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Abstract

In this paper, we study a regularization method for ill-posed mixed variational
inequalities with non-monotone perturbations in Banach spaces. The convergence
and convergence rates of regularized solutions are established by using a priori and
a posteriori regularization parameter choice that is based upon the generalized
discrepancy principle.
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1 Introduction
Variational inequality problems in finite-dimensional and infinite-dimensional spaces

appear in many fields of applied mathematics such as convex programming, nonlinear

equations, equilibrium models in economics, and engineering (see [1-3]). Therefore,

methods for solving variational inequalities and related problems have wide applicabil-

ity. In this paper, we consider the mixed variational inequality: for a given f Î X*, find

an element x0 Î X such that

〈Ax0 − f , x − x0〉 + ϕ(x) − ϕ(x0) ≥ 0, ∀x ∈ X, (1)

where A : X ® X* is a monotone-bounded hemicontinuous operator with domain D

(A) = X, � : X ® ℝ is a proper convex lower semicontinuous functional and X is a real

reflexive Banach space with its dual space X*. For the sake of simplicity, the norms of

X and X* are denoted by the same symbol || · ||. We write 〈x*, x〉 instead of x*(x) for

x* Î X* and x Î X.

By S0 we denote the solution set of the problem (1). It is easy to see that S0 is closed

and convex whenever it is not empty. For the existence of a solution to (1), we have

the following well-known result (see [4]):

Theorem 1.1. If there exists u Î dom � satisfying the coercive condition

lim
||x||→∞

〈Ax, x − u〉 + ϕ(x)
||x|| = ∞, (2)

then (1) has at least one solution.
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Many standard extremal problems can be considered as special cases of (1). Denote

� by the indicator function of a closed convex set K in X,

ϕ(x) ≡ IK(x) =
{
0 if x ∈ K,
+∞ otherwise.

Then, the problem (1) is equivalent to that of finding x0 Î K such that

〈Ax0 − f , x − x0〉 ≥ 0, ∀x ∈ K. (3)

In the case K is the whole space X, the later variational inequality is of the form of

the following operator equation:

Ax0 = f . (4)

When A is the Gâteaux derivative of a finite-valued convex function F defined on X,

the problem (1) becomes the nondifferentiable convex optimization problem (see [4]):

min
x∈X

{F(x) + ϕ(x)}. (5)

Some methods have been proposed for solving problem (1), for example, the proxi-

mal point method (see [5]), and the auxiliary subproblem principle (see [6]). However,

the problem (1) is in general ill-posed, as its solutions do not depend continuously on

the data (A, f, �), we used stable methods for solving it. A widely used and efficient

method is the regularization method introduced by Liskovets [7] using the perturbative

mixed variational inequality:

〈Ahxτ
α + αU(xτ

α − x∗) − fδ , x − xτ
α〉 + ϕε(x) − ϕε(xτ

α) ≥ 0, ∀x ∈ X, (6)

where Ah is a monotone operator, a is a regularization parameter, U is the duality

mapping of X, x*Î X and (Ah, fδ, �ε) are approximations of (A, f, �), τ = (h, δ, ε). The

convergence rates of the regularized solutions defined by (6) are considered by Buong

and Thuy [8].

In this paper, we do not require Ah : x∗ ∈ X to be monotone. In this case, the regu-

larized variational inequality (6) may be unsolvable. In order to avoid this fact, we

introduce the regularized problem of finding xτ
α ∈ X such that

〈Ahxτ
α + αUs(xτ

α − x∗) − fδ , x − xτ
α〉 + ϕε(x) − ϕε(xτ

α)

≥ −μg(||xτ
α||)||x − xτ

α||, ∀x ∈ X, μ ≥ h,
(7)

where μ is positive small enough, Us is the generalized duality mapping of X (see

Definition 1.3) and x∗ is in X which plays the role of a criterion of selection, g is

defined below.

Assume that the solution set S0 of the inequality (1) is non-empty, and its data A, f,

� are given by Ah, fδ, �ε satisfying the conditions:

(1) || f - fδ || ≤ δ, δ ® 0;

(2) Ah : X ® X* is not necessarily monotone, D(Ah) = D(A) = X, and

||Ahx − Ax|| ≤ hg(||x||), ∀x ∈ X, h → 0, (8)

with a non-negative function g(t) satisfying the condition

g(t) ≤ g0 + g1tν , ν = s − 1, g0, g1 ≥ 0;
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(3) �ε : X ® ℝ is a proper convex lower semicontinuous functional for which there

exist positive numbers cε and rε such that

ϕε(x) ≥ −cε||x|| as ||x|| > rε

and

|ϕε(x) − ϕ(x)| ≤ εd(||x||), ∀x ∈ X, ε → 0, (9)

|ϕε(x) − ϕε(y)| ≤ C0||x − y||, ∀x, y ∈ X, (10)

where C0 is some positive constant, d(t) has the same properties as g(t).

In the next section we consider the existence and uniqueness of solutions xτ
α of (7),

for every a >0. Then, we show that the regularized solutions xτ
α converge to x0 Î S0,

the x∗-minimal norm solution defined by

||x0 − x∗|| = argmin
x∈S0

||x − x∗||.

The convergence rate of the regularized solutions xτ
α to x0 will be established under

the condition of inverse-strongly monotonicity for A and the regularization parameter

choice based on the generalized discrepancy principle.

We now recall some known definitions (see [9-11]).

Definition 1.1. An operator A : D(A) = X ® X* is said to be

(a) hemicontinuous if A(x + tny) ⇀ Ax as tn ® 0+, x, y Î X, and demicontinuous if xn
® x implies Axn ⇀ Ax;

(b) monotone if 〈Ax - Ay, x - y〉 ≥ 0, ∀x, y Î X;

(c) inverse-strongly monotone if

〈Ax − Ay, x − y〉 ≥ mA||Ax − Ay||2, ∀x, y ∈ X, (11)

where mA is a positive constant.

It is well-known that a monotone and hemicontinuous operator is demicontinuous

and a convex and lower semicontinuous functional is weakly lower semicontinuous

(see [9]). And an inverse-strongly monotone operator is not strongly monotone (see

[10]).

Definition 1.2. It is said that an operator A : X ® X* has S-property if the weak

convergence xn ⇀ x and 〈Axn - Ax, xn - x〉 ® 0 imply the strong convergence xn ® x

as n ® ∞.

Definition 1.3. The operator Us : X ® X* is called the generalized duality mapping

of X if

Us(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ||x∗|| ||x|| ; ||x∗|| = ||x||s−1}, s ≥ 2. (12)

When s = 2, we have the duality mapping U. If X and X* are strictly convex spaces,

Us is single-valued, strictly monotone, coercive, and demicontinuous (see [9]).

Let X = Lp(Ω) with p Î (1, ∞) and Ω ⊂ ℝm measurable, we have

U(ϕ) = ||ϕ||2−p
Lp(�)|ϕ(t)|p−2ϕ(t), t ∈ �.

Assume that the generalized duality mapping Us satisfies the following condition:

〈Us(x) − Us(y), x − y〉 ≥ ms||x − y||s, ∀x, y ∈ X, (13)
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where ms is a positive constant. It is well-known that when X is a Hilbert space, then

Us = I, s = 2 and ms = 1, where I denotes the identity operator in the setting space

(see [12]).

2 Main result
Lemma 2.1. Let X* be a strictly convex Banach space. Assume that A is a monotone-

bounded hemicontinuous operator with D(A) = X and conditions (2) and (3) are satis-

fied. Then, the inequality (7) has a non-empty solution set Sε for each a >0 and fδ Î X*.

Proof. Let xε Î dom �ε. The monotonicity of A and assumption (3) imply the fol-

lowing inequality:

〈Ax + αUs(x − x∗), x − xε〉 + ϕε(x)
||x|| ≥ α||x − x∗||s−1(||x − x∗|| − ||x∗ − xε||)

||x||
−||Axε||

(
1 +

||xε||
||x||

)
− cε , s ≥ 2,

for ||x|| > rε. Consequently, (2) is fulfilled for the pair (A + aUs, �ε). Thus, for each

a >0 and fδ Î X*, there exists a solution of the following inequality:

〈Ax + αUs(x − x∗) − fδ , z − x〉 + ϕε(z) − ϕε(x) ≥ 0, ∀z ∈ X, x ∈ X. (14)

Observe that the unique solvability of this inequality follows from the monotonicity

of A and the strict monotonicity of Us. Indeed, let x1 and x2 be two different solutions

of (14). Then,

〈Ax1 + αUs(x1 − x∗) − fδ , z − x1〉 + ϕε(z) − ϕε(x1) ≥ 0, ∀z ∈ X (15)

and

〈Ax2 + αUs(x2 − x∗) − fδ, z − x2〉 + ϕε(z) − ϕε(x2) ≥ 0, ∀z ∈ X. (16)

Putting z = x2 in (15) and z = x1 in (16) and add the obtained inequalities, we obtain

〈Ax1 − Ax2, x2 − x1〉 + α〈Us(x1 − x∗) − Us(x2 − x∗), x2 − x1〉 ≥ 0.

Due to the monotonicity of A and the strict monotonicity of Us, the last inequality

occurs only if x1 = x2.

Let xδ,ε
α be a solution of (14), that is,

〈Axδ,ε
α + αUs(xδ,ε

α − x∗) − fδ , z − xδ,ε
α 〉 + ϕε(z) − ϕε(xδ,ε

α ) ≥ 0,

∀z ∈ X.
(17)

For all h >0, making use of (8), from (17) one gets

〈Ahxδ,ε
α + αUs(xδ,ε

α − x∗) − fδ , z − xδ,ε
α 〉 + ϕε(z) − ϕε(xδ,ε

α )

≥ −hg(||xδ,ε
α ||)||z − xδ,ε

α ||, ∀z ∈ X.
(18)

Since μ ≥ h, we can conclude that each xδ,ε
α is a solution of (7).

□
Let xτ

α be a solution of (7). We have the following result.

Theorem 2.1. Let X and X* be strictly convex Banach spaces and A be a monotone-

bounded hemicontinuous operator with D(A) = X. Assume that conditions (1)-(3) are
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satisfied, the operator Us satisfies condition (13) and, in addition, the operator A has

the S-property. Let

lim
α→0

μ + δ + ε

α
= 0. (19)

Then {xτ
α}converges strongly to the x∗-minimal norm solution x0 Î S0.

Proof. By (1) and (7), we obtain

〈Ahxτ
α + αUs(xτ

α − x∗) − fδ, x0 − xτ
α〉 + ϕε(x0) − ϕε(xτ

α)

+ 〈Ax0 − f , xτ
α − x0〉 + ϕ(xτ

α) − ϕ(x0) ≥ −μg(||xτ
α||)||x0 − xτ

α||.

This inequality is equivalent to the following

α〈Us(xτ
α − x∗) − Us(x0 − x∗), xτ

α − x0〉 ≤ α〈Us(x0 − x∗), x0 − xτ
α〉

+ 〈Ahxτ
α − Axτ

α, x0 − xτ
α〉

+ 〈Ax0 − Axτ
α , x

τ
α − x0〉 + 〈f − fδ , x0 − xτ

α〉
+ ϕε(x0) − ϕ(x0) + ϕ(xτ

α) − ϕε(xτ
α)

+ μg(||xτ
α||)||x0 − xτ

α||.

(20)

The monotonicity of A, assumption (1), and the inequalities (8), (9), (13) and (20)

yield the relation

ms||xτ
α − x0||s ≤

[
h + μ

α
g(||xτ

α||) + δ

α

]
||x0 − xτ

α||

+
ε

α
[d(||x0||) + d(||xτ

α||)] + 〈Us(x0 − x∗), x0 − xτ
α〉.

(21)

Since μ/a ® 0 as a ® 0 (and consequently, h/a ® 0), it follows from (19) and the

last inequality that the set xτ
α are bounded. Therefore, there exists a subsequence of

which we denote by the same xτ
α weakly converges to x̄ ∈ X.

We now prove the strong convergence of {xτ
α} to x̄. The monotonicity of A and Us

implies that

0 ≤ 〈Axτ
α − Ax̄, xτ

α − x̄〉
≤ 〈Axτ

α + αUs(xτ
α − x∗) − Ax̄ − αUs(x̄ − x∗), xτ

α − x̄〉
= 〈Axτ

α + αUs(xτ
α − x∗), xτ

α − x̄〉 − 〈Ax̄ + αUs(x̄ − x∗), xτ
α − x̄〉.

(22)

In view of the weak convergence of {xτ
α} to x̄, we have

lim
α→0

〈Ax̄ + αUs(x̄ − x∗), xτ
α − x̄〉 = 0. (23)

By virtue of (8),

〈Axτ
α + αUs(xτ

α − x∗), xτ
α − x̄〉

= 〈Axτ
α − Ahxτ

α + Ahxτ
α + αUs(xτ

α − x∗), xτ
α − x̄〉

≤ 〈Ahxτ
α + αUs(xτ

α − x∗), xτ
α − x̄〉 + hg(||xτ

α||)||xτ
α − x̄||.

(24)

Using further (7), we deduce

〈Ahxτ
α + αUs(xτ

α − x∗), xτ
α − x̄〉

= 〈Ahxτ
α + αUs(xτ

α − x∗) − fδ, xτ
α − x̄〉 + 〈fδ, xτ

α − x̄〉
≤ 〈fδ, xτ

α − x̄〉 + ϕε(x̄) − ϕε(xτ
α) + μg(||xτ

α||)||x̄ − xτ
α||.

(25)
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Since xτ
α ⇀ x̄ and �ε is proper convex weakly lower semicontinuous, we have from

(25) that

lim
α→0

〈Ahx
τ
α + αUs(xτ

α − x∗), xτ
α − x̄〉 ≤ 0. (26)

By (22)-(24) and (26), it results that

lim
α→0

〈Axτ
α − Ax̄, xτ

α − x̄〉 = 0.

Finally, the S property of A implies the strong convergence of {xτ
α} to x̄ ∈ X.

We show that x̄ ∈ S0. By (8) and take into account (7) we obtain

〈Axτ
α + αUs(xτ

α − x∗) − fδ, x − xτ
α〉 + ϕε(x) − ϕε(xτ

α)

≥ −(h + μ)g(||xτ
α||)||x − xτ

α||, ∀x ∈ X.
(27)

Since the functional � is weakly lower semicontinuous,

ϕ(x̄) ≤ lim
α→0

infϕ(xτ
α). (28)

Since {xτ
α} is bounded, by (9), there exists a positive constant c2 such that

ϕ(xτ
α) ≤ ϕε(xτ

α) + c2ε. (29)

By letting a ® 0 in the inequality (7), provided that A is demicontinuous, from (8),

(9), (28), (29) and condition (1) imply that

〈Ax̄ − f , x − x̄〉 + ϕ(x) − ϕ(x̄) ≥ 0, ∀x ∈ X.

This means that x̄ ∈ S0.

We show that x̄ = x0. Applying the monotonicity of Us and the inequalities (8), (9)

and (13), we can rewrite (17) as

〈Us(x − x∗), xτ
α − x〉 ≤

[
h + μ

α
g(||xτ

α ||) + δ

α

]
||x − xτ

α||

+
ε

α
[d(||x||) + d(||xτ

α||)], ∀x ∈ S0.

Since a ® 0, ε/a, δ/a, μ/a ® 0 (and h/a ® 0), the last inequality becomes

〈Us(x − x∗), x̄ − x〉 ≤ 0, ∀x ∈ S0.

Replacing x by tx̄ + (1 − t)x, t Î (0, 1) in the last inequality, dividing by (1 - t) and

then letting t to 1, we get

〈Us(x̄ − x∗), x̄ − x〉 ≤ 0, ∀x ∈ S0

or

〈Us(x̄ − x∗), x̄ − x∗〉 ≤ 〈Us(x̄ − x∗), x − x∗〉, ∀x ∈ S0.

Using the property of Us, we have that ||x̄ − x∗|| ≤ ||x − x∗||, ∀x Î S0. Because of the

convexity and the closedness of S0, and the strictly convexity of X, we can conclude

that x̄ = x0. The proof is complete.

□
Now, we consider the problem of choosing posteriori regularization parameter

α̃ = α(μ, δ, ε) such that
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lim
μ,δ,ε→0

α(μ, δ, ε) = 0 and lim
μ,δ,ε→0

μ + δ + ε

α(μ, δ, ε)
= 0.

To solve this problem, we use the function for selecting α̃ = α(μ, δ, ε) by generalized

discrepancy principle, i.e. the relation α̃ = α(μ, δ, ε) is constructed on the basis of the

following equation:

ρ(α̃) = (μ + δ + ε)pα̃−q, p, q > 0, (30)

with ρ(α̃) = α̃
(
c + ||xτ

α̃
− x∗||s−1

)
, where xτ

α̃ is the solution of (7) with α = α̃, c is some

positive constant.

Lemma 2.2. Let X and X* be strictly convex Banach spaces and A : X ® X* be a

monotone-bounded hemicontinuous operator with D(A) = X. Assume that conditions

(1), (2) are satisfied, the operator Us satisfies condition (13). Then, the function

ρ(α) = α
(
c + ||xτ

α − x∗||s−1
)
is single-valued and continuous for a ≥ a0 >0, where xτ

αis

the solution of (7).

Proof. Single-valued solvability of the inequality (7) implies the continuity property

of the function r(a). Let a1, a2 ≥ a0 be arbitrary (a0 >0). It follows from (7) that

α1〈Us(xτ
α1

− x∗), xτ
α2

− xτ
α1

〉 + α2〈Us(xτ
α2

− x∗), xτ
α1

− xτ
α2

〉
+ 〈Ahxτ

α1
− Ahxτ

α2
, xτ

α2
− xτ

α1
〉

≥ −μ
(
g(||xτ

α1
||) + g(||xτ

α2
||)) ||xτ

α1
− xτ

α2
||,

(31)

where xτ
α1 and xτ

α2 are solutions of (7) with a = a1 and a = a2. Using the condition

(2) and the monotonicity of A, we have

α1〈Us(xτ
α1

− x∗) − Us(xτ
α2

− x∗), xτ
α1

− xτ
α2

〉
≤ (α2 − α1)〈Us(xτ

α2
− x∗), xτ

α1
− xτ

α2
〉

+ (h + μ)
(
g(||xτ

α1
||) + g(||xτ

α2
||)) ||xτ

α1
− xτ

α2
||.

It follows from (13) and the last inequality that

ms||xτ
α1

− xτ
α2

||s ≤ |α1 − α2|
α0

||xτ
α2

− x∗||s−1 + (h + μ)
(
g(||xτ

α1
||) + g(||xτ

α2
||)) .

Obviously, xτ
α1

→ xτ
α2 as μ ® 0 and a1 ® a2. It means that the function ||xτ

α − x∗||s−1

is continuous on [a0; +∞). Therefore, r(a) is also continuous on [a0; +∞).

Theorem 2.2. Let X and X* be strictly convex Banach spaces and A : X ® X* be a

monotone-bounded hemicontinuous operator with D(A) = X. Assume that conditions

(1)-(3) are satisfied, the operator Us satisfies condition (13). Then

(i) there exists at least a solution α̃of the equation (30),

(ii) let μ, δ, ε ® 0. Then

(1) α̃ → 0;

(2) if 0 < p < q then
μ + δ + ε

α̃
→ 0, xτ

α̃
→ x0 ∈ S0with x∗-minimal norm and there

exist constants C1, C2 >0 such that for sufficiently small μ, δ, ε >0 the relation

C1 ≤ (μ + δ + ε)pα̃−1−q ≤ C2 (32)

holds.
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Proof.

(i) For 0 < a <1, it follows from (7) that

〈Ahxτ
α + αUs(xτ

α − x∗) − fδ , x∗ − xτ
α〉 + ϕε(x∗) − ϕε(xτ

α)

≥ −μg(||xτ
α||)||x∗ − xτ

α||.

Hence,

α〈Us(xτ
α − x∗), xτ

α − x∗〉 ≤ μg(||xτ
α||)||x∗ − xτ

α|| + ϕε(x∗) − ϕε(xτ
α)

+ 〈Ahxτ
α − Axτ

α + Axτ
α − Ax∗ + Ax∗ − f + f − fδ , x∗ − xτ

α〉.

We invoke the condition (1), the monotonicity of A, (8), (10), (12), and the last

inequality to deduce that

α||xτ
α − x∗||s−1 ≤ (h + μ)g(||xτ

α||) + C0 + ||Ax∗ − f || + δ. (33)

It follows from (33) and the form of r(a) that

αqρ(α) = α1+q(c + ||xτ
α − x∗||s−1)

= cα1+q + αq × α||xτ
α − x∗||s−1

≤ cα1+q + αq[(h + μ)g(||xτ
α||) + C0 + ||Ax∗ − f || + δ].

Therefore, lima®+0 aqr(a) = 0.

On the other hand,

lim
α→+∞ αqρ(α) ≥ c lim

α→+∞ α1+q = +∞.

Since r(a) is continuous, there exists at leat one α̃ which satisfies (30).

(ii) It follows from (30) and the form of ρ(α̃) that

α̃ ≤ c−1/(1+q)(μ + δ + ε)p/(1+q).

Therefore, α̃ → 0 as μ, δ, ε ® 0.

If 0 < p < q, it follows from (30) and (32) that

[
μ + δ + ε

α̃

]p

= [(μ + δ + ε)pα̃−q]α̃q−p

= [cα̃ + α̃||xτ
α̃ − x∗||s−1]α̃q−p

≤ cα̃1+q−p + α̃q−p[2μg(||xτ
α̃||) + C0 + ||Ax∗ − f || + δ].

So,

lim
μ,δ,ε→0

[
μ + δ + ε

α̃

]p

= 0.

By Theorem 2.1 the sequence xτ
α̃ converges to x0 Î S0 with x∗-minimal norm as μ, δ,

ε ® 0.

Clearly,

(μ + δ + ε)pα̃−1−q = α̃−1ρ(α̃) = (c + ||xτ
α̃ − x∗||s−1),

therefore, there exists a positive constant C2 such that (32). On the other hand, because

c >0 so there exists a positive constant C1 satisfied (32). This finishes the proof.

□
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Theorem 2.3. Let X be a strictly convex Banach space and A be a monotone-

bounded hemicontinuous operator with D(A) = X. Suppose that

(i) for each h, δ, ε >0 conditions (1)-(3) are satisfied;

(ii) Us satisfies condition (13);

(iii) A is an inverse-strongly monotone operator from X into X*, Fréchet differenti-

able at some neighborhood of x0 Î S0 and satisfies

||A(x) − A(x0) − A′(x0)(x − x0)|| ≤ τ̃ ||A(x) − A(x0)||; (34)

(iv) there exists z Î X such that

A′(x0)∗z = Us(x0 − x∗);

then, if the parameter a = a (μ, δ, ε) is chosen by (30) with 0 < p < q, we have

||xτ
α(μ,δ,ε) − x0|| = O((μ + δ + ε)μ1), μ1 =

1
1 + q

min
{
1 + q − p

s
,
p
2s

}
.

Proof. By an argument analogous to that used for the proof of the first part of Theo-

rem 2.1, we have (21). The boundedness of the sequence {xτ
α} follows from (21) and the

properties of g(t), d(t) and a. On the other hand, based on (20), the property of Us and

the inverse-strongly monotone property of A we get that

‖A(xτ
α) − A(x0)‖2 ≤ m−1

A

{[
(h + μ)g(‖xτ

α‖) + δ + α‖xτ
α − x∗‖s−1]‖x0 − xτ

α‖

+ ε[d(‖x0‖) + d(‖xτ
α‖)]

}
.

Hence,

||A(xτ
α) − A(x0)|| = O(

√
δ + μ + ε + α).

Further, by virtue of conditions (iii), (iv) and the last estimate, we obtain

〈Us(x0 − x∗), x0 − xτ
α〉 = 〈z,A′(x0)(x0 − xτ

α)〉
≤ ||z||(τ̃ + 1)||A(xτ

α) − A(x0)||
≤ ||z||(τ̃ + 1)O(

√
δ + μ + ε + α).

Consequently, (21) has the form

ms||xτ
α − x0||s ≤2μg(||xτ

α||) + δ

α
||x0 − xτ

α||
+ ||z||(τ̃ + 1)O(

√
δ + μ + ε + α)

+
ε

α
[d(||x0||) + d(||xτ

α ||)].
(35)

When a is chosen by (30), it follows from Theorem 2.1 that

α(μ, δ, ε) ≤ C−1/(1+q)
1 (μ + δ + ε)p/(1+q)
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and

μ + δ + ε

α(μ, δ, ε)
≤ C2(μ + δ + ε)1−pαq(μ, δ, ε)

≤ C2C
−q/(1+q)
1 (μ + δ + ε)1−p/(1+q).

Therefore, it follows from (35) that

ms||xτ
α(μ,δ,ε) − x0||s ≤C̃1(μ + δ + ε)1−p/(1+q)||xτ

α(μ,δ,ε) − x0||
+ C̃2(μ + δ + ε)1−p/(1+q) + C̃3(μ + δ + ε)p/2(1+q),

where C̃i, i = 1, 2, 3, are the positive constants. Using the implication

a, b, c ≥ 0, s > t, as ≤ bat + c ⇒ as = O(bs/(s−t) + c),

we obtain

||xτ
α(μ,δ,ε) − x0|| = O((μ + δ + ε)μ1 ).

Remark 2.1 If a is chosen a priori such that a ~ (μ + δ + ε)h, 0 < h <1, it follows

from (35) that

ms||xτ
α(μ,δ,ε) − x0||s ≤C̃4(μ + δ + ε)1−η||x0 − xτ

α(μ,δ,ε)||
+ C̃5(μ + δ + ε)η/2 + C̃6(μ + δ + ε)1−η.

Therefore,

||xτ
α(μ,δ,ε) − x0|| = O((μ + δ + ε)μ2), μ2 = min

{
1 − η

s
,

η

2s

}
.

Remark 2.2 Condition (34) was proposed in [13] for studying convergence analysis of

the Landweber iteration method for a class of nonlinear operators. This condition is

used to estimate convergence rates of regularized solutions of ill-posed variational

inequalities in [14].

Remark 2.3 The generalized discrepancy principle for regularization parameter choice

is presented in [15] for the ill-posed operator equation (4) when A is a linear and

bounded operator in Hilbert space. It is considered and applied to estimating conver-

gence rates of the regularized solution for equation (4) involving an accretive operator

in [16].
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