interests

The author declares that they have no competing interests.

Acknowledgements

Dedicated to Prof. Hari M. Srivastava.

Received: 11 December 2012 Accepted: 28 January 2013 Published: 18 February 2013

References

- 1. O'Neill, B: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983)
- Öğrenmiş, AO, Balgetir, H, Ergüt, M: On the ruled surfaces in Minkowski 3-space ℝ³₁. J. Zhejiang Univ. Sci. A 7(3), 326-329 (2006)
- 3. Petrovic-Torgasev, M, Sucurovic, E: W-curves in Minkowski space-time. Novi Sad J. Math. 32(2), 55-65 (2002)
- 4. Bektaş, M, Ergüt, M, Soylu, D: The characterization of the spherical timelike curves in 3-dimensional Lorentzian space. Bull. Malays. Math. Soc. 21, 117-125 (1998)
- 5. Ekmekçi, N, Hacisalihoglu, HH, İlarslan, K: Harmonic curvatures in Lorentzian space. Bull. Malays. Math. Soc. 23, 173-179 (2000)
- Yılmaz, S, Özyılmaz, E, Yaylı, Y, Turgut, M: Tangent and trinormal spherical images of a time-like curve on the pseudohyperbolic space H³₀. Proc. Est. Acad. Sci. **59**(3), 216-224 (2010)

doi:10.1186/1029-242X-2013-55

Cite this article as: iyigün: The tangent spherical image and ccr-curve of a time-like curve in \mathbb{L}^3 . Journal of Inequalities and Applications 2013 2013:55.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com