Skip to main content
Log in

Considerations in designing systems for large scale production of human cardiomyocytes from pluripotent stem cells

  • Review
  • Published:
Stem Cell Research & Therapy Aims and scope Submit manuscript

Abstract

Human pluripotent stem cell (hPSC)-derived cardiomyocytes have attracted attention as an unlimited source of cells for cardiac therapies. One of the factors to surmount to achieve this is the production of hPSC-derived cardiomyocytes at a commercial or clinical scale with economically and technically feasible platforms. Given the limited proliferation capacity of differentiated cardiomyocytes and the difficulties in isolating and culturing committed cardiac progenitors, the strategy for cardiomyocyte production would be biphasic, involving hPSC expansion to generate adequate cell numbers followed by differentiation to cardiomyocytes for specific applications. This review summarizes and discusses up-to-date two-dimensional cell culture, cell-aggregate and microcarrier-based platforms for hPSC expansion. Microcarrier-based platforms are shown to be the most suitable for up-scaled production of hPSCs. Subsequently, different platforms for directing hPSC differentiation to cardiomyocytes are discussed. Monolayer differentiation can be straightforward and highly efficient and embryoid body-based approaches are also yielding reasonable cardiomyocyte efficiencies, whereas microcarrier-based approaches are in their infancy but can also generate high cardiomyocyte yields. The optimal target is to establish an integrated scalable process that combines hPSC expansion and cardiomyocyte differentiation into a one unit operation. This review discuss key issues such as platform selection, bioprocess parameters, medium development, downstream processing and parameters that meet current good manufacturing practice standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

BMP:

Bone morphogenetic protein

cGMP:

current good manufacturing practice

cTnT:

cardiac troponin T

EB:

Embryoid body

ECM:

Extracellular matrix

hESC:

human embryonic stem cell

hiPSC:

human induced pluripotent stem cell

hPSC:

human pluripotent stem cell

MLC2:

Myosin light chain 2

RT-PCR:

Reverse transcriptase-polymerase chain reaction

TGF:

Transforming growth factor.

References

  1. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Soliman EZ: Executive summary: heart disease and stroke statistics - 2012 update: a report from the American Heart Association. Circulation. 2012, 125: 188-197.

    Article  PubMed  Google Scholar 

  2. Nugent HM, Edelman ER: Tissue engineering therapy for cardiovascular disease. Circ Res. 2003, 92: 1068-1078.

    Article  CAS  PubMed  Google Scholar 

  3. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J: Evidence for cardiomyocyte renewal in humans. Science. 2009, 324: 98-102.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Anversa P, Kajstura J, Leri A, Bolli R: Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation. 2006, 113: 1451-1463.

    Article  PubMed  Google Scholar 

  5. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P: Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003, 114: 763-776.

    Article  CAS  PubMed  Google Scholar 

  6. Anversa P, Leri A, Kajstura J: Cardiac regeneration. J Am Coll Cardiol. 2006, 47: 1769-1776.

    Article  PubMed  Google Scholar 

  7. Ameen C, Strehl R, Bjorquist P, Lindahl A, Hyllner J, Sartipy P: Human embryonic stem cells: current technologies and emerging industrial applications. Crit Rev Oncol Hematol. 2008, 65: 54-80.

    Article  PubMed  Google Scholar 

  8. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N: Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med. 2000, 6: 88-95.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Zwi L, Caspi O, Arbel G, Huber I, Gepstein A, Park IH, Gepstein L: Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation. 2009, 120: 1513-1523.

    Article  CAS  PubMed  Google Scholar 

  10. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O'Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE: Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007, 25: 1015-1024.

    Article  CAS  PubMed  Google Scholar 

  11. Leor J, Gerecht S, Cohen S, Miller L, Holbova R, Ziskind A, Shachar M, Feinberg MS, Guetta E, Itskovitz-Eldor J: Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart. 2007, 93: 1278-1284.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, Yankelson L, Aronson D, Beyar R, Gepstein L: Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol. 2007, 50: 1884-1893.

    Article  PubMed  Google Scholar 

  13. van Laake LW, Passier R, den Ouden K, Schreurs C, Monshouwer-Kloots J, Ward-van Oostwaard D, van Echteld CJ, Doevendans PA, Mummery CL: Improvement of mouse cardiac function by hESC-derived cardiomyocytes correlates with vascularity but not graft size. Stem Cell Res. 2009, 3: 106-112.

    Article  PubMed  Google Scholar 

  14. van Laake LW, Passier R, Monshouwer-Kloots J, Verkleij AJ, Lips DJ, Freund C, den Ouden K, Ward-van Oostwaard D, Korving J, Tertoolen LG, van Echteld CJ, Doevendans PA, Mummery CL: Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res. 2007, 1: 9-24.

    Article  PubMed  Google Scholar 

  15. Laflamme MA, Murry CE: Regenerating the heart. Nat Biotechnol. 2005, 23: 845-856.

    Article  CAS  PubMed  Google Scholar 

  16. Kola I, Landis J: Can the pharmaceutical industry reduce attrition rates?. Nat Rev Drug Discov. 2004, 3: 711-715.

    Article  CAS  PubMed  Google Scholar 

  17. Braam SR, Tertoolen L, van de Stolpe A, Meyer T, Passier R, Mummery CL: Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res. 2010, 4: 107-116.

    Article  CAS  PubMed  Google Scholar 

  18. Davis RP, van den Berg CW, Casini S, Braam SR, Mummery CL: Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development. Trends Mol Med. 2011, 17: 475-484.

    Article  CAS  PubMed  Google Scholar 

  19. Carvajal-Vergara X, Sevilla A, D'Souza SL, Ang YS, Schaniel C, Lee DF, Yang L, Kaplan AD, Adler ED, Rozov R, Ge Y, Cohen N, Edelmann LJ, Chang B, Waghray A, Su J, Pardo S, Lichtenbelt KD, Tartaglia M, Gelb BD, Lemischka IR: Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature. 2010, 465: 808-812.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flugel L, Dorn T, Goedel A, Hohnke C, Hofmann F, Seyfarth M, Sinnecker D, Schomig A, Laugwitz KL: Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med. 2010, 363: 1397-1409.

    Article  CAS  PubMed  Google Scholar 

  21. Novak A, Barad L, Zeevi-Levin N, Shick R, Shtrichman R, Lorber A, Itskovitz-Eldor J, Binah O: Cardiomyocytes generated from CPVTD307H patients are arrhythmogenic in response to beta-adrenergic stimulation. J Cell Mol Med. 2012, 16: 468-482.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Braam SR, Passier R, Mummery CL: Cardiomyocytes from human pluripotent stem cells in regenerative medicine and drug discovery. Trends Pharmacol Sci. 2009, 30: 536-545.

    Article  CAS  PubMed  Google Scholar 

  23. Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, Ellis J, Keller G: Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 2011, 8: 228-240.

    Article  CAS  PubMed  Google Scholar 

  24. Elliott DA, Braam SR, Koutsis K, Ng ES, Jenny R, Lagerqvist EL, Biben C, Hatzistavrou T, Hirst CE, Yu QC, Skelton RJ, Ward-van Oostwaard D, Lim SM, Khammy O, Li X, Hawes SM, Davis RP, Goulburn AL, Passier R, Prall OW, Haynes JM, Pouton CW, Kaye DM, Mummery CL, Elefanty AG, Stanley EG: NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat Methods. 2011, 8: 1037-1040.

    Article  CAS  PubMed  Google Scholar 

  25. Wong SS, Bernstein HS: Cardiac regeneration using human embryonic stem cells: producing cells for future therapy. Regen Med. 2010, 5: 763-775.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Wang WE, Chen X, Houser SR, Zeng C: Potential of cardiac stem/progenitor cells and induced pluripotent stem cells for cardiac repair in ischaemic heart disease. Clin Sci. 2013, 125: 319-327.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Matsuura K, Wada M, Shimizu T, Haraguchi Y, Sato F, Sugiyama K, Konishi K, Shiba Y, Ichikawa H, Tachibana A, Ikeda U, Yamato M, Hagiwara N, Okano T: Creation of human cardiac cell sheets using pluripotent stem cells. Biochem Biophys Res Commun. 2012, 425: 321-327.

    Article  CAS  PubMed  Google Scholar 

  28. Lecina M, Ting S, Choo A, Reuveny S, Oh S: Scalable platform for hESC differentiation to cardiomyocytes in suspended microcarrier cultures. Tissue Eng Part C Methods. 2010, 16: 1609-1619.

    Article  CAS  PubMed  Google Scholar 

  29. Rowley J, Abraham E, Campbell A, Brandwein H, Oh S: Meeting lot-size challenges of manufacturing adherent cells for therapy. BioProcess Int. 2012, 10: 16-22.

    CAS  Google Scholar 

  30. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O'Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE: Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007, 25: 1015-1024.

    Article  CAS  PubMed  Google Scholar 

  31. Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S, Yamashita JK: Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS ONE. 2011, 6: e23657-

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Woll PS, Morris JK, Painschab MS, Marcus RK, Kohn AD, Biechele TL, Moon RT, Kaufman DS: Wnt signaling promotes hematoendothelial cell development from human embryonic stem cells. Blood. 2008, 111: 122-131.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou Y, Dolley-Sonneville P, Yang J, Qiu L, Priest CA, Shogbon C, Martin AW, Nelson J, West P, Beltzer JP, Pal S, Brandenberger R: Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol. 2010, 28: 606-610.

    Article  CAS  PubMed  Google Scholar 

  34. Hudson J, Titmarsh D, Hidalgo A, Wolvetang E, Cooper-White J: Primitive cardiac cells from human embryonic stem cells. Stem Cells Dev. 2012, 21: 1513-1523.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Q, Jiang J, Han P, Yuan Q, Zhang J, Zhang X, Xu Y, Cao H, Meng Q, Chen L, Tian T, Wang X, Li P, Hescheler J, Ji G, Ma Y: Direct differentiation of atrial and ventricular myocytes from human embryonic stem cells by alternating retinoid signals. Cell Res. 2011, 21: 579-587.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Cao N, Liang H, Huang J, Wang J, Chen Y, Chen Z, Yang HT: Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions. Cell Res. 2013, 23: 1119-1132.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Ye L, Zhang S, Greder L, Dutton J, Keirstead SA, Lepley M, Zhang L, Kaufman D, Zhang J: Effective cardiac myocyte differentiation of human induced pluripotent stem cells requires VEGF. PLoS ONE. 2013, 8: e53764-

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ, Palecek SP: Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A. 2012, 109: E1848-E1857.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Moon SH, Ban K, Kim C, Kim SS, Byun J, Song MK, Park IH, Yu SP, Yoon YS: Development of a novel two-dimensional directed differentiation system for generation of cardiomyocytes from human pluripotent stem cells. Int J Cardiol. 2013, 168: 41-52.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Minami I, Yamada K, Otsuji TG, Yamamoto T, Shen Y, Otsuka S, Kadota S, Morone N, Barve M, Asai Y, Tenkova-Heuser T, Heuser JE, Uesugi M, Aiba K, Nakatsuji N: A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions. Cell reports. 2012, 2: 1448-1460.

    Article  CAS  PubMed  Google Scholar 

  41. Burridge PW, Anderson D, Priddle H, Barbadillo Munoz MD, Chamberlain S, Allegrucci C, Young LE, Denning C: Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights interline variability. Stem Cells. 2007, 25: 929-938.

    Article  CAS  PubMed  Google Scholar 

  42. Niebruegge S, Nehring A, Bar H, Schroeder M, Zweigerdt R, Lehmann J: Cardiomyocyte production in mass suspension culture: embryonic stem cells as a source for great amounts of functional cardiomyocytes. Tissue Eng Part A. 2008, 14: 1591-1601.

    Article  CAS  PubMed  Google Scholar 

  43. Takei S, Ichikawa H, Johkura K, Mogi A, No H, Yoshie S, Tomotsune D, Sasaki K: Bone morphogenetic protein-4 promotes induction of cardiomyocytes from human embryonic stem cells in serum-based embryoid body development. Am J Physiol Heart Circ Physiol. 2009, 296: H1793-H1803.

    Article  CAS  PubMed  Google Scholar 

  44. Cao N, Liu Z, Chen Z, Wang J, Chen T, Zhao X, Ma Y, Qin L, Kang J, Wei B, Wang L, Jin Y, Yang HT: Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells. Cell Res. 2012, 22: 219-236.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Ren Y, Lee MY, Schliffke S, Paavola J, Amos PJ, Ge X, Ye M, Zhu S, Senyei G, Lum L, Ehrlich BE, Qyang Y: Small molecule Wnt inhibitors enhance the efficiency of BMP-4-directed cardiac differentiation of human pluripotent stem cells. J Mol Cell Cardiol. 2011, 51: 280-287.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Graichen R, Xu X, Braam SR, Balakrishnan T, Norfiza S, Sieh S, Soo SY, Tham SC, Mummery C, Colman A, Zweigerdt R, Davidson BP: Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation. 2008, 76: 357-370.

    Article  CAS  PubMed  Google Scholar 

  47. Gai H, Leung EL, Costantino PD, Aguila JR, Nguyen DM, Fink LM, Ward DC, Ma Y: Generation and characterization of functional cardiomyocytes using induced pluripotent stem cells derived from human fibroblasts. Cell Biol Int. 2009, 33: 1184-1193.

    Article  CAS  PubMed  Google Scholar 

  48. Gaur M, Ritner C, Sievers R, Pedersen A, Prasad M, Bernstein HS, Yeghiazarians Y: Timed inhibition of p38MAPK directs accelerated differentiation of human embryonic stem cells into cardiomyocytes. Cytotherapy. 2010, 12: 807-817.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Willems E, Spiering S, Davidovics H, Lanier M, Xia Z, Dawson M, Cashman J, Mercola M: Small-molecule inhibitors of the Wnt pathway potently promote cardiomyocytes from human embryonic stem cell-derived mesoderm. Circ Res. 2011, 109: 360-364.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM: Human cardiovascular progenitor cells develop from a KDR+embryonic-stem-cell-derived population. Nature. 2008, 453: 524-528.

    Article  CAS  PubMed  Google Scholar 

  51. Tran TH, Wang X, Browne C, Zhang Y, Schinke M, Izumo S, Burcin M: Wnt3a-induced mesoderm formation and cardiomyogenesis in human embryonic stem cells. Stem Cells. 2009, 27: 1869-1878.

    Article  CAS  PubMed  Google Scholar 

  52. Pal R, Mamidi MK, Das AK, Bhonde R: Comparative analysis of cardiomyocyte differentiation from human embryonic stem cells under 3-D and 2-D culture conditions. J Biosci Bioeng. 2013, 115: 200-206.

    Article  CAS  PubMed  Google Scholar 

  53. Sa S, McCloskey KE: Stage-specific cardiomyocyte differentiation method for H7 and H9 human embryonic stem cells. Stem Cell Rev. 2012, 8: 1120-1128.

    Article  CAS  PubMed  Google Scholar 

  54. Burridge PW, Thompson S, Millrod MA, Weinberg S, Yuan X, Peters A, Mahairaki V, Koliatsos VE, Tung L, Zambidis ET: A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PLoS ONE. 2011, 6: e18293-

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Shinozawa T, Furukawa H, Sato E, Takami K: A novel purification method of murine embryonic stem cell- and human-induced pluripotent stem cell-derived cardiomyocytes by simple manual dissociation. J Biomol Screen. 2012, 17: 683-691.

    Article  CAS  PubMed  Google Scholar 

  56. Chen VC, Couture SM, Ye J, Lin Z, Hua G, Huang HI, Wu J, Hsu D, Carpenter MK, Couture LA: Scalable GMP compliant suspension culture system for human ES cells. Stem Cell Res. 2012, 8: 388-402.

    Article  CAS  PubMed  Google Scholar 

  57. Jing D, Parikh A, Tzanakakis ES: Cardiac cell generation from encapsulated embryonic stem cells in static and scalable culture systems. Cell Transplant. 2010, 19: 1397-1412.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Singh H, Mok P, Balakrishnan T, Rahmat SNB, Zweigerdt R: Up-scaling single cell-inoculated suspension culture of human embryonic stem cells. Stem Cell Res. 2010, 4: 165-179.

    Article  CAS  PubMed  Google Scholar 

  59. Olmer R, Haase A, Merkert S, Cui W, Paleček J, Ran C, Kirschning A, Scheper T, Glage S, Miller K, Curnow EC, Hayes ES, Martin U: Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Res. 2010, 5: 51-64.

    Article  CAS  PubMed  Google Scholar 

  60. Amit M, Laevsky I, Miropolsky Y, Shariki K, Peri M, Itskovitz-Eldor J: Dynamic suspension culture for scalable expansion of undifferentiated human pluripotent stem cells. Nat Protocols. 2011, 6: 572-579.

    Article  CAS  PubMed  Google Scholar 

  61. O'Brien C, Laslett AL: Suspended in culture - human pluripotent cells for scalable technologies. Stem Cell Res. 2012, 9: 167-170.

    Article  PubMed  Google Scholar 

  62. Oh SKW, Chen AK, Mok Y, Chen X, Lim U-M, Chin A, Choo ABH, Reuveny S: Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res. 2009, 2: 219-230.

    Article  CAS  PubMed  Google Scholar 

  63. Bardy J, Chen A, Lim YM, Wu S, Wei S, Weiping H, Chan K, Reuveny S, Oh SKW: Microcarrier suspension cultures produce high yields of neural progenitor cells from human pluripotent stem cells. Tissue Eng Part C Methods. 2013, 19: 166-180.

    Article  CAS  PubMed  Google Scholar 

  64. Lock LT, Tzanakakis ES: Expansion and differentiation of human embryonic stem cells to endoderm progeny in a microcarrier stirred-suspension culture. Tissue Eng Part A. 2009, 15: 2051-2063.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Phillips BW, Horne R, Lay TS, Rust WL, Teck TT, Crook JM: Attachment and growth of human embryonic stem cells on microcarriers. J Biotechnol. 2008, 138: 24-32.

    Article  CAS  PubMed  Google Scholar 

  66. Chen A, Reuveny S, Oh SK: Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction. Biotechnol Adv. 2013, 31: 1032-1046.

    Article  PubMed  Google Scholar 

  67. Chen AK-L, Chen X, Choo ABH, Reuveny S, Oh SKW: Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res. 2011, 7: 97-111.

    Article  CAS  PubMed  Google Scholar 

  68. Nie Y, Bergendahl V, Hei DJ, Jones JM, Palecek SP: Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnol Prog. 2009, 25: 20-31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Heng BC, Li J, Chen AK-L, Reuveny S, Cool SM, Birch WR, Oh SK-W: Translating human embryonic stem cells from 2-dimensional to 3-dimensional cultures in a defined medium on laminin- and vitronectin-coated surfaces. Stem Cells Dev. 2012, 21: 1701-1715.

    Article  CAS  PubMed  Google Scholar 

  70. Medicinal and other products and human and animal transmissible spongiform encephalopathies: memorandum from a WHO meeting. Bull World Health Organ. 1997, 75: 505-513.

  71. Serra M, Brito C, Sousa MFQ, Jensen J, Tostões R, Clemente J, Strehl R, Hyllner J, Carrondo MJT, Alves PM: Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control. J Biotechnol. 2010, 148: 208-215.

    Article  CAS  PubMed  Google Scholar 

  72. Chen X, Chen A, Woo TL, Choo ABH, Reuveny S, Oh SKW: Investigations into the metabolism of two-dimensional colony and suspended microcarrier cultures of human embryonic stem cells in serum-free media. Stem Cells Dev. 2010, 19: 1781-1792.

    Article  CAS  PubMed  Google Scholar 

  73. Leung HW, Chen A, Choo A, Reuveny S, Oh S: Agitation can induce differentiation of human pluripotent stem cells in microcarrier cultures. Tissue Eng Part C Methods. 2010, 17: 165-172.

    Article  CAS  PubMed  Google Scholar 

  74. Ting S, Lecina M, Reuveny S, Oh S: Differentiation of human embryonic stem cells to cardiomyocytes on microcarrier cultures. Curr Protocols Stem Cell Biol. 2012, Chapter 1:Unit1D 7

    Google Scholar 

  75. Wagner M, Siddiqui MA: Signal transduction in early heart development (I): cardiogenic induction and heart tube formation. Exp Biol Med (Maywood). 2007, 232: 852-865.

    CAS  Google Scholar 

  76. Wagner M, Siddiqui MA: Signal transduction in early heart development (II): ventricular chamber specification, trabeculation, and heart valve formation. Exp Biol Med (Maywood). 2007, 232: 866-880.

    CAS  Google Scholar 

  77. Burridge PW, Keller G, Gold JD, Wu JC: Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell. 2012, 10: 16-28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Xu C: Differentiation and enrichment of cardiomyocytes from human pluripotent stem cells. J Mol Cell Cardiol. 2012, 52: 1203-1212.

    Article  CAS  PubMed  Google Scholar 

  79. Watabe T, Miyazono K: Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res. 2009, 19: 103-115.

    Article  CAS  PubMed  Google Scholar 

  80. Chen Y, Amende I, Hampton TG, Yang Y, Ke Q, Min JY, Xiao YF, Morgan JP: Vascular endothelial growth factor promotes cardiomyocyte differentiation of embryonic stem cells. Am J Physiol Heart Circ Physiol. 2006, 291: H1653-H1658.

    Article  CAS  PubMed  Google Scholar 

  81. Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, van der Heyden M, Opthof T, Pera M, de la Riviere AB, Passier R, Tertoolen L: Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation. 2003, 107: 2733-2740.

    Article  CAS  PubMed  Google Scholar 

  82. Bratt-Leal AM, Carpenedo RL, McDevitt TC: Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation. Biotechnol Prog. 2009, 25: 43-51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Denning C, Allegrucci C, Priddle H, Barbadillo-Munoz MD, Anderson D, Self T, Smith NM, Parkin CT, Young LE: Common culture conditions for maintenance and cardiomyocyte differentiation of the human embryonic stem cell lines, BG01 and HUES-7. Int J Dev Biol. 2006, 50: 27-37.

    Article  CAS  PubMed  Google Scholar 

  84. Peerani R, Rao BM, Bauwens C, Yin T, Wood GA, Nagy A, Kumacheva E, Zandstra PW: Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J. 2007, 26: 4744-4755.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Wang W, Ha CH, Jhun BS, Wong C, Jain MK, Jin ZG: Fluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS. Blood. 2010, 115: 2971-2979.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Dimmeler S, Assmus B, Hermann C, Haendeler J, Zeiher AM: Fluid shear stress stimulates phosphorylation of Akt in human endothelial cells: involvement in suppression of apoptosis. Circ Res. 1998, 83: 334-341.

    Article  CAS  PubMed  Google Scholar 

  87. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JM, Thomson JA: Chemically defined conditions for human iPSC derivation and culture. Nat Methods. 2011, 8: 424-429.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Ng ES, Davis R, Stanley EG, Elefanty AG: A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nat Protoc. 2008, 3: 768-776.

    Article  CAS  PubMed  Google Scholar 

  89. Van Hoof D, Dormeyer W, Braam SR, Passier R, Monshouwer-Kloots J, Ward-van Oostwaard D, Heck AJ, Krijgsveld J, Mummery CL: Identification of cell surface proteins for antibody-based selection of human embryonic stem cell-derived cardiomyocytes. J Proteome Res. 2010, 9: 1610-1618.

    Article  CAS  PubMed  Google Scholar 

  90. Choo AB, Tan HL, Ang SN, Fong WJ, Chin A, Lo J, Zheng L, Hentze H, Philp RJ, Oh SKW, Yap M: Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells. 2008, 26: 1454-1463.

    Article  CAS  PubMed  Google Scholar 

  91. Dubois NC, Craft AM, Sharma P, Elliott DA, Stanley EG, Elefanty AG, Gramolini A, Keller G: SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol. 2011, 29: 1011-1018.

    Article  CAS  PubMed  Google Scholar 

  92. Schriebl K, Satianegara G, Hwang A, Tan HL, Fong WJ, Yang HH, Jungbauer A, Choo A: Selective removal of undifferentiated human embryonic stem cells using magnetic activated cell sorting followed by a cytotoxic antibody. Tissue Eng Part A. 2012, 18: 899-909.

    Article  CAS  PubMed  Google Scholar 

  93. Tohyama S, Hattori F, Sano M, Hishiki T, Nagahata Y, Matsuura T, Hashimoto H, Suzuki T, Yamashita H, Satoh Y, Egashira T, Seki T, Muraoka N, Yamakawa H, Ohgino Y, Tanaka T, Yoichi M, Yuasa S, Murata M, Suematsu M, Fukuda K: Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell. 2013, 12: 127-137.

    Article  CAS  PubMed  Google Scholar 

  94. Zhu WZ, Xie Y, Moyes KW, Gold JD, Askari B, Laflamme MA: Neuregulin/ErbB signaling regulates cardiac subtype specification in differentiating human embryonic stem cells. Circ Res. 2010, 107: 776-786.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Chan YC, Ting S, Lee YK, Ng KM, Zhang J, Chen Z, Siu CW, Oh SK, Tse HF: Electrical stimulation promotes maturation of cardiomyocytes derived from human embryonic stem cells. J Cardiovasc Transl Res. 2013, 6: 989-999.

    Article  PubMed  Google Scholar 

  96. Fu JD, Rushing SN, Lieu DK, Chan CW, Kong CW, Geng L, Wilson KD, Chiamvimonvat N, Boheler KR, Wu JC, Keller G, Hajjar RJ, Li RA: Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes. PLoS ONE. 2011, 6: e27417-

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Xu C, Police S, Hassanipour M, Li Y, Chen Y, Priest C, O'Sullivan C, Laflamme MA, Zhu WZ, Van Biber B, Hegerova L, Yang J, Delavan-Boorsma K, Davies A, Lebkowski J, Gold JD: Efficient generation and cryopreservation of cardiomyocytes derived from human embryonic stem cells. Regen Med. 2011, 6: 53-66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Mordwinkin NM, Burridge PW, Wu JC: A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards. J Cardiovasc Transl Res. 2013, 6: 22-30.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Buikema J, van der Meer P, Sluijter JP, Domian IJ: Engineering myocardial tissue: the convergence of stem cells biology and tissue engineering technology. Stem Cells. 2013, in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Oh.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.

Authors’ original file for figure 1

Authors’ original file for figure 2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, A., Ting, S., Seow, J. et al. Considerations in designing systems for large scale production of human cardiomyocytes from pluripotent stem cells. Stem Cell Res Ther 5, 12 (2014). https://doi.org/10.1186/scrt401

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/scrt401

Keywords

Navigation