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Abstract 

Six wells were continuously monitored in Hokkaido, northern Japan, to relate groundwater level changes to regional 
seismic activity. Groundwater level changes following the 2018 Hokkaido Eastern Iburi earthquake were detected in 
three of the six wells, even though they are located hundreds of kilometers from the epicenter. The groundwater level 
changes are qualitatively consistent with the volumetric strain induced by the earthquake. We analyzed groundwater 
level responses to the M2 tidal constituent before and after the earthquake, but related changes in amplitude and 
phase shifts remained within the usual variation. Observed coseismic change was explained by the response to the 
M2 tidal constituent component and the calculated volumetric strain for one of the wells, where groundwater level 
decreased. The observed change in the other two was found to be much greater than the corresponding estimates of 
the volumetric strain.
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Introduction
Numerous case studies describe changes in groundwater 
level in boreholes and wells associated with earthquakes 
(e.g., Igarashi and Wakita 1991; Roeloffs 1996; Quilty and 
Roeloffs 1997; Akita and Matsumoto 2001, 2004; Manga 
and Wang 2007). These changes can be explained by sev-
eral processes, such as the response of pore pressure to 
coseismic strain changes (Wakita 1975; Muir-Wood and 
King 1993), changes in permeability due to seismic waves 
(Rojstaczer et al. 1995; Wang et al. 2004; Elkhoury et al. 
2006; Kinoshita et  al. 2015), and fluid and gas move-
ments in cracks or crustal fractures (Sibson and Rowland 
2003; Matsumoto and Roeloffs 2003). Sometimes, these 
changes are even measurable in wells located thousands 
of kilometers from the earthquake epicenter (Brodsky 

et  al. 2003; Montgomery and Manga 2003; Shi et  al. 
2015).

The 2018 Hokkaido Eastern Iburi earthquake, with 
a magnitude of 6.7, occurred in the central and eastern 
Iburi region, Hokkaido, Japan, on September 6th 2018 at 
03:07 Japan Standard Time (JST) (Japan Meteorological 
Agency 2018a). The hypocenter was located at a depth 
of 37 km, which may correspond to a complex crustal to 
upper mantle structure within the Hidaka arc–arc col-
lision system (Takahashi and Kimura 2019). The earth-
quake occurred on a reverse fault with an ENE–WSW 
compression axis. Here, we report changes in ground-
water levels associated with the 2018 Hokkaido Eastern 
Iburi earthquake, and the responses of the groundwa-
ter level to the M2 tidal constituent before and after the 
earthquake.
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Observation sites, data, and methods
The Geological Survey of Hokkaido of the Hokkaido 
Research Organization monitors groundwater levels in 
six wells located in different regions of the Island of Hok-
kaido, Japan (Fig. 1). The wells were drilled to exploit hot 
spring water, but have not been used for this purpose in 
the past 20  years (Table  1). Well depths range between 
120 and 1103 m below surface level. The corresponding 
aquifers, which are confined, are hosted by volcanic rocks 
and/or sedimentary rocks, and are barely affected by 
meteoric recharge, except for the shallow aquifer tapped 
by well ABT (Table  1). The fact that the wells are not 

perturbed by pumping or other anthropic actions allows 
them to be used to monitor possible changes in aqui-
fer pore pressure caused by local crustal stress changes. 
Groundwater levels were measured at each monitored 
well using pressure gauges with a resolution of approxi-
mately 5–10  mm, in 10  min intervals. Measurements 
were recorded on-site using data loggers (Kadec Series, 
Northone Co. Ltd.). 

The measured groundwater levels are plotted along 
with the atmospheric pressure and rainfall from Sep-
tember 2017 to December 2018 in Fig. 2, although some 
data are missing for wells ABT, TKC, and TSK. We also 
measured the atmospheric pressure on TKC and TSK 
sites, but for the others wells, atmospheric pressure and 
rainfall data were from the nearest observation sites of 
the Automated Meteorological Data Acquisition System 
(AMeDAS) (Japan Meteorological Agency 2018b). We 
also plotted residual groundwater levels in Fig.  2 which 
removed effects of tidal and atmospheric components 
from observed groundwater levels by using the BAYTAP-
G tidal analysis software (Tamura et  al. 1991). Changes 
in groundwater levels are all within 1 m except for wells 
ABT and JNS. We show the groundwater level changes 
during the earthquake in Fig. 3.

We calculated the volumetric strain change (Fig.  1) 
induced by the earthquake using the code of Okada 
(1992) and the fault model proposed for this seismic 
event (Geospatial Information Authority of Japan 2018). 
The wells for which groundwater level changes were 
observed are located in the area affected by the tensile 
change of the volumetric strain caused by the earth-
quake (Fig.  1). After the earthquake, step-like decreases 
in groundwater levels were detected for three of the 
wells (JNS, KTB and YCG; Fig. 3). This suggests that the 
changes in groundwater levels are qualitatively consistent 
with those of the volumetric strain (Koizumi et al. 2002).

The fluctuation in groundwater level is generally pro-
portional to the applied strain of a tidal component, and 
the response of groundwater level to this component is 
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Fig. 1  Locations of the monitored observation wells (ABT, JNS, 
KTB, TKC, TSK, and YCG; solid circles) and the epicenter of the 2018 
Hokkaido Eastern Iburi earthquake (solid star). Volumetric strain, 
indicated by contours extending from the epicenter, was calculated 
using the fault model of the earthquake (Geospatial Information 
Authority of Japan 2018). The gray area indicates tensile field

Table 1  Descriptions of the observation wells

Site Location Depth (m) Screen depth (m)

Latitude (°) Longitude (°) Altitude (m)

ABT 42.532 140.797 72.0 120 –

JNS 41.980 140.638 169.0 1103 570–1078

KTB 42.022 140.626 165.0 974 638–947

TKC 43.472 142.650 670.2 1000 476–1000

TSK 43.500 144.452 134.0 1030 619–1030

YCG​ 41.753 140.415 6.0 200 150–200
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directly related to the poroelastic characteristics of the 
aquifer (i.e., Jacob 1940; Hsieh et  al. 1987; Wang 2000). 
If the aquifer is confined, the relationship between the 

change in groundwater level, ∆h, and the volumet-
ric strain, ∆ε, is represented by the relationship (Wang 
2000):
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Fig. 2  Observed groundwater levels (black lines) in the monitored observation wells, along with residual groundwater levels (red lines) which 
removed effects of tidal and atmospheric components (green lines) and rainfall (blue lines) at 1-h intervals from September 2017 to December 
2018. The atmospheric pressure of wells TKC and TSK are measured on the sites, and the other atmospheric pressures and rainfalls are from the 
Automated Meteorological Data Acquisition System (AMeDAS; Japan Meteorological Agency 2018b). The dotted line indicates the timing of the 
earthquake
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Fig. 3  Observed groundwater levels in the monitored observation wells at 10-min intervals. The step-like decreases, which are highlighted 
between two horizontal lines around the time of the earthquake, are detected in wells JNS, KTB, and YCG. The dotted line indicates the timing of the 
earthquake
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where ∆p is the change in pore pressure of the aquifer, ρ 
is the density of water, and g is the acceleration of gravity. 
The right-hand term then becomes:

where ∆σ is the change in stress. If there is no change in 
water content, ∆σ/∆ε is described as the undrained com-
pressibility, or 1/βu, and ∆p/∆σ is the negative value of 
the Skempton’s coefficient, − B. The negative sign means 
conversion of pore pressure for stress, which means that 
a pore pressure increase corresponds to a decrease in 
stress. This latter term can be rewritten using several dif-
ferent compressibility terms (Rice and Cleary 1976; Wang 
2000):

and Eq. (1) then yields:

where φ is the porosity, and β, βs, βφ, and βf are the 
solid phase, unjacketed, pore, and water compress-
ibility, respectively. The response of groundwater level 
to volumetric strain can be expressed in terms of poros-
ity and compressibility variations within the aquifer. The 
response is known to fluctuate over time and with earth-
quakes or pumping tests (Matsumoto and Roeloffs 2003).
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Results and discussion
Changes in amplitude and phase shifts in response 
to the M2 tidal constituent
The observed groundwater level changes have tidal 
and atmospheric components. The effects of tidal and 
atmospheric components on the total groundwater level 
change were estimated and removed using the BAYTAP-
G tidal analysis software (Tamura et al. 1991). Theoreti-
cal volumetric strain at well sites related to tides was 
estimated using the GOTIC2 software (Matsumoto et al. 
2001), and is shown in Table 2. Because the fluctuation in 
groundwater level is generally proportional to the applied 
strain of a tidal component, the response of groundwater 
level to this component is directly related to the poroe-
lastic characteristics of the aquifer (i.e., Jacob 1940; Wang 
2000).

The response of groundwater level to the volumetric 
strain associated with the M2 tidal constituent (period: 
12.4206  h) was obtained every 31  days, from Septem-
ber 2017 to December 2018, using the BAYTAP-G soft-
ware. The average amplitude and phase at the six wells 
were also estimated (Table 2). The negative phase shifts 
denote a lag behind the equilibrium tide estimated by 
GOTIC2. Figure 4 shows the M2 amplitude changes and 
phase shifts with respect to the M2 constituent phase 
in GOTIC2 data at the six wells. The phase shift errors 
of well ABT are greater than those of the other wells, 
because of the shallow depth of the well. Well YCG is as 
shallow as ABT, but the well taps thermal water, which 
seems to rise from deeper aquifers (Okamoto et  al. 
1957). Here, the reference phase of the ocean tide for 
well YCG was used, because the phase is close to the 
ocean tide and well YCG is surrounded by the sea. In 
general, seismic waves often change the permeability 
and the amplitude responses and phase shifts for tidal 
components (Matsumoto and Roeloffs 2003; Elkhoury 
et  al. 2006; Kinoshita et  al. 2015). However, the M2 

Table 2  Theoretical amplitudes and  phase shifts of  the  M2 tidal constituent used to  estimated volumetric strain, 
equilibrium tide, oceanic tide loading effect, and  total tidal strain, calculated using GOTIC2, and  average responses 
in observed groundwater level, calculated using BAYTAP-G

Negative phase shifts correspond to lags behind the equilibrium tide

Equilibrium tide Oceanic tide Total Average values of water level

Amp. (10−9) Phase (°) Amp. (10−9) Phase (°) Amp. (10−9) Phase (°) Amp. (mm) Phase (°)

ABT 9.84 0.0 4.21 − 99.5 10.05 − 24.4 0.84 ± 0.14 − 31.0 ± 9.8

JNS 10.01 0.0 3.47 − 99.2 10.06 − 19.9 5.02 ± 0.08 − 25.0 ± 1.0

KTB 10.00 0.0 3.73 − 99.7 10.07 − 21.4 3.07 ± 0.14 − 23.8 ± 2.6

TKC 9.54 0.0 1.72 − 91.5 9.65 − 10.3 4.97 ± 0.12 − 44.3 ± 1.4

TSK 9.53 0.0 2.03 − 94.5 9.59 − 12.2 3.99 ± 0.07 − 11.5 ± 1.0

YCG​ 10.09 0.0 2.48 − 97.2 10.08 − 14.1 26.88 ± 0.19 − 117.0 ± 0.4
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amplitudes have errors with 0.07–0.19  mm (Table  2), 
and although the phases at the wells show some 
variation, they are almost constant over the period 

considered. Therefore, they do not change prior and 
after the earthquake.

Coseismic changes in groundwater level
Coseismic changes in groundwater heads have been 
extensively studied elsewhere (i.e., Roeloffs 1996; 
Quilty and Roeloffs 1997; Akita and Matsumoto 2001, 
2004; Kitagawa et  al. 2006; Kinoshita et  al. 2015). 
These changes are occasionally recognized as reflect-
ing the poroelastic response to the seismic events, but 
do not correlate with the coseismic volumetric strain 
changes in many cases (Koizumi et al. 1996; Itaba et al. 
2008; Shi et al. 2015). Table 3 lists the observed coseis-
mic changes (OCC), the responses to the M2 tidal 
constituent, calculated volumetric strain (CVS), and 
expected coseismic change from the volumetric strain 
(ECC). We observed step-like decreases in ground-
water levels, of between 3.0 and 3.5 cm, in wells JNS, 
KTB, and YCG, but no change in groundwater level 
was detected in the other wells (Fig.  3, Table  3). The 
observed coseismic change in well YCG is similar to 
the estimated coseismic change determined using the 
corresponding responses to the M2 tidal constituent 
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Fig. 4  Amplitude responses and phase shifts of the M2 tidal constituent (period: 12.4206 h) with respect to the phase in the GOTIC2 data between 
September 2017 and October 2018. Error bars are one sigma. The responses were calculated every 31 days using the BAYTAP-G tidal analysis 
software. The solid line indicates the timing of the earthquake

Table 3  Observed coseismic change (OCC) of groundwater 
level, groundwater response to  the  M2 tidal component, 
volumetric strain (CVS) calculated using the  code 
of  Okada (1992), and  expected coseismic change (ECC) 
in groundwater level

n.d. Coseismic change in groundwater level is not detected

Site OCC (cm) Response for M2 
tide (mm/10−9 
strain)

CVS (× 10−8 
strain)

ECC (cm)

ABT n.d. 0.08 ± 0.01 4.4 − 0.4

JNS − 3.5 0.50 ± 0.01 1.5 − 0.8

KTB − 3.0 0.30 ± 0.01 2.1 − 0.6

TKC n.d. 0.52 ± 0.01 0.41 − 0.2

TSK n.d. 0.42 ± 0.01 0.23 − 0.1

YCG​ − 3.3 2.67 ± 0.02 1.4 − 3.8
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component and calculated volumetric strain (− 3.3 
vs. − 3.8; Table  3), but there is a large undulation 
in groundwater level at this well after the coseismic 
change (Fig.  3). There are several wells tapping ther-
mal water close to well YCG, which are accompanied 
by CO2 gas emissions (Okamoto et al. 1957). The large 
undulation after the coseismic change could be due 
to the presence of gas in groundwater. The observed 
coseismic change of wells JNS and KTB are 4.4 and 
5.0 times larger than the corresponding estimated 
changes, respectively (Table 4). 

Coseismic changes associated with past seismic events 
are also reported for wells ABT, JNS, KTB, and YCG, and 
related to the 2003 Tokachi-Oki and the 2004 Kushiro-
Oki earthquakes (Akita and Matsumoto 2004; Shibata 
et  al. 2010). These past coseismic changes can be com-
pared with those related to the 2018 Hokkaido Eastern 
Iburi earthquake (Table  4). Table  4 shows the observed 
coseismic changes (OCC), the expected coseismic 
changes (ECC) calculated using the responses to the M2 
tidal constituent component and the calculated volu-
metric strain, and the ratios of OCC to ECC for each 
earthquake at each well. The ratios are found to be quite 
different for the different earthquakes for a given well, 
complicating our understanding. Finding universal expla-
nations for coseismic change is already a well-known 
challenge, because earthquake-related fluctuations in 
groundwater heads can be caused by various factors 
(Koizumi 2013), and local changes occur independently 
of the change in crustal strain (Kitagawa et al. 2006). The 
obtained result also suggests that, even within the same 
well, the coseismic response of groundwater level is dif-
ferent for each earthquake. The different observed earth-
quake-related groundwater level changes at the same well 
have been reported by King et al. (1999), who suggested 

that the sensitivity to seismic shaking appears to be vari-
able. Although the cause of the difference is still unclear, 
the compilation of such evidence can improve the under-
standing of coseismic changes in groundwater.

Conclusions
Groundwater levels were monitored in six observation 
wells in Hokkaido, Japan, which have not been in use 
in the past 20 years. During the 2018 Hokkaido Eastern 
Iburi earthquake (M6.7), a coseismic decrease in ground-
water level was observed in three of the wells (JNS, KTB, 
and YCG). We analyzed their amplitude responses and 
phase shifts in groundwater level related to the M2 tidal 
constituent. Changes in amplitude responses and phase 
shifts of the three wells show very little variation and 
are within the variation. Although observed coseismic 
change was found to be explained by the response to the 
M2 tidal constituent and calculated volumetric strain in 
one instance (well YCG), for the other two cases (wells 
JNS and KTB) observed changes are 4.4 and 5.0 times 
higher than the estimated changes, respectively. Even 
within the same well, coseismic changes are found to be 
different for different earthquake events.
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