Regularization of ill-posed mixed variational inequalities with non-monotone perturbations

Nguyen TT Thuy

Correspondence:

thuychip04@yahoo.com
College of Sciences, Thainguyen
University, Thainguyen, Vietnam

Abstract

In this paper, we study a regularization method for ill-posed mixed variational inequalities with non-monotone perturbations in Banach spaces. The convergence and convergence rates of regularized solutions are established by using a priori and a posteriori regularization parameter choice that is based upon the generalized discrepancy principle.

Keywords: monotone mixed variational inequality, non-monotone perturbations, regularization, convergence rate

1 Introduction

Variational inequality problems in finite-dimensional and infinite-dimensional spaces appear in many fields of applied mathematics such as convex programming, nonlinear equations, equilibrium models in economics, and engineering (see [1-3]). Therefore, methods for solving variational inequalities and related problems have wide applicability. In this paper, we consider the mixed variational inequality: for a given $f \in X^{*}$, find an element $x_{0} \in X$ such that

$$
\begin{equation*}
\left\langle A x_{0}-f, x-x_{0}\right\rangle+\varphi(x)-\varphi\left(x_{0}\right) \geq 0, \quad \forall x \in X \tag{1}
\end{equation*}
$$

where $A: X \rightarrow X^{*}$ is a monotone-bounded hemicontinuous operator with domain D $(A)=X, \phi: X \rightarrow \mathbb{R}$ is a proper convex lower semicontinuous functional and X is a real reflexive Banach space with its dual space X^{*}. For the sake of simplicity, the norms of X and X^{*} are denoted by the same symbol $\|\cdot\|$. We write $\left\langle x^{*}, x\right\rangle$ instead of $x^{*}(x)$ for $x^{*} \in X^{*}$ and $x \in X$.

By S_{0} we denote the solution set of the problem (1). It is easy to see that S_{0} is closed and convex whenever it is not empty. For the existence of a solution to (1), we have the following well-known result (see [4]):

Theorem 1.1. If there exists $u \in \operatorname{dom} \phi$ satisfying the coercive condition

$$
\begin{equation*}
\lim _{\|x\| \rightarrow \infty} \frac{\langle A x, x-u\rangle+\varphi(x)}{\|x\|}=\infty \tag{2}
\end{equation*}
$$

then (1) has at least one solution.

SpringerOpen ${ }^{\bullet}$

Many standard extremal problems can be considered as special cases of (1). Denote ϕ by the indicator function of a closed convex set K in X,

$$
\varphi(x) \equiv I_{K}(x)=\left\{\begin{array}{lc}
0 & \text { if } x \in K \\
+\infty & \text { otherwise }
\end{array}\right.
$$

Then, the problem (1) is equivalent to that of finding $x_{0} \in K$ such that

$$
\begin{equation*}
\left\langle A x_{0}-f, x-x_{0}\right\rangle \geq 0, \quad \forall x \in K \tag{3}
\end{equation*}
$$

In the case K is the whole space X, the later variational inequality is of the form of the following operator equation:

$$
\begin{equation*}
A x_{0}=f \tag{4}
\end{equation*}
$$

When A is the Gâteaux derivative of a finite-valued convex function F defined on X, the problem (1) becomes the nondifferentiable convex optimization problem (see [4]):

$$
\begin{equation*}
\min _{x \in X}\{F(x)+\varphi(x)\} . \tag{5}
\end{equation*}
$$

Some methods have been proposed for solving problem (1), for example, the proximal point method (see [5]), and the auxiliary subproblem principle (see [6]). However, the problem (1) is in general ill-posed, as its solutions do not depend continuously on the data (A, f, ϕ), we used stable methods for solving it. A widely used and efficient method is the regularization method introduced by Liskovets [7] using the perturbative mixed variational inequality:

$$
\begin{equation*}
\left\langle A_{h} x_{\alpha}^{\tau}+\alpha U\left(x_{\alpha}^{\tau}-x_{*}\right)-f_{\delta}, x-x_{\alpha}^{\tau}\right\rangle+\varphi_{\varepsilon}(x)-\varphi_{\varepsilon}\left(x_{\alpha}^{\tau}\right) \geq 0, \quad \forall x \in X, \tag{6}
\end{equation*}
$$

where A_{h} is a monotone operator, α is a regularization parameter, U is the duality mapping of $X, x \in X$ and $\left(A_{h}, f_{\delta}, \phi_{\varepsilon}\right)$ are approximations of $(A, f, \phi), \tau=(h, \delta, \varepsilon)$. The convergence rates of the regularized solutions defined by (6) are considered by Buong and Thuy [8].

In this paper, we do not require $A_{h}: x_{*} \in X$ to be monotone. In this case, the regularized variational inequality (6) may be unsolvable. In order to avoid this fact, we introduce the regularized problem of finding $x_{\alpha}^{\tau} \in X$ such that

$$
\begin{array}{r}
\left\langle A_{h} x_{\alpha}^{\tau}+\alpha U^{s}\left(x_{\alpha}^{\tau}-x_{*}\right)-f_{\delta}, x-x_{\alpha}^{\tau}\right\rangle+\varphi_{\varepsilon}(x)-\varphi_{\varepsilon}\left(x_{\alpha}^{\tau}\right) \\
\geq-\mu g\left(\left\|x_{\alpha}^{\tau}\right\|\right)\left\|x-x_{\alpha}^{\tau}\right\|, \quad \forall x \in X, \mu \geq h \tag{7}
\end{array}
$$

where μ is positive small enough, U^{s} is the generalized duality mapping of X (see Definition 1.3) and x_{*} is in X which plays the role of a criterion of selection, g is defined below.
Assume that the solution set S_{0} of the inequality (1) is non-empty, and its data A, f, ϕ are given by $A_{h}, f_{\delta}, \phi_{\varepsilon}$ satisfying the conditions:
(1) $\left\|f-f_{\delta}\right\| \leq \delta, \delta \rightarrow 0$;
(2) $A_{h}: X \rightarrow X^{*}$ is not necessarily monotone, $D\left(A_{h}\right)=D(A)=X$, and

$$
\begin{equation*}
\left\|A_{h} x-A x\right\| \leq h g(\|x\|), \quad \forall x \in X, h \rightarrow 0 \tag{8}
\end{equation*}
$$

with a non-negative function $g(t)$ satisfying the condition

$$
g(t) \leq g_{0}+g_{1} t^{\nu}, \quad v=s-1, g_{0}, g_{1} \geq 0
$$

(3) $\phi_{\varepsilon}: X \rightarrow \mathbb{R}$ is a proper convex lower semicontinuous functional for which there exist positive numbers c_{ε} and r_{ε} such that

$$
\varphi_{\varepsilon}(x) \geq-c_{\varepsilon}\|x\| \quad \text { as }\|x\|>r_{\varepsilon}
$$

and

$$
\begin{align*}
& \left|\varphi_{\varepsilon}(x)-\varphi(x)\right| \leq \varepsilon d(\|x\|), \quad \forall x \in X, \varepsilon \rightarrow 0 \tag{9}\\
& \left|\varphi_{\varepsilon}(x)-\varphi_{\varepsilon}(y)\right| \leq C_{0}\|x-y\|, \quad \forall x, y \in X \tag{10}
\end{align*}
$$

where C_{0} is some positive constant, $d(t)$ has the same properties as $g(t)$.
In the next section we consider the existence and uniqueness of solutions x_{α}^{τ} of (7), for every $\alpha>0$. Then, we show that the regularized solutions x_{α}^{τ} converge to $x_{0} \in S_{0}$, the x_{*}-minimal norm solution defined by

$$
\left\|x_{0}-x_{*}\right\|=\arg \min _{x \in S_{0}}\left\|x-x_{*}\right\| .
$$

The convergence rate of the regularized solutions x_{α}^{τ} to x_{0} will be established under the condition of inverse-strongly monotonicity for A and the regularization parameter choice based on the generalized discrepancy principle.
We now recall some known definitions (see [9-11]).
Definition 1.1. An operator $A: D(A)=X \rightarrow X^{*}$ is said to be
(a) hemicontinuous if $A\left(x+t_{n} y\right) \rightarrow A x$ as $t_{n} \rightarrow 0^{+}, x, y \in X$, and demicontinuous if x_{n} $\rightarrow x$ implies $A x_{n} \rightarrow A x$;
(b) monotone if $\langle A x-A y, x-y\rangle \geq 0, \forall x, y \in X$;
(c) inverse-strongly monotone if

$$
\begin{equation*}
\langle A x-A y, x-y\rangle \geq m_{A}\|A x-A y\|^{2}, \quad \forall x, y \in X \tag{11}
\end{equation*}
$$

where m_{A} is a positive constant.
It is well-known that a monotone and hemicontinuous operator is demicontinuous and a convex and lower semicontinuous functional is weakly lower semicontinuous (see [9]). And an inverse-strongly monotone operator is not strongly monotone (see [10]).

Definition 1.2. It is said that an operator $A: X \rightarrow X^{*}$ has S-property if the weak convergence $x_{n} \rightharpoonup x$ and $\left\langle A x_{n}-A x, x_{n}-x\right\rangle \rightarrow 0$ imply the strong convergence $x_{n} \rightarrow x$ as $n \rightarrow \infty$.

Definition 1.3. The operator $U^{s}: X \rightarrow X^{*}$ is called the generalized duality mapping of X if

$$
\begin{equation*}
U^{s}(x)=\left\{x^{*} \in X^{*}:\left\langle x^{*}, x\right\rangle=\left\|x^{*}\right\|\|x\| ;\left\|x^{*}\right\|=\|x\|^{s-1}\right\}, \quad s \geq 2 . \tag{12}
\end{equation*}
$$

When $s=2$, we have the duality mapping U. If X and X^{*} are strictly convex spaces, U^{s} is single-valued, strictly monotone, coercive, and demicontinuous (see [9]).
Let $X=L^{p}(\Omega)$ with $p \in(1, \infty)$ and $\Omega \subset \mathbb{R}^{m}$ measurable, we have

$$
U(\varphi)=\|\varphi\|_{L^{p}(\Omega)}^{2-p}|\varphi(t)|^{p-2} \varphi(t), \quad t \in \Omega
$$

Assume that the generalized duality mapping U^{s} satisfies the following condition:

$$
\begin{equation*}
\left\langle U^{s}(x)-U^{s}(y), x-y\right\rangle \geq m_{s}\|x-y\|^{s}, \quad \forall x, y \in X \tag{13}
\end{equation*}
$$

where m_{s} is a positive constant. It is well-known that when X is a Hilbert space, then $U^{s}=I, s=2$ and $m_{s}=1$, where I denotes the identity operator in the setting space (see [12]).

2 Main result

Lemma 2.1. Let X^{*} be a strictly convex Banach space. Assume that A is a monotonebounded hemicontinuous operator with $D(A)=X$ and conditions (2) and (3) are satisfied. Then, the inequality (7) has a non-empty solution set S_{ε} for each $\alpha>0$ and $f_{\delta} \in X^{*}$.

Proof. Let $x_{\varepsilon} \in \operatorname{dom} \phi_{\varepsilon}$. The monotonicity of A and assumption (3) imply the following inequality:

$$
\begin{aligned}
\frac{\left\langle A x+\alpha U^{s}\left(x-x_{*}\right), x-x_{\varepsilon}\right\rangle+\varphi_{\varepsilon}(x)}{\|x\|} \geq & \frac{\alpha\left\|x-x_{*}\right\|^{s-1}\left(\left\|x-x_{*}\right\|-\left\|x_{*}-x_{\varepsilon}\right\|\right)}{\|x\|} \\
& -\left\|A x_{\varepsilon}\right\|\left(1+\frac{\left\|x_{\varepsilon}\right\|}{\|x\|}\right)-c_{\varepsilon}, \quad s \geq 2,
\end{aligned}
$$

for $\|x\|>r_{\varepsilon}$. Consequently, (2) is fulfilled for the pair $\left(A+\alpha U^{s}, \phi_{\varepsilon}\right)$. Thus, for each $\alpha>0$ and $f_{\delta} \in X^{*}$, there exists a solution of the following inequality:

$$
\begin{equation*}
\left\langle A x+\alpha U^{s}\left(x-x_{*}\right)-f_{\delta}, z-x\right\rangle+\varphi_{\varepsilon}(z)-\varphi_{\varepsilon}(x) \geq 0, \quad \forall z \in X, \quad x \in X \tag{14}
\end{equation*}
$$

Observe that the unique solvability of this inequality follows from the monotonicity of A and the strict monotonicity of U^{s}. Indeed, let x_{1} and x_{2} be two different solutions of (14). Then,

$$
\begin{equation*}
\left\langle A x_{1}+\alpha U^{s}\left(x_{1}-x_{*}\right)-f_{\delta,} z-x_{1}\right\rangle+\varphi_{\varepsilon}(z)-\varphi_{\varepsilon}\left(x_{1}\right) \geq 0, \quad \forall z \in X \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle A x_{2}+\alpha U^{S}\left(x_{2}-x_{*}\right)-f_{\delta}, z-x_{2}\right\rangle+\varphi_{\varepsilon}(z)-\varphi_{\varepsilon}\left(x_{2}\right) \geq 0, \quad \forall z \in X . \tag{16}
\end{equation*}
$$

Putting $z=x_{2}$ in (15) and $z=x_{1}$ in (16) and add the obtained inequalities, we obtain

$$
\left\langle A x_{1}-A x_{2}, x_{2}-x_{1}\right\rangle+\alpha\left\langle U^{s}\left(x_{1}-x_{*}\right)-U^{s}\left(x_{2}-x_{*}\right), x_{2}-x_{1}\right\rangle \geq 0 .
$$

Due to the monotonicity of A and the strict monotonicity of U^{s}, the last inequality occurs only if $x_{1}=x_{2}$.

Let $x_{\alpha}^{\delta, \varepsilon}$ be a solution of (14), that is,

$$
\begin{align*}
&\left\langle A x_{\alpha}^{\delta, \varepsilon}+\alpha U^{s}\left(x_{\alpha}^{\delta, \varepsilon}-x_{*}\right)-f_{\delta,} z-x_{\alpha}^{\delta, \varepsilon}\right\rangle+\varphi_{\varepsilon}(z)-\varphi_{\varepsilon}\left(x_{\alpha}^{\delta, \varepsilon}\right) \geq 0, \tag{17}\\
& \forall z \in X .
\end{align*}
$$

For all $h>0$, making use of (8), from (17) one gets

$$
\begin{array}{r}
\left\langle A_{h} x_{\alpha}^{\delta, \varepsilon}+\alpha U^{s}\left(x_{\alpha}^{\delta, \varepsilon}-x_{*}\right)-f_{\delta}, z-x_{\alpha}^{\delta, \varepsilon}\right\rangle+\varphi_{\varepsilon}(z)-\varphi_{\varepsilon}\left(x_{\alpha}^{\delta, \varepsilon}\right) \\
\geq-h g\left(\left\|x_{\alpha}^{\delta, \varepsilon}\right\|\right)\left\|z-x_{\alpha}^{\delta, \varepsilon}\right\|, \quad \forall z \in X . \tag{18}
\end{array}
$$

Since $\mu \geq h$, we can conclude that each $x_{\alpha}^{\delta, \varepsilon}$ is a solution of (7).
-
Let x_{α}^{τ} be a solution of (7). We have the following result.
Theorem 2.1. Let X and X^{*} be strictly convex Banach spaces and A be a monotonebounded hemicontinuous operator with $D(A)=X$. Assume that conditions (1)-(3) are
satisfied, the operator U^{s} satisfies condition (13) and, in addition, the operator A has the S-property. Let

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0} \frac{\mu+\delta+\varepsilon}{\alpha}=0 . \tag{19}
\end{equation*}
$$

Then $\left\{x_{\alpha}^{\tau}\right\}$ converges strongly to the x_{*}-minimal norm solution $x_{0} \in S_{0}$.
Proof. By (1) and (7), we obtain

$$
\begin{aligned}
\left\langle A_{h} x_{\alpha}^{\tau}\right. & \left.+\alpha U^{s}\left(x_{\alpha}^{\tau}-x_{*}\right)-f_{\delta}, x_{0}-x_{\alpha}^{\tau}\right\rangle+\varphi_{\varepsilon}\left(x_{0}\right)-\varphi_{\varepsilon}\left(x_{\alpha}^{\tau}\right) \\
& +\left\langle A x_{0}-f, x_{\alpha}^{\tau}-x_{0}\right\rangle+\varphi\left(x_{\alpha}^{\tau}\right)-\varphi\left(x_{0}\right) \geq-\mu g\left(\left\|x_{\alpha}^{\tau}\right\|\right)\left\|x_{0}-x_{\alpha}^{\tau}\right\| .
\end{aligned}
$$

This inequality is equivalent to the following

$$
\begin{align*}
\alpha\left\langle U^{s}\left(x_{\alpha}^{\tau}-x_{*}\right)\right. & \left.-U^{s}\left(x_{0}-x_{*}\right), x_{\alpha}^{\tau}-x_{0}\right\rangle \leq \alpha\left\langle U^{s}\left(x_{0}-x_{*}\right), x_{0}-x_{\alpha}^{\tau}\right\rangle \\
& +\left\langle A_{h} x_{\alpha}^{\tau}-A x_{\alpha}^{\tau}, x_{0}-x_{\alpha}^{\tau}\right\rangle \\
& +\left\langle A x_{0}-A x_{\alpha}^{\tau}, x_{\alpha}^{\tau}-x_{0}\right\rangle+\left\langle f-f_{\delta}, x_{0}-x_{\alpha}^{\tau}\right\rangle \\
& +\varphi_{\varepsilon}\left(x_{0}\right)-\varphi\left(x_{0}\right)+\varphi\left(x_{\alpha}^{\tau}\right)-\varphi_{\varepsilon}\left(x_{\alpha}^{\tau}\right) \\
& +\mu g\left(\left\|x_{\alpha}^{\tau}\right\|\right)\left\|x_{0}-x_{\alpha}^{\tau}\right\| .
\end{align*}
$$

The monotonicity of A, assumption (1), and the inequalities (8), (9), (13) and (20) yield the relation

$$
\begin{align*}
m_{s}\left\|x_{\alpha}^{\tau}-x_{0}\right\|^{s} \leq & {\left[\frac{h+\mu}{\alpha} g\left(\left\|x_{\alpha}^{\tau}\right\|\right)+\frac{\delta}{\alpha}\right]\left\|x_{0}-x_{\alpha}^{\tau}\right\| } \tag{21}\\
& +\frac{\varepsilon}{\alpha}\left[d\left(\left\|x_{0}\right\|\right)+d\left(\left\|x_{\alpha}^{\tau}\right\|\right)\right]+\left\langle U^{s}\left(x_{0}-x_{*}\right), x_{0}-x_{\alpha}^{\tau}\right\rangle .
\end{align*}
$$

Since $\mu / \alpha \rightarrow 0$ as $\alpha \rightarrow 0$ (and consequently, $h / \alpha \rightarrow 0$), it follows from (19) and the last inequality that the set x_{α}^{τ} are bounded. Therefore, there exists a subsequence of which we denote by the same x_{α}^{τ} weakly converges to $\bar{x} \in X$.
We now prove the strong convergence of $\left\{x_{\alpha}^{\tau}\right\}$ to \bar{x}. The monotonicity of A and U^{s} implies that

$$
\begin{align*}
0 & \leq\left\langle A x_{\alpha}^{\tau}-A \bar{x}, x_{\alpha}^{\tau}-\bar{x}\right\rangle \\
& \leq\left\langle A x_{\alpha}^{\tau}+\alpha U^{s}\left(x_{\alpha}^{\tau}-x_{*}\right)-A \bar{x}-\alpha U^{s}\left(\bar{x}-x_{*}\right), x_{\alpha}^{\tau}-\bar{x}\right\rangle \tag{22}\\
& =\left\langle A x_{\alpha}^{\tau}+\alpha U^{s}\left(x_{\alpha}^{\tau}-x_{*}\right), x_{\alpha}^{\tau}-\bar{x}\right\rangle-\left\langle A \bar{x}+\alpha U^{s}\left(\bar{x}-x_{*}\right), x_{\alpha}^{\tau}-\bar{x}\right\rangle .
\end{align*}
$$

In view of the weak convergence of $\left\{x_{\alpha}^{\tau}\right\}$ to \bar{x}, we have

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0}\left\langle A \bar{x}+\alpha U^{s}\left(\bar{x}-x_{*}\right), x_{\alpha}^{\tau}-\bar{x}\right\rangle=0 . \tag{23}
\end{equation*}
$$

By virtue of (8),

$$
\begin{align*}
\left\langle A x_{\alpha}^{\tau}\right. & \left.+\alpha U^{s}\left(x_{\alpha}^{\tau}-x_{*}\right), x_{\alpha}^{\tau}-\bar{x}\right\rangle \\
& =\left\langle A x_{\alpha}^{\tau}-A_{h} x_{\alpha}^{\tau}+A_{h} x_{\alpha}^{\tau}+\alpha U^{s}\left(x_{\alpha}^{\tau}-x_{*}\right), x_{\alpha}^{\tau}-\bar{x}\right\rangle \tag{24}\\
& \leq\left\langle A_{h} x_{\alpha}^{\tau}+\alpha U^{s}\left(x_{\alpha}^{\tau}-x_{*}\right), x_{\alpha}^{\tau}-\bar{x}\right\rangle+h g\left(| | x_{\alpha}^{\tau} \|\right)| | x_{\alpha}^{\tau}-\bar{x}| | .
\end{align*}
$$

Using further (7), we deduce

$$
\begin{align*}
\left\langle A_{h} x_{\alpha}^{\tau}\right. & \left.+\alpha U^{s}\left(x_{\alpha}^{\tau}-x_{*}\right), x_{\alpha}^{\tau}-\bar{x}\right\rangle \\
& =\left\langle A_{h} x_{\alpha}^{\tau}+\alpha U^{s}\left(x_{\alpha}^{\tau}-x_{*}\right)-f_{\delta}, x_{\alpha}^{\tau}-\bar{x}\right\rangle+\left\langle f_{\delta,}^{\tau} x_{\alpha}^{\tau}-\bar{x}\right\rangle \tag{25}\\
& \leq\left\langle f_{\delta}, x_{\alpha}^{\tau}-\bar{x}\right\rangle+\varphi_{\varepsilon}(\bar{x})-\varphi_{\varepsilon}\left(x_{\alpha}^{\tau}\right)+\mu g\left(\left\|\left(\left\|x_{\alpha}^{\tau}\right\|\right)\right\| \bar{x}-x_{\alpha}^{\tau} \| .\right.
\end{align*}
$$

Since $x_{\alpha}^{\tau} \rightharpoonup \bar{x}$ and ϕ_{ε} is proper convex weakly lower semicontinuous, we have from (25) that

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0}\left\langle A_{h} x_{\alpha}^{\tau}+\alpha U^{s}\left(x_{\alpha}^{\tau}-x_{*}\right), x_{\alpha}^{\tau}-\bar{x}\right\rangle \leq 0 \tag{26}
\end{equation*}
$$

By (22)-(24) and (26), it results that

$$
\lim _{\alpha \rightarrow 0}\left\langle A x_{\alpha}^{\tau}-A \bar{x}, x_{\alpha}^{\tau}-\bar{x}\right\rangle=0
$$

Finally, the S property of A implies the strong convergence of $\left\{x_{\alpha}^{\tau}\right\}$ to $\bar{x} \in X$.
We show that $\bar{x} \in S_{0}$. By (8) and take into account (7) we obtain

$$
\begin{array}{r}
\left\langle A x_{\alpha}^{\tau}+\alpha U^{s}\left(x_{\alpha}^{\tau}-x_{*}\right)-f_{\delta}, x-x_{\alpha}^{\tau}\right\rangle+\varphi_{\varepsilon}(x)-\varphi_{\varepsilon}\left(x_{\alpha}^{\tau}\right) \tag{27}\\
\geq-(h+\mu) g\left(\left\|x_{\alpha}^{\tau}\right\|\right)\left\|x-x_{\alpha}^{\tau}\right\|, \quad \forall x \in X .
\end{array}
$$

Since the functional ϕ is weakly lower semicontinuous,

$$
\begin{equation*}
\varphi(\bar{x}) \leq \lim _{\alpha \rightarrow 0} \inf \varphi\left(x_{\alpha}^{\tau}\right) \tag{28}
\end{equation*}
$$

Since $\left\{x_{\alpha}^{\tau}\right\}$ is bounded, by (9), there exists a positive constant c_{2} such that

$$
\begin{equation*}
\varphi\left(x_{\alpha}^{\tau}\right) \leq \varphi_{\varepsilon}\left(x_{\alpha}^{\tau}\right)+c_{2} \varepsilon \tag{29}
\end{equation*}
$$

By letting $\alpha \rightarrow 0$ in the inequality (7), provided that A is demicontinuous, from (8), (9), (28), (29) and condition (1) imply that

$$
\langle A \bar{x}-f, x-\bar{x}\rangle+\varphi(x)-\varphi(\bar{x}) \geq 0, \quad \forall x \in X .
$$

This means that $\bar{x} \in S_{0}$.
We show that $\bar{x}=x_{0}$. Applying the monotonicity of U^{s} and the inequalities (8), (9) and (13), we can rewrite (17) as

$$
\begin{aligned}
\left\langle U^{s}\left(x-x_{*}\right), x_{\alpha}^{\tau}-x\right\rangle \leq & {\left[\frac{h+\mu}{\alpha} g\left(\left\|x_{\alpha}^{\tau}\right\|\right)+\frac{\delta}{\alpha}\right]\left\|x-x_{\alpha}^{\tau}\right\| } \\
& +\frac{\varepsilon}{\alpha}\left[d(\|x\|)+d\left(\left\|x_{\alpha}^{\tau}\right\|\right)\right], \quad \forall x \in S_{0} .
\end{aligned}
$$

Since $\alpha \rightarrow 0, \varepsilon / \alpha, \delta / \alpha, \mu / \alpha \rightarrow 0$ (and $h / \alpha \rightarrow 0$), the last inequality becomes

$$
\left\langle U^{s}\left(x-x_{*}\right), \bar{x}-x\right\rangle \leq 0, \quad \forall x \in S_{0}
$$

Replacing x by $t \bar{x}+(1-t) x, t \in(0,1)$ in the last inequality, dividing by $(1-t)$ and then letting t to 1 , we get

$$
\left\langle U^{s}\left(\bar{x}-x_{*}\right), \bar{x}-x\right\rangle \leq 0, \quad \forall x \in S_{0}
$$

or

$$
\left\langle U^{s}\left(\bar{x}-x_{*}\right), \bar{x}-x_{*}\right\rangle \leq\left\langle U^{s}\left(\bar{x}-x_{*}\right), x-x_{*}\right\rangle, \quad \forall x \in S_{0}
$$

Using the property of U^{s}, we have that $\left\|\bar{x}-x_{*}\right\| \leq\left\|x-x_{*}\right\|, \forall x \in S_{0}$. Because of the convexity and the closedness of S_{0}, and the strictly convexity of X, we can conclude that $\bar{x}=x_{0}$. The proof is complete.

Now, we consider the problem of choosing posteriori regularization parameter $\tilde{\alpha}=\alpha(\mu, \delta, \varepsilon)$ such that

$$
\lim _{\mu, \delta, \varepsilon \rightarrow 0} \alpha(\mu, \delta, \varepsilon)=0 \text { and } \lim _{\mu, \delta, \varepsilon \rightarrow 0} \frac{\mu+\delta+\varepsilon}{\alpha(\mu, \delta, \varepsilon)}=0
$$

To solve this problem, we use the function for selecting $\tilde{\alpha}=\alpha(\mu, \delta, \varepsilon)$ by generalized discrepancy principle, i.e. the relation $\tilde{\alpha}=\alpha(\mu, \delta, \varepsilon)$ is constructed on the basis of the following equation:

$$
\begin{equation*}
\rho(\tilde{\alpha})=(\mu+\delta+\varepsilon)^{p} \tilde{\alpha}^{-q}, \quad p, q>0 \tag{30}
\end{equation*}
$$

with $\rho(\tilde{\alpha})=\tilde{\alpha}\left(c+\left\|x_{\tilde{\alpha}}^{\tau}-x_{*}\right\|^{s-1}\right)$, where $x_{\tilde{\alpha}}^{\tau}$ is the solution of (7) with $\alpha=\tilde{\alpha}, c$ is some positive constant.
Lemma 2.2. Let X and X^{*} be strictly convex Banach spaces and $A: X \rightarrow X^{*}$ be a monotone-bounded hemicontinuous operator with $D(A)=X$. Assume that conditions (1), (2) are satisfied, the operator U^{s} satisfies condition (13). Then, the function $\rho(\alpha)=\alpha\left(c+\left\|x_{\alpha}^{\tau}-x_{*}\right\|^{s-1}\right)$ is single-valued and continuous for $\alpha \geq \alpha_{0}>0$, where x_{α}^{τ} is the solution of (7).

Proof. Single-valued solvability of the inequality (7) implies the continuity property of the function $\rho(\alpha)$. Let $\alpha_{1}, \alpha_{2} \geq \alpha_{0}$ be arbitrary ($\alpha_{0}>0$). It follows from (7) that

$$
\begin{align*}
\alpha_{1}\left\langle U^{s}\left(x_{\alpha_{1}}^{\tau}-x_{*}\right), x_{\alpha_{2}}^{\tau}-x_{\alpha_{1}}^{\tau}\right\rangle & +\alpha_{2}\left\langle U^{s}\left(x_{\alpha_{2}}^{\tau}-x_{*}\right), x_{\alpha_{1}}^{\tau}-x_{\alpha_{2}}^{\tau}\right\rangle \\
& +\left\langle A_{h} x_{\alpha_{1}}^{\tau}-A_{h} x_{\alpha_{2}}^{\tau}, x_{\alpha_{2}}^{\tau}-x_{\alpha_{1}}^{\tau}\right\rangle \tag{31}\\
& \geq-\mu\left(g\left(\left\|x_{\alpha_{1}}^{\tau}\right\|\right)+g\left(\left\|x_{\alpha_{2}}^{\tau}\right\|\right)\right)\left\|x_{\alpha_{1}}^{\tau}-x_{\alpha_{2}}^{\tau}\right\|,
\end{align*}
$$

where $x_{\alpha_{1}}^{\tau}$ and $x_{\alpha_{2}}^{\tau}$ are solutions of (7) with $\alpha=\alpha_{1}$ and $\alpha=\alpha_{2}$. Using the condition (2) and the monotonicity of A, we have

$$
\begin{aligned}
\alpha_{1}\left\langle U^{s}\left(x_{\alpha_{1}}^{\tau}-x_{*}\right)\right. & \left.-U^{s}\left(x_{\alpha_{2}}^{\tau}-x_{*}\right), x_{\alpha_{1}}^{\tau}-x_{\alpha_{2}}^{\tau}\right\rangle \\
& \leq\left(\alpha_{2}-\alpha_{1}\right)\left\langle U^{s}\left(x_{\alpha_{2}}^{\tau}-x_{*}\right), x_{\alpha_{1}}^{\tau}-x_{\alpha_{2}}^{\tau}\right\rangle \\
& +(h+\mu)\left(g\left(\left\|x_{\alpha_{1}}^{\tau}\right\|\right)+g\left(\left\|x_{\alpha_{2}}^{\tau}\right\|\right)\right)\left\|x_{\alpha_{1}}^{\tau}-x_{\alpha_{2}}^{\tau}\right\| .
\end{aligned}
$$

It follows from (13) and the last inequality that

$$
m_{s}\left\|x_{\alpha_{1}}^{\tau}-x_{\alpha_{2}}^{\tau}\right\|^{s} \leq \frac{\left|\alpha_{1}-\alpha_{2}\right|}{\alpha_{0}}\left\|x_{\alpha_{2}}^{\tau}-x_{*}\right\|^{s-1}+(h+\mu)\left(g\left(\left\|x_{\alpha_{1}}^{\tau}\right\|\right)+g\left(\left\|x_{\alpha_{2}}^{\tau}\right\|\right)\right) .
$$

Obviously, $x_{\alpha_{1}}^{\tau} \rightarrow x_{\alpha_{2}}^{\tau}$ as $\mu \rightarrow 0$ and $\alpha_{1} \rightarrow \alpha_{2}$. It means that the function $\left\|x_{\alpha}^{\tau}-x_{*}\right\|^{s-1}$ is continuous on $\left[\alpha_{0} ;+\infty\right)$. Therefore, $\rho(\alpha)$ is also continuous on $\left[\alpha_{0} ;+\infty\right)$.

Theorem 2.2. Let X and X^{*} be strictly convex Banach spaces and $A: X \rightarrow X^{*}$ be a monotone-bounded hemicontinuous operator with $D(A)=X$. Assume that conditions (1)-(3) are satisfied, the operator U^{s} satisfies condition (13). Then
(i) there exists at least a solution $\tilde{\alpha}$ of the equation (30),
(ii) let $\mu, \delta, \varepsilon \rightarrow 0$. Then
(1) $\tilde{\alpha} \rightarrow 0$;
(2) if $0<p<q$ then $\frac{\mu+\delta+\varepsilon}{\tilde{\alpha}} \rightarrow 0, x_{\tilde{\alpha}}^{\tau} \rightarrow x_{0} \in S_{0}$ with x_{*}-minimal norm and there exist constants $C_{1}, C_{2}>0$ such that for sufficiently small $\mu, \delta, \varepsilon>0$ the relation

$$
\begin{equation*}
C_{1} \leq(\mu+\delta+\varepsilon)^{p} \tilde{\alpha}^{-1-q} \leq C_{2} \tag{32}
\end{equation*}
$$

holds.

Proof.

(i) For $0<\alpha<1$, it follows from (7) that

$$
\begin{aligned}
\left\langle A_{h} x_{\alpha}^{\tau}+\alpha U^{s}\left(x_{\alpha}^{\tau}-x_{*}\right)-f_{\delta}, x_{*}-x_{\alpha}^{\tau}\right\rangle & +\varphi_{\varepsilon}\left(x_{*}\right)-\varphi_{\varepsilon}\left(x_{\alpha}^{\tau}\right) \\
& \geq-\mu g\left(\left\|x_{\alpha}^{\tau}\right\|\right)\left\|x_{*}-x_{\alpha}^{\tau}\right\| .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\alpha\left\langleU ^ { s } \left(x_{\alpha}^{\tau}\right.\right. & \left.\left.-x_{*}\right), x_{\alpha}^{\tau}-x_{*}\right\rangle \leq \mu g\left(\left\|x_{\alpha}^{\tau}\right\|\right)\left\|x_{*}-x_{\alpha}^{\tau}\right\|+\varphi_{\varepsilon}\left(x_{*}\right)-\varphi_{\varepsilon}\left(x_{\alpha}^{\tau}\right) \\
& +\left\langle A_{h} x_{\alpha}^{\tau}-A x_{\alpha}^{\tau}+A x_{\alpha}^{\tau}-A x_{*}+A x_{*}-f+f-f_{\delta}, x_{*}-x_{\alpha}^{\tau}\right\rangle .
\end{aligned}
$$

We invoke the condition (1), the monotonicity of $A,(8),(10),(12)$, and the last inequality to deduce that

$$
\begin{equation*}
\alpha\left\|x_{\alpha}^{\tau}-x_{*}\right\|^{s-1} \leq(h+\mu) g\left(\left\|x_{\alpha}^{\tau}\right\|\right)+C_{0}+\left\|A x_{*}-f\right\|+\delta . \tag{33}
\end{equation*}
$$

It follows from (33) and the form of $\rho(\alpha)$ that

$$
\begin{aligned}
\alpha^{q} \rho(\alpha) & =\alpha^{1+q}\left(c+\left\|x_{\alpha}^{\tau}-x_{*}\right\|^{s-1}\right) \\
& =c \alpha^{1+q}+\alpha^{q} \times \alpha\left\|x_{\alpha}^{\tau}-x_{*}\right\|^{s-1} \\
& \leq c \alpha^{1+q}+\alpha^{q}\left[(h+\mu) g\left(\left\|x_{\alpha}^{\tau}\right\|\right)+C_{0}+\left\|A x_{*}-f\right\|+\delta\right] .
\end{aligned}
$$

Therefore, $\lim _{\alpha \rightarrow+0} \alpha^{q} \rho(\alpha)=0$.
On the other hand,

$$
\lim _{\alpha \rightarrow+\infty} \alpha^{q} \rho(\alpha) \geq c \lim _{\alpha \rightarrow+\infty} \alpha^{1+q}=+\infty
$$

Since $\rho(\alpha)$ is continuous, there exists at leat one $\tilde{\alpha}$ which satisfies (30).
(ii) It follows from (30) and the form of $\rho(\tilde{\alpha})$ that

$$
\tilde{\alpha} \leq c^{-1 /(1+q)}(\mu+\delta+\varepsilon)^{p /(1+q)}
$$

Therefore, $\tilde{\alpha} \rightarrow 0$ as $\mu, \delta, \varepsilon \rightarrow 0$.
If $0<p<q$, it follows from (30) and (32) that

$$
\begin{aligned}
{\left[\frac{\mu+\delta+\varepsilon}{\tilde{\alpha}}\right]^{p} } & =\left[(\mu+\delta+\varepsilon)^{p} \tilde{\alpha}^{-q}\right] \tilde{\alpha}^{q-p} \\
& =\left[c \tilde{\alpha}+\tilde{\alpha}\left\|x_{\tilde{\alpha}}^{\tau}-x_{*}\right\|^{s-1}\right] \tilde{\alpha}^{q-p} \\
& \leq c \tilde{\alpha}^{1+q-p}+\tilde{\alpha}^{q-p}\left[2 \mu g\left(\left\|x_{\tilde{\alpha}}^{\tau}\right\|\right)+C_{0}+\left\|A x_{*}-f\right\|+\delta\right] .
\end{aligned}
$$

So,

$$
\lim _{\mu, \delta, \varepsilon \rightarrow 0}\left[\frac{\mu+\delta+\varepsilon}{\tilde{\alpha}}\right]^{p}=0
$$

By Theorem 2.1 the sequence $x_{\tilde{\alpha}}^{\tau}$ converges to $x_{0} \in S_{0}$ with x_{*}-minimal norm as μ, δ, $\varepsilon \rightarrow 0$.

Clearly,

$$
(\mu+\delta+\varepsilon)^{p} \tilde{\alpha}^{-1-q}=\tilde{\alpha}^{-1} \rho(\tilde{\alpha})=\left(c+\left\|x_{\tilde{\alpha}}^{\tau}-x_{*}\right\|^{s-1}\right),
$$

therefore, there exists a positive constant C_{2} such that (32). On the other hand, because $c>0$ so there exists a positive constant C_{1} satisfied (32). This finishes the proof.

Theorem 2.3. Let X be a strictly convex Banach space and A be a monotonebounded hemicontinuous operator with $D(A)=X$. Suppose that
(i) for each $h, \delta, \varepsilon>0$ conditions (1)-(3) are satisfied;
(ii) U^{\S} satisfies condition (13);
(iii) A is an inverse-strongly monotone operator from X into X^{*}, Fréchet differentiable at some neighborhood of $x_{0} \in S_{0}$ and satisfies

$$
\begin{equation*}
\left\|A(x)-A\left(x_{0}\right)-A^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)\right\| \leq \tilde{\tau}\left\|A(x)-A\left(x_{0}\right)\right\| ; \tag{34}
\end{equation*}
$$

(iv) there exists $z \in X$ such that

$$
A^{\prime}\left(x_{0}\right)^{*} z=U^{s}\left(x_{0}-x_{*}\right) ;
$$

then, if the parameter $\alpha=\alpha(\mu, \delta, \varepsilon)$ is chosen by (30) with $0<p<q$, we have

$$
\left\|x_{\alpha(\mu, \delta, \varepsilon)}^{\tau}-x_{0}\right\|=O\left((\mu+\delta+\varepsilon)^{\mu_{1}}\right), \quad \mu_{1}=\frac{1}{1+q} \min \left\{\frac{1+q-p}{s}, \frac{p}{2 s}\right\} .
$$

Proof. By an argument analogous to that used for the proof of the first part of Theorem 2.1, we have (21). The boundedness of the sequence $\left\{x_{\alpha}^{\tau}\right\}$ follows from (21) and the properties of $g(t), d(t)$ and α. On the other hand, based on (20), the property of U^{s} and the inverse-strongly monotone property of A we get that

$$
\begin{aligned}
\left\|A\left(x_{\alpha}^{\tau}\right)-A\left(x_{0}\right)\right\|^{2} \leq m_{A}^{-1}\left\{\left[(h+\mu) g\left(\left\|x_{\alpha}^{\tau}\right\|\right)\right.\right. & \left.+\delta+\alpha\left\|x_{\alpha}^{\tau}-x_{*}\right\|^{s-1}\right]\left\|x_{0}-x_{\alpha}^{\tau}\right\| \\
& \left.+\varepsilon\left[d\left(\left\|x_{0}\right\|\right)+d\left(\left\|x_{\alpha}^{\tau}\right\|\right)\right]\right\} .
\end{aligned}
$$

Hence,

$$
\left\|A\left(x_{\alpha}^{\tau}\right)-A\left(x_{0}\right)\right\|=O(\sqrt{\delta+\mu+\varepsilon+\alpha}) .
$$

Further, by virtue of conditions (iii), (iv) and the last estimate, we obtain

$$
\begin{aligned}
\left\langle U^{s}\left(x_{0}-x_{*}\right), x_{0}-x_{\alpha}^{\tau}\right\rangle & =\left\langle z, A^{\prime}\left(x_{0}\right)\left(x_{0}-x_{\alpha}^{\tau}\right)\right\rangle \\
& \leq\|z\|(\tilde{\tau}+1)\left\|A\left(x_{\alpha}^{\tau}\right)-A\left(x_{0}\right)\right\| \\
& \leq\|z\|(\tilde{\tau}+1) O(\sqrt{\delta+\mu+\varepsilon+\alpha}) .
\end{aligned}
$$

Consequently, (21) has the form

$$
\begin{align*}
m_{s}\left\|x_{\alpha}^{\tau}-x_{0}\right\|^{s} \leq & \frac{2 \mu g\left(\left\|x_{\alpha}^{\tau}\right\|\right)+\delta}{\alpha}\left\|x_{0}-x_{\alpha}^{\tau}\right\| \\
& +\|z\|(\tilde{\tau}+1) O(\sqrt{\delta+\mu+\varepsilon+\alpha}) \tag{35}\\
& +\frac{\varepsilon}{\alpha}\left[d\left(\left\|x_{0}\right\|\right)+d\left(\left\|x_{\alpha}^{\tau}\right\|\right)\right] .
\end{align*}
$$

When α is chosen by (30), it follows from Theorem 2.1 that

$$
\alpha(\mu, \delta, \varepsilon) \leq C_{1}^{-1 /(1+q)}(\mu+\delta+\varepsilon)^{p /(1+q)}
$$

and

$$
\begin{aligned}
\frac{\mu+\delta+\varepsilon}{\alpha(\mu, \delta, \varepsilon)} & \leq C_{2}(\mu+\delta+\varepsilon)^{1-p} \alpha^{q}(\mu, \delta, \varepsilon) \\
& \leq C_{2} C_{1}^{-q /(1+q)}(\mu+\delta+\varepsilon)^{1-p /(1+q)}
\end{aligned}
$$

Therefore, it follows from (35) that

$$
\begin{aligned}
m_{s}\left\|x_{\alpha(\mu, \delta, \varepsilon)}^{\tau}-x_{0}\right\|^{s} \leq & \tilde{C}_{1}(\mu+\delta+\varepsilon)^{1-p /(1+q)}\left\|x_{\alpha(\mu, \delta, \varepsilon)}^{\tau}-x_{0}\right\| \\
& +\tilde{C}_{2}(\mu+\delta+\varepsilon)^{1-p /(1+q)}+\tilde{C}_{3}(\mu+\delta+\varepsilon)^{p / 2(1+q)},
\end{aligned}
$$

where $\tilde{C}_{i}, i=1,2,3$, are the positive constants. Using the implication

$$
a, b, c \geq 0, \quad s>t, \quad a^{s} \leq b a^{t}+c \Rightarrow a^{s}=O\left(b^{s /(s-t)}+c\right)
$$

we obtain

$$
\left\|x_{\alpha(\mu, \delta, \varepsilon)}^{\tau}-x_{0}\right\|=O\left((\mu+\delta+\varepsilon)^{\mu_{1}}\right) .
$$

Remark 2.1 If α is chosen a priori such that $\alpha \sim(\mu+\delta+\varepsilon)^{\eta}, 0<\eta<1$, it follows from (35) that

$$
\begin{aligned}
m_{s}\left\|x_{\alpha(\mu, \delta, \varepsilon)}^{\tau}-x_{0}\right\|^{s} \leq & \tilde{C}_{4}(\mu+\delta+\varepsilon)^{1-\eta}\left\|x_{0}-x_{\alpha(\mu, \delta, \varepsilon)}^{\tau}\right\| \\
& +\tilde{C}_{5}(\mu+\delta+\varepsilon)^{\eta / 2}+\tilde{C}_{6}(\mu+\delta+\varepsilon)^{1-\eta} .
\end{aligned}
$$

Therefore,

$$
\left\|x_{\alpha(\mu, \delta, \varepsilon)}^{\tau}-x_{0}\right\|=O\left((\mu+\delta+\varepsilon)^{\mu_{2}}\right), \quad \mu_{2}=\min \left\{\frac{1-\eta}{s}, \frac{\eta}{2 s}\right\} .
$$

Remark 2.2 Condition (34) was proposed in [13] for studying convergence analysis of the Landweber iteration method for a class of nonlinear operators. This condition is used to estimate convergence rates of regularized solutions of ill-posed variational inequalities in [14].
Remark 2.3 The generalized discrepancy principle for regularization parameter choice is presented in [15] for the ill-posed operator equation (4) when A is a linear and bounded operator in Hilbert space. It is considered and applied to estimating convergence rates of the regularized solution for equation (4) involving an accretive operator in [16].

Competing interests

The author declares that they have no competing interests
Received: 10 February 2011 Accepted: 21 July 2011 Published: 21 July 2011

References

1. Badriev, IB, Zadvornov, OA, Ismagilov, LN: On iterative regularization methods for variational inequalities of the second kind with pseudomonotone operators. Comput Meth Appl Math. 3(2), 223-234 (2003)
2. Konnov, IV: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2001)
3. Konnov, IV, Volotskaya, EO: Mixed variational inequalities and economic equilibrium problems. J Appl Math. 2(6), 289-314 (2002). doi:10.1155/S1110757X02106012
4. Ekeland, I, Temam, R: Convex Analysis and Variational Problems. North-Holland Publ. Company, Amsterdam (1970)
5. Noor, MA: Proximal methods for mixed variational inequalities. J Opt Theory Appl. 115(2), 447-452 (2002). doi:10.1023/ A: 1020848524253
6. Cohen, G: Auxiliary problem principle extended to variational inequalities. J Opt Theory Appl. 59(2), 325-333 (1988)
7. Liskovets, OA: Regularization for ill-posed mixed variational inequalities. Soviet Math Dokl 43, 384-387 (1991) (in Russian)
8. Buong, Ng , Thuy, Ng TT: On regularization parameter choice and convergence rates in regularization for ill-posed mixed variational inequalities. Int J Contemporary Math Sci. 4(3), 181-198 (2008)
9. Alber, Yal, Ryazantseva, IP: Nonlinear III-Posed Problems of Monotone Type. Springer, New York (2006)
10. Liu, F, Nashed, MZ: Regularization of nonlinear ill-posed variational inequalities and convergence rates. Set-Valued Anal. 6, 313-344 (1998). doi:10.1023/A:1008643727926
11. Zeidler, E: Nonlinear Functional Analysis and Its Applications. Springer, New York (1985)
12. Alber, Yal, Notik, Al: Geometric properties of Banach spaces and approximate methods for solving nonlinear operator equations. Soviet Math Dokl. 29, 611-615 (1984)
13. Hanke, M, Neubauer, A, Scherzer, O: A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer Math. 72, 21-37 (1995). doi:10.1007/s002110050158
14. Buong, Ng: Convergence rates in regularization for ill-posed variational inequalities. CUBO, Math J. 21(3), 87-94 (2005)
15. Engl, HW: Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates. J Opt Theory Appl. 52, 209-215 (1987). doi:10.1007/BF00941281
16. Buong, Ng: Generalized discrepancy principle and ill-posed equation involving accretive operators. J Nonlinear Funct Anal Appl Korea. 9, 73-78 (2004)
[^0]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]: doi:10.1186/1029-242X-2011-25
 Cite this article as: Thuy: Regularization of ill-posed mixed variational inequalities with non-monotone perturbations. Journal of Inequalities and Applications 2011 2011:25

