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Abstract 

Regularization is used to solve the ill-posed problem of magnetotelluric inversion usually by adding a stabilizing 
functional to the objective functional that allows us to obtain a stable solution. Among a number of possible stabiliz-
ing functionals, smoothing constraints are most commonly used, which produce spatially smooth inversion results. 
However, in some cases, the focused imaging of a sharp electrical boundary is necessary. Although past works have 
proposed functionals that may be suitable for the imaging of a sharp boundary, such as minimum support and mini-
mum gradient support (MGS) functionals, they involve some difficulties and limitations in practice. In this paper, we 
propose a minimum support gradient (MSG) stabilizing functional as another possible choice of focusing stabilizer. In 
this approach, we calculate the gradient of the model stabilizing functional of the minimum support, which affects 
both the stability and the sharp boundary focus of the inversion. We then apply the discrete weighted matrix form 
of each stabilizing functional to build a unified form of the objective functional, allowing us to perform a regularized 
inversion with variety of stabilizing functionals in the same framework. By comparing the one-dimensional and two-
dimensional synthetic inversion results obtained using the MSG stabilizing functional and those obtained using other 
stabilizing functionals, we demonstrate that the MSG results are not only capable of clearly imaging a sharp geoelec-
trical interface but also quite stable and robust. Overall good performance in terms of both data fitting and model 
recovery suggests that this stabilizing functional is effective and useful in practical applications.
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Introduction
The MT sounding is widely used in geophysical research 
and plays an important role in the exploration of oil and 
gas resources and the basic research of deep geological 
structures. Inversion of MT data has a direct impact on 
geological interpretation and thus is a key point in the 
MT exploration. Currently, the most widely used inver-
sion methods include the followings: Occam’s inversion, 
which yields a model with the smallest roughness for a 
specified misfit, providing a stable and rapidly conver-
gent solution (Constable et  al. 1987; de Groot-Hedlin 
and Constable 1990); rapid relaxation inversion (RRI), 

in which horizontal derivative terms are approximated 
from the fields of previous iterations (Smith and Booker 
1991); reduced basis Occam’s inversion (REBOCC), 
which transforms the linearized inverse problem from 
the model space to the data space (Siripunvaraporn and 
Egbert 2000); and nonlinear conjugate gradients (NLCG), 
which avoid excessive evaluations of the full Jacobian 
matrix and the complete solution of a linearized inverse 
problem at each step of iteration (Rodi and Mackie 2001). 
These inversion methods usually cast the mathematical 
constraint of the model with the minimum model, the 
flattest model, or the smoothest model into the objective 
functional to relieve the nonuniqueness of the inverse 
problem. As a result, these algorithms provide stable and 
smooth inversion results. However, it is difficult for these 
methods to clearly image the shape and sharp bound-
ary of geological structures, although such an imaging is 
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required in many practical situations (Marcuello-Pascual 
et al. 1992; Smith et al. 1999; Zhdanov 2004, 2009, 2010).

Aiming for a clear imaging of electrical interfaces, Last 
and Kubik (1983) first considered the use of a MS func-
tional that provides models with the minimum domain 
volume with anomalous parameter distribution. Rudin 
et  al. (1992) introduced a method for reconstruction of 
noisy and blurred images based on total variation (TV). 
Farquharson and Oldenburg (1998) and Farquharson 
(2008) modified the typical minimum-structure inversion 
with an iteratively reweighted least-squares procedure 
and used l1-type measure to generate blocky, piecewise-
constant earth models. Portniaguine and Zhdanov (1999) 
demonstrated that the use of a MGS functional mini-
mizes the area with a finite gradient of the model param-
eters and helps to generate focused images. The MGS has 
been successfully applied to the inversion of gravitational, 
magnetic, and electromagnetic data. de Groot-Hedlin 
and Constable (2004) developed a linearized method that 
uses smooth boundaries to define sharp resistivity con-
trasts. This method penalizes variations in the boundary 
depth rather than in the contrast between the resistivity 
of adjacent blocks and yields more geologically realistic 
results. They concluded that this method is also suitable 
for situations in which the value of the target anomaly 
is known to have a strong conductivity contrast with 
the background medium. However, it needs to build a 
layered model to invert both resistivity and thickness 
of each layer for every horizontal mesh, which is very 
complicated in the model construction and inversion 
calculation. Meanwhile, Zhang et al. (2009, 2010) added 
diagonal gradient support to the objective functional, 
which consists of both smoothing and focusing con-
straints, and obtained better inversion results in imaging 
an inclined geoelectrical interface. Recently, Grayver and 
Kuvshinov (2016) applied arbitrary norms for residual 
and regularization terms to produce classes of equivalent 
solutions of smooth or compact models, in which a L1.5 
norm was shown to be most efficient for a stable inver-
sion with sharp boundary.

Here our research intends on focusing a sharp bound-
ary, following general Tikhonov regularization inversion 
within the framework of L2 norm, which is justified by 
general Gaussian distribution of EM data (Fournier and 
Febrer 1976; Weaver et  al. 2000). In this paper, we pro-
pose a new stabilizing functional called the MSG func-
tional, which adds stable constraints to help focusing 
a sharp boundary, and apply it to a unified form of the 
objective functional in the regularized inversion. We 
perform the inversion of synthetic data to compare the 
results with those obtained by the conventional stabiliz-
ing functionals. The implications of the proposed func-
tional are also discussed.

Theory and algorithm
A general way to solve the nonuniqueness of geophysical 
inverse problems is first described in the regularization 
theory by Tikhonov and Arsenin (1977), which uses both 
data misfit and model stabilizing functionals to construct 
the parametric objective functional. The objective func-
tional of a regularized inversion can generally be written 
as

where P(m,d)α is the parametric objective func-
tional; m is a vector of model parameters; f(m, d) 
is the data objective functional and can be given by 
f (m,d) = �WdA(m)−Wdd�

2, here Wd is the data 
weighting matrix, 

∥

∥g
∥

∥

2
= gTg means the two norm, and 

T denotes the transpose; A is an operator of the theoreti-
cal data from model parameters; d is a vector containing 
the observation data; s(m) is the model stabilizing func-
tional; and α is the regularization parameter. Logarith-
mic scaling is applied to both the observational data (MT 
impedance elements) and a model parameter (logarithm 
of the electrical resistivity in the present case).

A stabilizing functional is used to select an appropriate 
class of models from the space of all possible models. The 
following stabilizing functionals have been applied suc-
cessfully in many inversion studies to yield stable, smooth 
solutions (Constable et  al. 1987; de Groot-Hedlin and 
Constable 1990; Smith and Booker 1991; Uchida 1993; 
Rodi and Mackie 2001). The simplest is the minimum 
model stabilizing functional (MM), which is based on 
the least-squares criterion and uses the minimum norm 
of the difference from the a priori model mapr. The MM 
stabilizing functional is given as

where mi is the ith model parameter and N is the total 
number of model parameters. If we consider the spatial 
gradient ∇m of the model parameters to enhance the sta-
bility of the inversion, we obtain the flattest model (FM) 
stabilizing functional. We calculate the gradient in each 
direction separately for 2D or 3D case, but the weight on 
the gradient in each direction is the same so as to com-
pare the results from different stabilizers using spatial 
gradients in the same condition. Here we describe gener-
ally 1D form of each functional. In this formulation, the 
FM stabilizer is given as:

(1)P(m,d)α = f (m,d)+ αs(m),

(2)sMM(m) =

N
∑

i=1

(

m(i) −m(i)
apr

)2
,

(3)sFM(m) =

N
∑

i=1

(

∇

(

m(i) −m(i)
apr

))2
.
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The norm of the spatial Laplacian ∇2m of the model 
parameters is used as another stabilizing functional to 
produce the smoothest model (SM):

The modified TV stabilizing functional requires the 
distribution of model parameters of bounded variation 
(Acar and Vogel 1994) which is given as:

where β is a small value called the focusing parameter. 
It tends to decrease the bounds of variation of model 
parameters and therefore is effective in resolving sharp 
boundary to some extent (Zhdanov 2002). Farquhar-
son (2008) generated sharp interfaces through adding 
first-order finite-difference diagonal weighting opera-
tors based on L1 measure. Small β tends toward L1 norm 
and large β tends like a scaled sum-of-squares measure, 
so different β will produce different inversion results.

The MS stabilizing functional is proposed to build 
a model that minimizes the volume with anomalous 
model parameters (Last and Kubik 1983), focusing on 
the volumes in which the model parameters differ from 
the given a priori model. In this case, the MS stabilizing 
functional is given as

where β is the focusing parameter. If the difference in 
model parameters is much smaller than β, the functional 
becomes significantly smaller than N, and it approaches 
N when the difference is much greater than β.

Analogously, Portniaguine and Zhdanov (1999) devel-
oped the MGS functional to minimize the volume where 
the model parameter varies steeply and discontinuously. 
The MGS stabilizing functional is written as

When the gradient of a model parameter is much 
smaller than β, the functional takes a value much smaller 
than N, whereas it approaches N when the gradient is 
much larger than β. In the latter case, the solution of the 
inversion images the sharp boundaries but strongly rely 
on the selection of the focusing parameter β. Zhang et al. 

(4)sSM(m) =

N
∑

i=1

(

∇2
(

m(i) −m(i)
apr

))

.

(5)sTV(m,β) =

N
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(
√

∇
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+ β2
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,

(6)sMS(m,β) =

N
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2

,

(7)sMGS(m,β) =

N
�

i=1





∇(m(i) −m
(i)
apr)

�

(∇(m(i) −m
(i)
apr))2 + β2
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

2

.

(2012) proposed the estimation of the proper value of β 
by referring to the cutoff length, but it is difficult to esti-
mate a priori the actual range of the cutoff in general. In 
this case, tuning by trial and error is necessary to obtain 
an optimum solution.

This study aims to construct a new stabilizer that is less 
dependent on the tuning of the focusing parameter. Thus, 
considering the advantages and disadvantages of each of 
these stabilizing functionals, we propose a new stabiliz-
ing functional, the minimum support gradient, which is 
defined as

The spatial gradient is calculated after the MS stabilizer 
is obtained using Eq. (6), and thus, we call this new sta-
bilizing functional the MSG. It uses MS value instead of 
(

m(i) −m
(i)
apr

)

 in Eq. (3), which leads to a stable constraint 
of focusing sharp boundaries for inversion. It works on 
the class of models so as the domain with anomalous 
parameter distribution occupies the minimum volume, 
while it is expected to avoid the instability caused by the 
tuning of focusing parameter at the same time. And the 
MSG stabilizing functional is affected little by a priori 
model. Zhdanov (2002) proved that the MS and MGS 
satisfy the Tikhonov criterion for a regularization stabi-
lizer. Since the MSG is a spatial gradient of the MS, it also 
satisfies the regularization criterion.

As for the numerical evaluation of spatial gradient ∇ , 
we simply approximate it by a difference between values 
in neighboring cells of a numerical model. Therefore, 
this is not exactly a finite-difference approximation of 
the gradient operator, but we confirmed that little differ-
ence is produced. Thus, the stabilizing functionals for the 
MS and MSG can formally be expressed as the following 
pseudo-quadratic functional of model parameters:

where We is a N × N matrix consisting of m, mapr, and 
β. We then use the matrix notation of each stabilizing 
functional to build the unified form of the objective func-
tional for the discrete model parameters (Zhdanov 2002). 
Using this notation, the discrete form of Eq. (1) is

(8)sMSG(m,β) =

N
�
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where dj is the jth observed data and ND is the total num-
ber of observed data.

Here, we examine the characteristics of the stabilizing 
functionals suggested above. The stabilizing matrix for 
MS in this case could be written as

where m(N )

k  is the Nth model parameter of the kth itera-
tion and β is the focusing parameter. The stabilizing 
matrix of the MSG for 1D case can then be derived as
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its influence on the amplitude of MSG is not very large 
in comparison with those of the TV or MGS. The MSG 
stabilizer shows a similar effect on focusing the bound-
ary even if the value of focusing parameter is varied 

In 1D case, the gradient is taken just in the vertical 
direction. In 2D or 3D situation, however, we need to 
separate the gradient calculation in each direction.

We examine how different values of β affect the stabi-
lizing performance by using a simple 1D model which is 
given by

where x is the logarithm of the depth and has a value that 
changes from 0 to 4 in increments of 0.04, and mapr is 
assumed to be 0 over the whole range of x. The behaviors 
of the different stabilizing functionals after normaliza-
tion are shown in Fig. 1. We see that stabilizing function-
als, such as the TV, MGS, and MSG functionals, tend to 
have a narrow peak around the boundary of the model 
parameter, indicating effective focusing. This property 
is expected to help us obtain a sharp image of the elec-
trical interface. If the value of the focusing parameter is 
changed, features of the TV and MGS are significantly 
altered; the effect on the sharp imaging becomes weak 
when the focusing parameter is increased. Conversely, 

(13)m(x) =























0, 0 ≤ x ≤ 1

e(−32∗(x−1.5)2), 1 < x ≤ 1.5
1, 1.5 < x ≤ 2.5

e(−32∗(x−2.5)2), 2.5 < x ≤ 3
0, 3 < x ≤ 4

,

over a wide range (Fig. 1). Different values of the focus-
ing parameter will have different MS values, so that the 
position of MS boundary should change accordingly. The 
gradient of the MSG is calculated after the calculation of 
the MS, so the boundary positions of MSG are expected 
to change with changes in focusing parameter. Neverthe-
less, it still focuses the right boundary position (x-axis 
from 1 to 1.5 and 2.5 to 3).

We can thus choose different optimization methods to 
minimize the objective functional so that inversion can be 
performed by using different stabilizing functionals in the 
same framework. In the next section, we perform synthetic 
tests using 1D-layered and 2D wedge models to compare 
the performance of inversion with different stabilizing 
functionals. Here, we applied Occam’s inversion (Constable 
et al. 1987) with a self-adaptive conjugate gradient weighted 
optimization scheme for 1D case. We used the ratio of data 
misfit and the value of each stabilizing functional as the 
initial value of regularization parameter, we kept the same 
regularization parameter if the data misfit decreases dur-
ing the inversion, while we set αn+1 = 0.9 ∗ αn if the data 
misfit did not decrease (Zhdanov 2002). We applied the 
original 2D Occam’s inversion with the Cholesky decom-
position to obtain inverse matrix (de Groot-Hedlin and 
Constable 1990) for 2D case. The regularization parameters 
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were determined exactly as suggested in the original paper 
(Constable et al. 1987).

Synthetic model test
One‑dimensional model
Here we test 1D models with sharp and smooth bounda-
ries to observe the effect of different stabilizing function-
als, i.e., smoothing functionals (MM, FM, and SM) and 
focusing functionals (TV, MS, MGS, and MSG). We use 

80 frequencies from 1000 to 0.001 Hz for the forward cal-
culation to generate synthetic data. Then, 1% Gaussian 
noise was added to the synthetic data and the observa-
tion error was assumed also to be 1%. If we applied higher 
noise and error, the result of each stabilizing functional 
easily reached the target misfit so that all results showed 
little difference. Then, we calculated apparent resistivity, 
and a logarithmic scaling was applied.

The synthetic 1D-layered model is shown by a gray 
thick line in Fig. 2a (model A) and b (model B). The mod-
els with opposite contrast are given by the function

and

where x is the logarithm of the depth, and it consists of 
one high-resistivity anomalous layer and one low-resis-
tivity anomalous layer embedded in a uniform half-space 
with a resistivity of 100 Ω m. The resistivity and thickness 
of the shallower anomaly are 1000 Ω m and 0.9 km rang-
ing from 0.1 to 1  km in depth, and those of the deeper 
anomaly are 10 Ω m and 9 km ranging from 1 to 10 km. 
The common boundary of the two anomalous layers is 
1 km (x = 0) in depth. The synthetic sounding curve of 
each model is shown in Fig.  2c, d. The model is discre-
tized into 40 layers, and the maximum depth is 100 km.

The initial model is a 100-Ω m uniform half-space, and 
the a priori model is the same as the initial model. The 
dependence on the starting model is mainly from the dif-
ferent optimization methods to minimize the objective 
functional. Here we use Occam’s inversion method to 
solve the inverse problem whose solution is well known 
to be affected little by the choice of the initial model. The 
choice of a priori model, mapr, is independent from the 
choice of the initial model. It was confirmed that Occam’s 
inversion is stable so far as mapr is not too far from the 
true background value (100 Ω m in this case).

We calculated the vertical gradient of model parame-
ters to determine the position and sharpness of the inter-
face (Fig.  3c, d). To evaluate how the model responses 
fit the synthetic data, we define the root-mean-square 
(RMS) data misfit as

(14)m(x) =











2, x < −1
3, −1 ≤ x ≤ 0
1, 0 < x ≤ 1
2, x > l

,

(15)m(x) =











2, x < −1
1, −1 ≤ x ≤ 0
3, 0 < x ≤ 1
2, x > l

,

(16)
RMSd =

√

√

√

√

∑ND
j=1

[

(dobsj − dcalj )/errj

]2

ND
,

Fig. 1  Comparison of mathematical model distributions of different 
stabilizing functionals with square of focusing parameters β2 of a 1, b 
0.1, and c 0.01
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where ND is the number of data and errj is the observa-
tion error. For Occam’s inversion, the target misfit is set 
to 1. Here we set the error floor equal to the assumed 
noise level, so it is possible to reduce RMS misfit to 1 
by regularized or nonregularized inversion. However, 
in some cases, the solution suffered from overfitting. To 
evaluate how the synthetic model parameters are recov-
ered by inversion, we also calculate the RMS model 
recovery (Zhang et al. 2012) defined as

The obtained RMSd and RMSm values are given in 
Tables  1 and 3. For a detailed discussion, we also sepa-
rately calculated the RMS model recovery of each electri-
cal boundary (for the range of x from − 1.5 to − 0.5, from 
− 0.5 to 0.5, and from 0.5 to 1.5, respectively) for the two 
models, as given in Tables 2 and 4.   

(17)
RMSm =

√

√

√

√

∑N
k=1

(

minv
k −mmodel

k

)2

N
.

Both for models A and B, all inversion results reached 
the target misfit even with different values of β2 in both 
two cases. When β2 was set to 0.1 (Fig.  3a, b), TV, MS, 
MGS, and MSG had a similar RMS model recovery for 
model A, significantly smaller than smooth results. All 
of them had a better recovery for the boundary around 
x  =  0 (Table  2). In model B, the MGS had the small-
est RMS model recovery of 0.2464. However, the RMS 
model recovery of the MS and MSG was also as small 
as 0.3628 and 0.3307, respectively, while TV had a poor 
RMS model recovery as 0.3926. The MGS results showed 
an accurate boundary at x = 0 (Fig. 3c, d), and the MSG 
results showed a more accurate boundary location at 
x = − 1 and x = 1.

Next we varied the focusing parameter value to 0.001 
and 0.0001 and observed the influence. With decreas-
ing β2 to 0.001, the focusing stabilizers had a better effect 
on imaging the sharp interface than those results with 
smooth model constraints (Fig. 4a, b). With the MSG and 
MGS stabilizers, the position of the boundary was imaged 

Fig. 2  1D-layered model inversion results of a model A, b model B, c synthetic sounding curve of the model A, and d synthetic sounding curve of 
model B. x in horizontal axis is the logarithm of the depth, and the unit of depth is km. Thick gray line indicates a profile of the synthetic model, and 
thin lines with different colors correspond to different stabilizing functionals as shown in the legend on the top
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Fig. 3  1D-layered model inversion results of different stabilizing functionals with β2 = 0.1: a inversion results of the model A, b inversion results of 
the model B, c, d the gradient of the each results, e, f normalized gradient of each results, and g, h convergence of RMS data misfit of each model
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more accurately than that with the MS and TV at x = 1. At 
x = 0, MGS showed a more sharp boundary. However, the 
MS and MGS results appear to be unstable and produce 
some false features around x = − 0.5 and x = 0.8 (black 

circles in Fig.  4c). For model B, the MSG result had the 
smallest RMS model recovery of 0.2396, and it had a bet-
ter performance for imaging every boundary (Fig. 4d and 
Table 4). However, TV and MGS produced false features 

Table 1  RMS data misfit and RMS model recovery of different stabilizing functionals for the 1D-layered model A (Fig. 2a)

Stabilizing  
functional

RMS data misfit RMS model recovery

MM 1 0.2405

FM 1 0.2374

SM 1 0.2630

Different values of β2

0.0001 0.001 0.1 0.0001 0.001 0.1

TV 1 1 1 0.1851 0.1764 0.1825

MS 1 1 1 0.1746 0.1622 0.17585

MGS 1 1 1 0.2567 0.2318 0.2156

MSG 1 1 1 0.1769 0.1548 0.1808

Table 2  RMS model recovery around each boundary of the 1D-layered model A (Fig. 2a)

Stabilizing  
functional

First boundary
x from − 1.5 to − 0.5

Second boundary
x from − 0.5 to 0.5

Third boundary
x from 0.5 to 1.5

MM 0.3097 0.1798 0.1938

FM 0.2266 0.1681 0.2076

SM 0.2411 0.3479 0.2628

Different values of β2

0.0001 0.001 0.1 0.0001 0.001 0.1 0.0001 0.001 0.1

TV 0.2334 0.2279 0.2337 0.1609 0.1288 0.1684 0.2132 0.2016 0.2018

MS 0.2432 0.2159 0.2939 0.1729 0.2074 0.1677 0.1921 0.1135 0.2052

MGS 0.2880 0.2332 0.2259 0.3255 0.1905 0.1665 0.2464 0.1496 0.2054

MSG 0.2306 0.2299 0.2035 0.1342 0.1301 0.1637 0.2001 0.1205 0.2160

Table 3  RMS data misfit and RMS model recovery of different stabilizing functionals for the 1D-layered model B (Fig. 2b)

Stabilizing  
functional

RMS data misfit RMS model  
recovery

MM 1 0.3739

FM 1 0.3854

SM 1 0.4357

Different values of β2

0.0001 0.001 0.1 0.0001 0.001 0.1

TV 1 1 1 0.3418 0.3426 0.3926

MS 1 1 1 0.3125 0.3129 0.3628

MGS 1 1 1 0.3091 0.2911 0.2464

MSG 1 1 1 0.2584 0.2396 0.3307
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around x = − 0.5 and x = 0.5 (Fig. 4d), respectively. When 
β2 was decreased further to 0.0001 (Fig. 5a, b), for model 
A, the MS results produce more false features around 
x = 0.5, while MGS had large model recovery because of 
its false features occurred around x = − 0.5 to x = 1.2. The 
MSG result still remains stable, accurately recovering both 
the resistivity values and interface depths, especially x = 0 
(Fig.  5c, e). For model B, TV and MGS produced lots of 
false features around x = − 0.8 and x = 0.2 (Fig. 5d). From 
the comparison of models A and B, the boundary changing 
from resistive to conductive (x = 0 in Figs. 3a, 4a, 5a and 
x = − 1 in Figs. 3b, 4b, 5b) is imaged more sharply than the 
boundary of opposite contrast. 

Although the TV, MS, and MGS yield the sharp bound-
aries in some cases (boundaries of x =  1 in Figs. 3a, 4a 
and x =  0 in Figs.  3b, 4b), they also produce numerous 
false structures (at depths of x = − 0.5 in Figs. 4a, 5a and 
x = 0.5 in Figs. 4b, 5b), suggesting the inversion is unsta-
ble due to the small value of the focusing parameter. For a 
given stabilizer, we also calculated the difference between 
each pair of inversion results produced by different β2 
values (β1 and β2) as

These differences for different stabilizers are summa-
rized in Tables 5 and 6. The MSG results had the smallest 
differences when selecting different values of β2, which 
means the MSG inversion is more robust against varia-
tion in β2 than those of the TV, MS, or MGS. It is a great 
advantage of using the MSG stabilizer that fine-tuning of 
β2 is not necessary to obtain a stable solution.

The third 1D synthetic model shows spatially smooth 
variation in the electrical conductivity and is represented 

(18)Diffm =

N
∑

k=1

(

m
β1
k −m

β2
k

)2
.

by a thick gray line in Fig. 6. The model is given by the 
function

Thus, the anomaly changes at the logarithm depths 
ranging from 0.1 to 0.5  km and from 2.5 to 10  km in a 
background resistivity of 10 Ω m. The initial and a priori 
models are both in a 10-Ω m half-space.

The inversion results from each stabilizing functional 
with different β2 values are shown in Fig.  6. The data 
misfit and model recovery are given in Table 7. The TV, 
MS, MGS, and MSG results have discontinuities where 
the synthetic model parameters change smoothly. The 
FM and SM results show excellent performance for con-
ductive anomaly, as their RMS data misfit values both 
reached 1 and their RMS model recovery values became 
small, reaching 0.1707 and 0.1744, respectively. Thus, 
the results imply that the FM or SM is a better choice for 
cases with smooth boundaries, although results using all 
focusing stabilizers also show an acceptable performance 
both in terms of RMS misfit and model recovery.

Two‑dimensional wedge model
For further discussion, we test all five stabilizing func-
tionals using 2D synthetic models with a resistive and 
conductive wedge (Fig. 7a, b). The 2D wedge model con-
figuration is the same as that used by de Groot-Hedlin 
and Constable (2004) and Zhang et al. (2009). The upper 
boundary of the wedge has a slope of 5.7°, and the lower 
boundary has a slope of 16.6°. In total, 24 synthetic 
observation sites are distributed regularly at intervals of 

(19)

m(x) =



















1, x < −1
sin((x + 1) ∗ π ∗ 10/7)+ 1, −1 ≤ x ≤ −0.3
1, −0.3 < x ≤ 0.4
sin((x + 0.2) ∗ π ∗ 5/3)+ 1, 0.4 < x ≤ 1
1, x > l

.

Table 4  RMS model recovery around each boundary of the 1D-layered model B (Fig. 2b)

Stabilizing  
functional

First boundary
x from − 1.5 to − 0.5

Second boundary
x from − 0.5 to 0.5

Third boundary
x from 0.5 to 1.5

MM 0.1521 0.6164 0.3741

FM 0.1329 0.6625 0.3257

SM 0.1851 0.7233 0.4128

Different values of β2

0.0001 0.001 0.1 0.0001 0.001 0.1 0.0001 0.001 0.1

TV 0.1312 0.1283 0.1901 0.6180 0.6215 0.5535 0.1965 0.1912 0.2168

MS 0.1053 0.1661 0.1243 0.5526 0.5435 0.5788 0.2255 0.1806 0.2043

MGS 0.2167 0.1495 0.0941 0.5227 0.5091 0.3929 0.1717 0.1780 0.2505

MSG 0.0845 0.0697 0.0546 0.4561 0.4435 0.5083 0.1660 0.0987 0.1799
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Fig. 4  The same as Fig. 3 with β2 = 0.001
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Fig. 5  The same as Fig. 3 with β2 = 0.0001
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0.5  km. For the modeling, 92 mesh grids are defined in 
the horizontal direction with a 0.125-km spacing, and 
100 layers are set in the vertical direction, which is dis-
cretized with the same increment. We used the finite-
element code in Occam’s inversion for the modeling. The 
mesh spacing for the inversion is set twice as large as that 
in the forward modeling, using 46 meshes in the horizon-
tal direction and 50 layers in the vertical direction. We 
used 20 frequencies from 4 to 0.0063 Hz for the resistive 
wedge model and 24 frequencies from 400 to 0.01 Hz for 
the conductive wedge model to perform the modeling 
that generates synthetic data (de Groot-Hedlin and Con-
stable 2004). Both transverse electric (TE) and transverse 
magnetic (TM) modes were used in the calculation. The 
synthetic sounding curves of apparent resistivity and 
phase from site 10 (red triangle in Fig. 7a) of the resistive 
wedge case are shown in Fig. 8 as an example.

In the 2D resistive wedge model, the background 
resistivity is 1  Ω  m and that of the wedge-shaped body 
is 100  Ω  m. We allow the resistivity values to change 
from 0.01 to 500  Ω  m during the inversion. The start-
ing model is a 1-Ω m half-space, and the a priori model 
is also a 1-Ω m uniform half-space. Again, the different 
initial model affects little, and the regularization works 
well when a priori model is not too far from the true 

background resistivity (1  Ω  m in this case). We add 1% 
random noise in the synthetic data and set the error floor 
as 1% in the inversion. Then, it is not easy to get the data 
misfit small. We also tried cases with larger error floor. 
In those cases, it was quite easy to get data misfit down, 
but resulting model was much less sharp than the present 

Table 5  Differences [calculated using Eq.  (18)] 
between  the inversion results of  model A (Fig.  2a) 
obtained using different values of β2

Stabilizing func‑
tional

Differences of results between different values 
of β2

0.0001 and 0.001 0.0001 and 0.1 0.001 and 0.1

TV 0.2444 0.3283 0.3555

MS 0.5981 0.4469 0.8141

MGS 1.8372 1.2791 2.1665

MSG 0.1113 0.2327 0.3431

Table 6  Differences (calculated using Eq.  (18)) 
between  the inversion results of  model B (Fig.  2b) 
obtained using different values of β2

Stabilizing func‑
tional

Differences of results between different values 
of β2

0.0001 and 0.001 0.0001 and 0.1 0.001 and 0.1

TV 0.2033 0.3971 0.3547

MS 0.5877 0.4114 0.3338

MGS 0.9131 1.8126 2.0463

MSG 0.1949 0.2099 0.2951

Fig. 6  1D smooth boundary model inversion results with different 
stabilizing functionals. Inversion results with β2 of a 0.1, b 0.001, and 
c 0.0001
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results. It depends on the noise and error given to the 
synthetic data whether we can easily get the data misfit 
down to an RMS value of 1.

We calculated the RMS data misfit and the model 
recovery, the definitions of which are the same as in 
the 1D case (Table  8). The inversion using the smooth 

stabilizing functionals, such as the MM (Fig.  9a), FM 
(Fig. 9b), and SM (Fig. 9c), reached the target misfit, and 
their RMS model recovery values are reduced only a lit-
tle to 0.4584, 0.3583, and 0.3456, respectively. This means 
that none of these stabilizing functionals helps yield the 
right shape and value of the wedge. Here the result with 
TV is not shown because the inversion did not converge, 
and most probably because the TV stabilizer constrains 
L1 norm of the spatial gradient, which is not consistent 
with the framework of Occam’s inversion with L2 norm.

Results using focusing (MS, MGS, and MSG) function-
als and variations for different focusing parameters are 
shown in Figs. 10, 11, 12. They are generally better than 
the results using smooth constraints (Table 8). We then 
compared the results using different focusing parameters. 
When β2 is 0.0001, the MS result (Fig. 10a) has a model 
recovery of 0.4302 and shows some false structures below 
the wedge. As a whole, the shape of the wedge body is 
not restored well. The MGS (Fig. 10b) and MSG results 
(Fig. 10c) both have smaller RMS model recovery values 
(0.3242 and 0.2499, respectively) than those of the results 
with smooth constraints. However, the bottom boundary 
of the wedge for the MGS result is not as accurate as that 
for the MSG result.

If β2 is increased to 0.001, each inversion result var-
ies in different degrees. The MS (Fig.  11a) and MGS 
results (Fig.  11b) exhibit considerable changes. Both of 
them perform better than previous results in terms of 
the model recovery (0.2983, 0.3164, respectively). The 
results of the MSG stabilizer (Fig.  11c) are more stable 
and acceptable than those of other stabilizing function-
als, as they reached the target misfit and achieved the 
smallest model recovery (0.2634). Further increasing β2 
to 0.1, the MS and MGS results changed drastically, but 
the MSG results still achieve stability and remain the best 
among results using different functionals (model recov-
ery of 0.3005). Additionally, the MS (Fig. 12a) and MGS 

Table 7  RMS data misfit and RMS model recovery of different stabilizing functionals for 1D smooth boundary model

Stabilizing 
functional

RMS data misfit RMS model recovery

MM 1 0.2528

FM 1 0.1707

SM 1 0.1744

Different values of β2

0.0001 0.001 0.1 0.0001 0.001 0.1

TV 1 1 1 0.2353 0.2260 0.2899

MS 1 1 1 0.2402 0.2617 0.1992

MGS 1 1 1 0.2267 0.2616 0.1877

MSG 1 1 1 0.2105 0.1839 0.2160

Fig. 7  Synthetic 2D models. a Resistive wedge model, b conductive 
wedge model. Black triangle indicates the site location for which the 
synthetic TE and TM responses are shown in Fig. 8
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results (Fig. 12b) produced some false structures, in both 
the shape and resistivity of the wedge. Conversely, the 
MSG results (Fig. 12c) successfully reproduced the shape 
and the resistivity of the wedge. As a whole, the MSG 
stabilizer shows the best performance as can be seen in 
a general view of the RMS model recovery with different 
focusing parameters (Fig. 13).

Thus, the MSG stabilizing functional was shown to be 
able to not only describe the sharp boundary but also 
estimate the model parameter more accurately than other 
functionals. In addition, it is very stable in the regular-
ized inversion and is influenced by the focusing param-
eter value much less than the MS and MGS stabilizers.

Fig. 8  Synthetic 2D apparent resistivity and phase curves of site 10 for the resistive model: a TE apparent resistivity, b TE phase, c TM apparent 
resistivity, and d TM phase. Observation errors corresponding to 1% of impedance amplitude are also shown

Table 8  RMS data misfit and RMS model recovery of different stabilizing functionals for 2D resistive model

Stabilizing functional RMS data misfit RMS model recovery

MM 1 0.4584

FM 1 0.3583

SM 1 0.3456

Different values of β2

0.0001 0.001 0.01 0.0001 0.001 0.01

MS 1 1 1 0.4302 0.2983 0.3243

MGS 1 1 1 0.3242 0.3164 0.3842

MSG 1 1 1 0.2449 0.2634 0.3005
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We also performed synthetic tests for a 2D conduc-
tive wedge model (Fig.  7b). Figure  14 shows a result of 
inversion using the MSG regularization. Again we can 
conclude that the MSG stabilizer provides a good perfor-
mance among all stabilizers tested. The synthetic inver-
sion results for 1D case in “One-dimensional model” 
section showed that MT is insensitive to the sharpness in 
the vertical direction. The 2D results are sharper than 1D 
results, indicating that the sharpness of inclined interface 
of 2D cases is mostly due to the horizontal gradient.

Conclusion
In this paper, to consider the stability on sharp bounda-
ries, we proposed a new stabilizing functional called the 
MSG stabilizing functional for imaging sharp interfaces 

of resistivity structure by magnetotelluric inversion. 
We compared its performance with other stabilizers 
under the same inversion framework through the uni-
fied objective functional form of a discrete weighted 
matrix. By comparing 1D and 2D synthetic inversed 
results using different stabilizers, we confirmed that the 

Fig. 9  Synthetic inversion results for the 2D resistive model (Fig. 6a) 
using different stabilizing functionals a MM, b FM, and c SM. Color 
scale is the same as Fig. 6a

Fig. 10  Synthetic inversion results for the 2D resistive model (Fig. 6a) 
using different stabilizing functionals with β2 = 0.0001: a MS, b MGS, 
c MSG results, and d convergence of RMS data misfit. Color scale is 
the same as Fig. 6a
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MSG stabilizer was not only able to resolve a geoelectri-
cal interface but also stable for a wide range of the focus-
ing parameter value. The MSG stabilizer also showed 

good performance regarding both data misfit and model 
recovery from synthetic data inversion with sharp 
boundaries. The overall results of the present study 

Fig. 11  Synthetic inversion results for the 2D resistive model (Fig. 6a) 
using different stabilizing functionals with β2 = 0.001: a MS, b MGS, c 
MSG results, and d convergence of RMS data misfit. Color scale is the 
same as Fig. 6a

Fig. 12  Synthetic inversion results for the 2D resistive model (Fig. 6a) 
using different stabilizing functionals with β2 = 0.01: a MS, b MGS, c 
MSG results, and d convergence of RMS data misfit. Color scale is the 
same as Fig. 6a
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Fig. 13  The model recovery curve with different focusing parameters 
for the 2D resistive model (Fig. 6a)

Fig. 14  A synthetic (a) inversion result with the MSG stabilizer for the 
2D conductive wedge model (Fig. 6b). Color scale is the same as that 
in Fig. 6b

suggest that this stabilizing functional would be effective 
in practical applications.
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