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Abstract
Epidemiological models have been playing a vital role in different areas of biological
sciences for the analysis of various contagious diseases. Transmissibility of virulent
diseases is being portrayed in the literature through different compartments such as
susceptible, infected, recovered (SIR), susceptible, infected, recovered, susceptible
(SIRS) or susceptible, exposed, infected, recovered (SEIR), etc. The novelty in this
endeavor is the addition of compartments of latency and treatment with vaccination,
so the system is designated as susceptible, vaccinated, exposed, latent, infected,
treatment, and recovered (SVELITR). The contact of a susceptible individual to an
infective individual firstly makes the individual exposed, latent, and then completely
infection carrier. Innovatively, the assumption that exposed, latent, and infected
individuals enter the treatment compartment at different rates after a time lag is also
deliberated through the existence of time delay. The rate of change and constant
solutions of each compartment are studied with incorporation of a special case of
proportional fractional derivative (PFD). In addition, existence and uniqueness of the
system are also comprehensively elaborated. Moreover, novel dynamic assessment of
the system is carried out in context with the fractional order index. Succinctly, the
manuscript accomplishes cyclic epidemiological behavior of the infectious disease
due to the delay in treatment of the infected individuals.
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1 Introduction
Mathematical modelling is a significant tool in epidemiology that helps healthcare re-
searchers and policymakers to make public health and socioeconomic decisions. These
models are designed by using data collected from clinicians and health workers to make
prophecies about a disease’s development. A tremendous number of models have been for-
mulated, analyzed, and applied, which improved our understanding and predictive ability
about a variety of infectious diseases [1–5]. Many of these models also consider time delay
in the process of transmissibility of any infection to further study the effect of delays on
the spread out of diseases. For instance, in [6] authors discussed the traveling wave so-
lutions of age-structured susceptible, exposed, infective, recovered, susceptible with time
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delay. Zhang et al. [7] generated significant results elaborating the influence of time delay
on the stability and measures of synthetic drugs transmission. Liu et al. [8] incorporated
incubation time delay in the susceptible, infected, recovered vector, bone epidemic model
and discussed its stability with the logistic population growth. Rifhat et al. [9] designed a
stochastic SIRV model and explained the effects of environmental noises on the disease
transmission. Ameen et al. [10] accumulated an SIRV epidemiological model with frac-
tional optimal control problem, taking proportions of vaccination and treatment as sug-
gested controlling parameters. Thus, literature comprehends many such contributions in
the area of epidemiological studies [11–15].

Calculus of noninteger orders has a long and exciting history beginning with communi-
cation by two scientists Leibniz and de L’Hopital. Equations with fractional order deriva-
tives are a powerful tool for unfolding processes with nonlocality and memory. Some new
definitions of fractional derivatives have a conventional view of nonstandard things that
contains violations of the Leibniz rule for the derivative of a product function and the chain
rule that describe the composition of a function. Some of these new operators and results
are just formal noninteger calculus of the known conventional theories, often without any
justification and motivation. There are different types of noninteger derivatives, which de-
scribe the processes of nonlocality and memory, that were suggested by Liouville, Caputo,
and Reisz [16]. Recently, fractional calculus has been widely applied in many fields such
as engineering and sciences [17–20].

Treating an infection sometimes undergoes a delay. Bearing this in mind, in this en-
deavor a compartment for treated individuals with time delay is integrated in the model.
A pictorial representation of the transmission process of the disease among compartments
of the proposed model is described in Fig. 1. Accordingly, constructive novel features of
the proposed model can be outlined as follows:

• Growth of susceptible individuals is defined with a threshold through the perception
of logistic growth.

• A group of vaccinated individuals is also defined in the system.
• Elaboration of the rate of exposed, latent, and infected individuals entering in the

treated compartment after a time lag.
• The dynamic system of the seven equations is scrutinized in the context with a special

case of proportional fractional derivative [19, 21].
• Memory effect on the basic reproduction number and the stability of equilibrium

points.

Figure 1 Transmission diagram
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• Investigation of Hopf bifurcation critical point [11] for the existence of cycles in phase
diagrams of the system.

Sequentially, the whole paper is described in seven sections: Sect. 2 comprises details
of modelling the aforementioned assumptions with essential theorems. Epidemiological
properties, such as basic reproduction number, dynamics of the proposed system, and
Hopf bifurcation, are comprehended in Sects. 3, 4, and 5, respectively. Moreover, the an-
alytical discussions are numerically validated through tables and graphs in Sect. 6, which
are later concluded in Sect. 7.

2 Modelling
The SIR and SEIR models have undergone different modifications, according to variations
of contemporary diseases and developed theories of mathematical modelling. Since these
systems deal with the human population, the basic biological assumptions are retained
in such models. Here, we adapted a model that consists of seven compartments, where
individuals are categorized on the basis of their compartment to ailment. The constructed
system is based on the following assumptions:

• All individuals, except vaccinated, have equal likelihood to catch infection when they
are exposed to the infection.

• The vaccinated individuals do not get infected even if they are exposed to the disease.
• Population growth of the susceptible is defined with a maximum sustainability to

survive in the available resources in an environment.
• The susceptible population undergoes two phases of disease diagnosis, i.e., exposed

and latency, before becoming completely infective.
• Different rates of treatment for exposed, latent, and infected individuals are

considered due to a different degree of ailment.
• Individuals go for treatment after the contact with infection, therefore the treating

compartment will show a delay in dynamics.
• After being treated, recovered individuals do not participate in transmitting the

disease.
• Dynamic changes are evaluated, in particular, with respect to change in the rate of

fractional index in time for the considered region.
Articulating these assumptions, the following system of seven nonlinear fractional order

differential equations with delay is attained, i.e., susceptible, vaccinated, exposed, latent,
infected, treatment, and recovered (SVELITR):

PF Dα
t S(t) = rS(t)

(
1 –

S(t)
k

)
– μS(t) – βS(t)I(t) – ηSS(t),

PF Dα
t V (t) = μS(t) – ηV V (t),

PF Dα
t E(t) = βS(t)I(t) – σE(t) – ρEE(t) – ηEE(t),

PF Dα
t L(t) = σE(t – τ ) – γ L(t) – ρLL(t) – ηLL(t), (1)

PF Dα
t I(t) = γ L(t – τ ) – ρI I(t) – ηI I(t),

PF Dα
t Tr(t) = ρEE(t – τ ) + ρLL(t – τ ) + ρI I(t – τ ) – ψTr(t) – ηLTr(t),

PF Dα
t R(t) = ψTr(t – τ ) – ηRR(t).
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Table 1 Details of symbols of SVELITR model (6)

Symbol Description Units (population = ’000s & time = days)

ℵ(t) Total population Population/day
S(t) No. of susceptible individuals at any time t Population/day
V(t) No. of vaccinated individuals at any time t Population/day
E(t) No. of individuals exposed to the infection at any time t Population/day
L(t) No. of individuals latent to the infection at any time t Population/day
I(t) No. of infected individuals at any time t Population/day
Tr (t) No. of treated individuals at any time t Population/day
R(t) No. of recovered individuals at any time t Population/year
τ Time delay days
α Order of fractional derivative dimensionless
r Rate intrinsic growth of susceptible individuals Individuals/(individuals × year)
k Surviving capacity of susceptible individuals Individuals/(area × year)
μ Rate of vaccinated susceptible Individuals/(individuals × year)
β Contact rate of susceptible with infected Individuals/(individuals × year)
σ Rate of susceptible exposed to infection Individuals/(individuals × year)
γ Rate of exposed latent to infection Individuals/(individuals × year)
ψ Recovery rate of the treated individuals Individuals/(individuals × year)
η(•) Natural death rate of individuals in a compartment Individuals/(individuals × year)
ρ(•) Rate of treated exposed, latent, or infected individuals Individuals/(individuals × year)

Initial conditions and history functions are assumed to be as follows:

S(ϑ) = ξ1(ϑ), V (ϑ) = ξ2(ϑ), E(ϑ) = ξ3(ϑ), L(ϑ) = ξ4(ϑ),

I(ϑ) = ξ5(ϑ), Tr(ϑ) = ξ6(ϑ), R(ϑ) = ξ7(ϑ),
(2)

where ξi(ϑ) ≥ 0 and ξi(0) > 0 for i = 1, 2, . . . , 7 such that (ξ1(ϑ), ξ2(ϑ), . . . , ξ7(ϑ)) ∈ C([–τ , 0],
�7

+). All the variables and parameters in system (1) are elaborated in Table 1. Moreover,
let ℵ(t) be the population of the considered region expressed as

ℵ(t) = S(t) + V (t) + E(t) + L(t) + I(t) + Tr(t) + R(t). (3)

After the exploration of conformable derivative through the concept of proportional
controller by Anderson et al. [21], proportional fractional derivative has been undergone
with different simplifying properties [19]. The special case of this derivative considered in
[19] has great potential to convert the fractional order derivative into an integer order one,
which can be scrutinized without any ambiguity [22–24]. According to this development,
the fractional operator of any continuous function y(t) expands to

PF Dα
t y(t) = κ0(α, t)ẏ(t) + κ1(α, t)y(t), 0 < α ≤ 1, (4)

where κ0(α, t) �= 0 for α ∈ (0, 1], with limα→0+ κ0(α, t) = 0 and limα→1– κ0(α, t) = 1. Addi-
tionally, κ1(α, t) �= 0 for α ∈ [0, 1), with limα→0+ κ1(α, t) = 1 and limα→1– κ1(α, t) = 0. Taking
the same case as defined, let κ0(α, t) = α and κ1(α, t) = 1 – α, so Eq. (4) becomes

PF Dα
t y(t) = αẏ(t) + (1 – α)y(t). (5)
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Applying the above expansion on system (1), we get the following expression of the gov-
erning model:

Ṡ(t) =
1
α

(
rS(t)

(
1 –

S(t)
k

)
– μS(t) – βS(t)I(t) – ηSS(t) – (1 – α)S(t)

)
,

V̇ (t) =
1
α

(
μS(t) – ηV V (t) – (1 – α)V (t)

)
,

Ė(t) =
1
α

(
βS(t)I(t) – σE(t) – ρEE(t) – ηEE(t) – (1 – α)E(t)

)
,

L̇(t) =
1
α

(
σE(t – τ ) – γ L(t) – ρLL(t) – ηLL(t) – (1 – α)L(t)

)
, (6)

İ(t) =
1
α

(
γ L(t – τ ) – ρI I(t) – ηI I(t) – (1 – α)I(t)

)
,

Ṫr(t) =
1
α

(
ρEE(t – τ ) + ρLL(t – τ ) + ρI I(t – τ ) – ψTr(t) – ηLTr(t) – (1 – α)Tr(t)

)
,

Ṙ(t) =
1
α

(
ψTr(t – τ ) – ηRR(t) – (1 – α)R(t)

)
,

with initial conditions being the same as defined in Eq. (2). Since model (6) is equivalent to
Eq. (1) and is computationally easy to discuss, further dynamic analysis is carried out using
model (6) to attain effective solutions. Subsequently, the following theorems elucidate the
existence and uniqueness of the solutions for system (6), which expands the validity of the
governing model mathematically.

Theorem 2.1 Let 
 ∈ �7
+ be the set of all possible solutions of system (6), then it is a uni-

formly bounded subset of �7
+ such that


 =
{

(S, V , E, L, I, Tr , R) ∈ �7
+;ℵ ≤ r

η∗k

}
. (7)

Proof Utilizing expansion (5) on Eq. (3), we get the expression

ℵ̇(t) =
1
α

(
Ṡ(t) + V̇ (t) + Ė(t) + L̇(t) + İ(t) + Ṫr(t) + Ṙ(t) – (1 – α)ℵ(t)

)
. (8)

On simplifying by substituting values from system (6) and taking η∗ as a total proportion
of natural deaths defined as

η∗ℵ(t) = ηSS(t) + ηV V (t) + ηEE(t) + ηLL(t) + ηI I(t) + ηTr Tr(t – τ ) + ηRR(t), (9)

since 0 < α ≤ 1, therefore Eq. (8) can be converted into

ℵ̇(t) ≤ rS(t)
(

1 –
S(t)

k

)
– η∗ℵ(t). (10)

As 0 < S(t)
k ≤ 1, so the above inequality reduces to

ℵ̇(t) ≤ r
k

– η∗ℵ(t). (11)
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On integrating, we get

ℵ(t) ≤ e–tη∗ℵ(ϑ) +
r

η∗k
. (12)

Therefore, as t → ∞, we obtain the final statement of boundedness as follows:

ℵ(t) ≤ r
η∗k

. (13)

�

Theorem 2.2 Assume �(M(t)) : �7
+ → �7

+ to be the matrix of the right-hand side of system
(6) such that �(M(t)) and ∂�(M(t))

∂M(t) are continuous and

∥∥�
(
M(t)

)∥∥ ≤
(

δ

|α| – α̃

)∥∥M(t)
∥∥ + ‖A4‖

∥∥M(t – τ )
∥∥,

∀M(t) ∈ �7
+ and 0 < α ≤ 1. (14)

Then, for given initial conditions (2), there exists a unique, nonnegative, and bounded so-
lution of system (6) for all t ∈ [–τ ,∞).

Proof Boundedness of system (6) can be followed from Theorem 2.1. Here, the remaining
elements of the above statement are proved. Consider

Ṁ(t) = �
(
M(t), M(t – τ )

)
,

where

M(t) =
[
S(t) V (t) E(t) L(t) I(t) Tr(t) R(t)

]T
, (15)

M(t – τ )

=
[

S(t – τ ) V (t – τ ) E(t – τ ) L(t – τ ) I(t – τ ) Tr(t – τ ) R(t – τ )
]T

(16)

and

�
(
M(t), M(t – τ )

)

=
1
α

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rS(t)(1 – S(t)
k ) – μS(t) – βS(t)I(t) – ηSS(t) – (1 – α)S(t)

μS(t) – ηV V (t) – (1 – α)V (t)
βS(t)I(t) – σE(t) – ρEE(t) – ηEE(t) – (1 – α)E(t)
σE(t – τ ) – γ L(t) – ρLL(t) – ηLL(t) – (1 – α)L(t)

γ L(t – τ ) – ρI I(t) – ηI I(t) – (1 – α)I(t)
ρEE(t – τ ) + ρLL(t – τ ) + ρI I(t – τ ) – ψTr – ηLTr(t) – (1 – α)Tr(t)

ψTr(t – τ ) – ηRR(t) – (1 – α)R(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

Equation (17) can be further expanded into

�
(
M(t), M(t – τ )

)

=
1
α

(
A1M(t) + S(t)A2M(t) + I(t)A3M(t) + A4M(t – τ ) – (1 – α)M(t)

)
(18)
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such that

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r – μ – ηs 0 0 · · · · · · · · · 0

μ –ηV 0
. . . . . . . . . 0

0 0 –σ – ηE – ρE
. . . . . . . . . 0

0 0 0 –γ – ηL – ρL
. . .

. . . 0
...

...
... 0 –ηI – ρI

. . . 0
...

...
...

... 0 –ηTr – ψ 0
0 · · · · · · · · · · · · 0 –ηR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

7×7

,

A2 =
[

r/k 0
]

1×7
, A3 =

[
–β 0 β 0

]
1×7

,

and

A4 =

[
0 0
0 A′

4

]
7×7

,

where

A′
4 =

⎡
⎢⎢⎢⎣

σ 0 0 0 0
0 γ 0 0 0
ρE ρL ρI 0 0
0 0 0 ψ 0

⎤
⎥⎥⎥⎦ .

Equation (18) can be manipulated as follows:

∥∥�
(
M(t), M(t – τ )

)∥∥
=

∥∥∥∥ 1
α

(
A1M(t) + S(t)A2M(t) + I(t)A3M(t) + A4M(t – τ ) + (α – 1)M(t)

)∥∥∥∥
≤

∣∣∣∣ 1
α

∣∣∣∣((‖A1‖ + ‖A2‖ + ‖A3‖ +
∣∣(α – 1)

∣∣)∥∥M(t)
∥∥ + ‖A4‖

∥∥M(t – τ )
∥∥)

.

Let δ = ‖A1‖ + ‖A2‖ + ‖A3‖, so the required statement for uniqueness is achieved as

∥∥�
(
M(t)

)
, M(t – τ )

∥∥ ≤
(

δ

|α| – α̃

)∥∥M(t)
∥∥ + ‖A4‖

∥∥M(t – τ )
∥∥,

where α̃ = |( 1
α

– 1)| for 0 < α ≤ 1. Next, to prove the nonnegativity of the solutions, we use
the positivity of initial conditions (2), i.e., ξi(ϑ) ≥ 0 and ξi(0) > 0 for i = 1, 2, . . . , 7. Consider
the first equation of system (6), it can be deduced to

Ṡ(t) =
1
α

(
rS(t)

(
1 –

S(t)
k

)
– μS(t) – βS(t)I(t) – ηSS(t) – (1 – α)S(t)

)

≥ –
1
α

(
μ + ηS + (1 – α)

)
S(t).
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On manipulating, we get

S(t) ≥ ξ1(ϑ)e–((μ+ηS+(1–α))/α)t . (19)

Since 0 ≤ e–((μ+ηS+(1–α))/α)t ≤ 1 for t > 0, therefore, Eq. (19) reduces to S(t) ≥ 0.
Thus, the nonnegativity of S(t) is proved. Analogously, all the remaining equations of

system (6) can be ascertained to have nonnegative solutions with the assumption of posi-
tive initial conditions. �

3 Basic reproduction number
The basic reproduction number, mostly denoted by R0, has a significant importance in
epidemiological studies as it measures the expected number of secondary cases produced
by the contact of a single infected individual in a completely susceptible population. If
R0 < 1, then the disease dies out after a time period, whereas if R0 > 1, then the disease
spreads out and becomes endemic. It is dimensionless and can be calculated either directly
by the product of transmissibility, average rate of contact, and duration of infectiousness
or by using the next generation method [25, 26].

Here, using the next generation method, a submodel of SVELITR model (6) is consid-
ered to only contain the infectious compartments. Therefore, for the case of model (6), it
includes the exposed, latent, and infected individuals, i.e., the equations of E, L, and I . Let

d 
X
dt

= F(
X) – V (
X), (20)

where 
X = [ E L I ]t and F(
X) = [ βSI/α 0 0]t define new infections entering each compart-
ment. Since no new infected individual enters L and I compartments directly, rather they
transit from the E compartment into L and then I compartments, therefore, the second
and third element of F(
X) are zero. On the other hand, V (
X) can be further fragmented
down as

V (
X) = V –(
X) – V +(
X),

where V –(
X) and V +(
X) contain all other outputs and inputs of each E, L, and I compart-
ments, respectively. Hence V (
X) can be outlined as follows:

V (
X) =

⎡
⎢⎣

(σ + ρE + ηE + (1 – α))E(t)/α
(γ + ρL + ηL + (1 – α))L(t)/α

(ρI + ηI + (1 – α))I(t)/α

⎤
⎥⎦ –

⎡
⎢⎣

0
σE(t)/α
γ L(t)/α

⎤
⎥⎦ .

Taking Jacobian matrix of Eq. (20) at a disease-free equilibrium point


1
(
k(r – ηS – μ + α – 1)/r, k(1 – r + ηS + μ – α)μ/r(α – ηV – 1), 0, 0, 0, 0, 0

)
,

we get

J
[

d 
X
dt

]

= F – V
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=

⎡
⎢⎣

0 0 βk(r – ηS – μ + α – 1)/αr
0 0 0
0 0 0

⎤
⎥⎦

–

⎡
⎣(σ + ρE + ηE + (1 – α))/α 0 0

–σ /α (γ + ρL + ηL + (1 – α))/α 0
0 –γ /α (ρI + ηI + (1 – α))/α

⎤
⎦. (21)

From Eq. (21), we can extract the following next generation matrix:

K = FV–1. (22)

On calculating the eigenvalues of Eq. (22), the eigenvalue with the largest magnitude is
the required value of the basic reproduction number. So, after some simplification, we get

R0 =
kβγσ (r + α – ηS – μ – 1)

r(1 – α + ηL + γ + ρL)(1 – α + ηE + σ + ρE)(1 – α + ηI + ρI)
. (23)

4 System dynamics
In this section, the equilibria of system (6) along with its dynamic properties are discussed
in particular. Let the Jacobian matrix at an equilibrium point (Ŝ, V̂ , Ê, L̂, Î, T̂r , R̂) be outlined
as J(Ŝ,V̂ ,Ê,L̂,Î,T̂r ,R̂) =

[ M1 M2
M3 M4

]
, where

M1 =

⎡
⎢⎣

r(1 – 2Ŝ
k ) – β Î – (μ + ηS + (1 – α)) 0 0 0

μ –(ηV + (1 – α)) 0 0
β Î 0 –(σ + ρE + ηE + (1 – α)) 0

⎤
⎥⎦,

M2 =

⎡
⎢⎣

–βŜ 0 0
0 0 0
βŜ 0 0

⎤
⎥⎦ ,

M3 =

⎡
⎢⎢⎢⎣

0 0 σ e–λτ –(γ + ρL + ηL + (1 – α))
0 0 0 γ e–λτ

0 0 ρEe–λτ ρLe–λτ

0 0 0 0

⎤
⎥⎥⎥⎦

and

M4 =

⎡
⎢⎢⎢⎣

0 0 0
–(ρI + ηI + (1 – α)) 0 0

ρIe–λτ –(ψ + ηTr + (1 – α)) 0
0 ψe–λτ –(ηR + (1 – α))

⎤
⎥⎥⎥⎦ .

So, the corresponding characteristic equation for the eigenvalues λ can be articulated
as

Q(λ) = det(λI – J) = 0. (24)

Theorem 4.1 The trivial equilibrium solution, 
0(0, 0, 0, 0, 0, 0, 0) ∈ �7
+, of system (6) is

asymptotically unstable for all 0 ≤ τ < ∞ and 0 < α ≤ 1.
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Proof It can be easily proved by eigenvalues of J, i.e., for all 0 ≤ τ < ∞,

λ1 =
–1 – ηV + α

α
, λ2 =

–1 – ηR + α

α
, λ3 =

–1 – ηS – μ + α + r
α

,

λ4 =
–1 – ηL – γ – ρL + α

α
,

λ5 =
–1 – ηI – ρI + α

α
, λ6 =

–1 – ηE – σ – ρE + α

α
, λ7 =

–1 – ηTr – ψ + α

α
.

Since r > 1 + ηS + μ – α, it is clear that λ7 > 0 for 0 < α ≤ 1. Thus, 
0 ∈ �7
+ is unstable for

all 0 ≤ τ < ∞. �

Theorem 4.2 The disease-free equilibrium solution


1
(
k(r – ηS – μ + α – 1)/r, k(1 – r + ηS + μ – α)μ/r(α – ηV – 1), 0, 0, 0, 0, 0

) ∈ �7
+

of system (6), for r > 1 + ηS + μ – α, is locally asymptotically stable if R0 < 1 and unstable
when R0 > 1 for all 0 ≤ τ < ∞.

Proof Solving J for the equilibrium point


1
(
k(r – ηS – μ + α – 1)/r, k(r – ηS – μ + α – 1)μ/r(1 + ηV – α), 0, 0, 0, 0, 0

) ∈ �7
+,

we get the negative real eigenvalues

λ1 =
–1 – ηV + α

α
, λ2 =

–1 – ηR + α

α
,

λ3 =
–r + ηS + μ – α + 1

α
, λ4 =

–1 – ηTr – ψ + α

α
,

with the transcendental equation

Q(λ) = λ3 + C2λ
2 + C1λ + C0

(
1 – e–2λτ R0

)
= 0, (25)

where

C2 =
1
α

(3 – 3α + γ + σ + ηE + ηL + ηI + ρE + ρL + ρI),

C1 =
1
α2

⎛
⎜⎜⎜⎝

3 + 3α2 + 2(ηE + ηL + ηI + ρE + ρL + ρI) + ηEηL + ηEηI + ηIηL

+ ρE(ηL + ηI) + ρL(ηE + ηI + ρE) + ρI(ηE + ηL + ρE + ρL)
+ (2 + ηI + ηL + ρL + ρI)σ + (2 + ηE + ηI + ρE + ρI + σ )γ

– 2α(3 + γ + σ + ηE + ηL + ηI + ρE + ρL + ρI)

⎞
⎟⎟⎟⎠ ,

C0 =
1
α3 (1 – α + ηL + γ + ρL)(1 – α + ηE + σ + ρE)(1 – α + ηI + ρI).

From the Routh–Hurwitz condition [27] for cubic polynomial, if C2 > 0, C0(1–e–2λτ R0) > 0
and C1C2 > C0(1 – e–2λτ R0), then Q(λ) > 0 for all nonnegative real eigenvalues, and thus
all the real parts of the eigenvalues must be negative. Therefore, it can be clearly seen that
C1 > 0, C2 > 0, and C0 > 0, so the only thing left to be proved is that (1 – e–2λτ R0) > 0.
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Accordingly, when τ = 0, the only possibility for (1 – e–2λτ R0) > 0 is that R0 < 1. Hence,

1 ∈ �7

+ is asymptotically stable if R0 < 1 for τ = 0. If R0 > 1 and (1 – e–2λτ R0) < 0 implies
Q(0) < 0, then Eq. (25) must have a nonnegative real part, thus it becomes unstable.

Now, ∀τ ∈ �+, we prove that if λ = a ± ib is the complex solution of Q(λ), then 
1 ∈ �7
+

is stable if a ≤ 0. On substituting the complex value of λ, for a ≥ 0 and b2 > 0, into Eq. (21)
and separating the real and imaginary parts, we get the following polynomial:

b6 + b4(3a2 – 2C1 + 2aC2 + C2
2
)

+ b2(3a4 + C2
1 + 4a3C2 – 2C0C2 + 2a2C2

2 + a(–6C0 + 2C1C2)
)

+
(
C0 + a

(
C1 + a(a + C2)

))2 – C2
0e–4aτ R2

0 = 0.

(26)

(C0 + a(C1 + a(a + C2)))2 > C2
0e–4aτ R2

0, whenever R0 < 1, ∀τ ∈ �+ since there is no solution
for a ≥ 0 and b2 > 0, thus there is no complex number with a nonnegative real part. Hence,

1 ∈ �7

+ is asymptotically stable when R0 < 1 and unstable when R0 > 1, ∀τ ∈ �+. �

Theorem 4.3 If R0 > 1, then the endemic equilibrium 
2(S̆, V̆ , Ĕ, L̆, Ĭ, T̆r , R̆) ∈ �7
+ is locally

asymptotically stable and unstable if and only if either it has a zero solution or has a com-
plex conjugate pair of purely imaginary solutions when R0 > 1 for some τ > τ0.

Proof Solving J for the equilibrium point 
2(S̆, V̆ , Ĕ, L̆, Ĭ, T̆r , R̆) ∈ �7
+, we get the negative

real eigenvalues

λ1 =
–1 – ηV + α

α
, λ2 =

–1 – ηR + α

α
,

with the transcendental equation

Q(λ) = λ4 + U3λ
3 + U2λ

2 + U1λ + U0 + (–C0λ + Ua)e–2λτ = 0, (27)

where

U0 = –
C0Ub

α
,

U1 = C0 –
C1Ub

α
,

U2 = C1 –
C2Ub

α
,

U3 = C2 –
Ub

α
,

Ua =
C0Ub

α3 (2 – R0)

such that

Ub = –
(r + α – ηS – μ – 1)

R0
.

For τ = 0, Q(λ) reduces into

Q(λ)|τ=0 = λ4 + U3λ
3 + U2λ

2 + (U1 – C0)λ + U0 + Ua = 0 (28)
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such that U3 > 0, U2 > 0, (U1 – C0) = – C1Ub
α

> 0, and (U0 + Ua) = – C0Ub
α3 (α2 + R0 – 2) > 0

as R0 > 1 and Ub < 0. It can be easily manipulated and investigated that Eq. (28) satisfies
the Routh–Hurwitz condition of fourth order polynomial, i.e., in addition to the above
inequalities, U3U2 > (U1 – C0) and U1U2U3 > (U0 + Ua)U2

3 + (U1 – C0)2. Thus Q(λ) > 0,
therefore when R0 > 1, all the real parts of the eigenvalues are negative for τ = 0. Next, it
is also clear from Eq. (27) that Q(0) = U0 + Ua �= 0, so the only possibility of 
2 ∈ �7

+ to
be unstable is that a complex conjugate pair of purely imaginary solution exists for some
critical value τ0 > 0. Now consider λ = ±ib, and on substituting in Eq. (27) and separating
real and imaginary parts, we get

b4 + U0 – b2U2 + Ua cos(2bτ ) – bC0 sin(2bτ ) (29)

and

bU1 – b3U3 – Ua sin(2bτ ) – bC0 cos(2bτ ). (30)

On simplifying and assuming � = b2, we get

Y (� ) = � 4 + v3�
3 + v2�

2 + v1� + v0 = 0, (31)

where v3 = –2U2 + U2
3 , v2 = 2U0 + U2

2 – 2U1U3, v1 = –C2
0 + U2

1 – 2U0U2, v0 = U2
0 – U2

a . The
existence of at least one positive real root will lead Eq. (31) to a complex conjugate pair
of purely imaginary solutions and also a Hopf bifurcation might exist. Since it is straight-
forward from the constant of Eq. (31) that v0 < 0, when R0 > 1 and lim�→∞ Y (� ) = +∞,
therefore Y (� ) must have at least one positive real root. Hence, Eq. (27) produces a com-
plex conjugate pair of purely imaginary solutions for some τ0 > 0 and 
2 ∈ �7

+ becomes
unstable when R0 > 1. �

5 Existence of Hopf bifurcation
From Theorem 4.3, the endemic equilibrium point is unstable if and only if Q(λ) = 0 of
Eq. (27) produces a complex conjugate pair of purely imaginary solutions for some τ0 >
0, which might lead to the existence of the Hopf bifurcation [11]. As it is possible that
Eq. (31) can have four positive real roots, i.e., �p for p = 1, 2, 3, 4, thus there are four purely
imaginary pairs of eigenvalues λp = ibp = ±i√�p for p = 1, 2, 3, 4. Now, we may find values
of the time delay τp corresponding to the value of bp. By substituting bp into Eqs. (29)–(30)
and solving for τp, we get

cos(2bpτ ) = –
b4

pC0U3 – b2
pC0U1 + b4

pUa + U0Ua – b2
pU2Ua

b2
pC2

0 + U2
a

and

sin(2bpτ ) = –
b3

pC0U2 – b5
pC0 – bpC0U0 – bpU1Ua + b3

pU3Ua

b2
pC2

0 + U2
a

.

Thus,

τp =
1

2bp
arctan

(b3
pC0U2 – b5

pC0 – bpC0U0 – bpU1Ua + b3
pU3Ua

b4
pC0U3 – b2

pC0U1 + b4
pUa + U0Ua – b2

pU2Ua

)

+
jπ
bp

for p = 1, 2, 3, 4. (32)
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The minimum time delay at which purely imaginary eigenvalues λ0 = ib0 occur is

τ0 = min
1≤p≤4,j≥0

τ j
p, τ j

p > 0.

Now, for the transversality condition for the existence of Hopf bifurcation, we have to
prove d

dτ
Re(λ)|τ=τ0 �= 0. So, taking the derivative of Eq. (27) and simplifying yields

(
dλ

dτ

)–1

=
U1 + 2U2λ + 3U3λ

2 + 4λ3

2λe–2τλ(Ua – C0λ)
–

τ

λ
–

C0

2λ(Ua – C0λ)
,

with λ0 = ib0, we get

Re

(
dλ

dτ

)–1∣∣∣∣
τ=τ0

=
1

2(b2
0C2

0 + U2
a )

(
–C2

0 –
–C0U1 + 3b3

0C0U3 + 4b2
0Ua – 2U2Ua

Ud

)

–
Uc(4b4

0C0 + U1Ua – b2
0(2C0U2 + 3U3Ua))

2(b2
0C2

0 + U2
a )Ud

,

where

Uc =
(
U0Ua + b4

0(C0U3 + Ua) – b2
0(C0U1 + U2Ua)

)
,

Uf =
(
b4

0C0 + C0U0 + U1Ua – b2
0(C0U2 + U3Ua)

)
,

Ud =

√
1 +

b2
0U2

f

U2
c

.

Since Re( dλ
dτ

)–1|τ=τ0 �= 0, thus d
dτ

Re(λ)|τ=τ0 �= 0, with the critical point τ0 as a Hopf bifurca-
tion point.

6 Numerical findings
In this section, numerical investigations of system (6) are carried out by considering some
numerical values of the parameters, as shown in the form of three sets in Table 2. Taking
the initial conditions as

S(ϑ) = 100, V (ϑ) = 0, E(ϑ) = 0, L(ϑ) = 0,

I(ϑ) = 1, Tr(ϑ) = 0, R(ϑ) = 0,

for ϑ ∈ [–τ , 0), all the manipulation and plotting of the dynamics are undergone by using
Mathematica 10.0. Stability of the equilibrium states and phase portraits is discussed in
detail through graphs and tables.

On using set 1 of Table 2, the basic reproduction numbers R0 and constant solutions
of S(t), V (t), E(t), L(t), I(t), Tr(t), and R(t) for different values of α are calculated and
represented in Table 3. Since at each value of α, R0 < 1, therefore the plots obtained for
some values of α = 0.8, 0.95 and 1, τ = 1 and t ∈ [0, 200] in Fig. 2, verify the stability of
disease-free equilibrium states for R0 = 0.37668, 0.545976, 0.62441, respectively.

Subsequently, for the values of parameters in set 2 of Table 2, the basic reproduction
number along with the constant solutions of S(t), V (t), E(t), L(t), I(t), Tr(t), and R(t) for
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Table 2 Values of the parameters for SVELITR model (6)

Parameters Set

1 2

r 19 19
k 8.5 8.5
μ 0.3 0.043
β 0.35 0.95
σ 0.6 0.6
γ 0.5 0.96
ψ 0.58 0.005
ηS 0.1 0.01
ηV 0.1 0.1
ηE 0.035 0.015
ηL 0.1 0.016
ηI 0.2 0.5
ηTr 0.42 0.42
ηR 0.035 0.01
ρE 0.6 0.041
ρL 0.5 0.044
ρI 0.83 1

Table 3 Basic reproduction number R0 and disease-free equilibrium point 
1 for set 1 and τ = 1 at
different values of α

α R0 S(t) V(t) E(t) L(t) I(t) Tr (t) R(t)

0.4 0.166286 8.05263 3.45113 0 0 0 0 0
0.5 0.200181 8.09737 4.04868 0 0 0 0 0
0.6 0.24377 8.14211 4.88526 0 0 0 0 0
0.7 0.300758 8.18684 6.14013 0 0 0 0 0
0.8 0.37668 8.23158 8.23158 0 0 0 0 0
0.9 0.480049 8.27632 12.4145 0 0 0 0 0
1. 0.624411 8.32105 24.9632 0 0 0 0 0

different values of α are obtained and represented in Table 4. As at these values R0 > 1
for all 0 < α ≤ 1, then, according to Theorems 4.2 and 4.3, the disease-free equilibrium
state becomes unstable. On the other hand, endemic equilibrium will become stable for
some τ < τ0. Therefore, calculating the critical Hopf bifurcation point τ0 by using Eq. (32),
we have τ0 = 0.380397 for the values of parameters in set 2 of Table 2. Consequently,
the plots of system (6) in Fig. 3 at different values of α = 0.8, 0.95, 1 and t ∈ [0, 200], the
stability of endemic equilibrium state is evident due the reason that τ = 0.035 < τ0 with
R0 = 2.58500, 3.95079, 4.62122; whereas Fig. 4 shows unstability of the endemic equilib-
rium states for the same values of all parameters and R0 due to the reason that τ = 0.9 > τ0.
In addition, the phase diagrams are also portrayed in Figs. 5 and 6, at τ = 1.5 and τ = 3, by
using values of set 2 in Table 2, for α = 0.8, 0.95, 1, and t ∈ [0, 5000]. These figures further
illustrate that as the values of τ and α are increased system (6) loses stability and generates
the limit cyclic patterns of the infectious compartments, i.e., E(t), L(t), and I(t).

The abovementioned graphical and tabulated results are successfully attained at differ-
ent values of fractional order α, which greatly enables us to illustrate the equilibrium states
and the basic reproduction number R0 of system (6) with memory effect. Tables 3 and 4
significantly elaborate the effect of α on R0, through which it can be clearly seen in detail
that within the time bar a fractional variation in the system changes the value of the basic
reproductive number.
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Figure 2 Disease-free equilibrium states of the SVELITR model at different values of α for R0 < 1 and τ = 1

Table 4 Basic reproduction number R0 and endemic equilibrium point 
2 for set 2 and τ = 0.035 at
different values of α

α R0 S(t) V(t) E(t) L(t) I(t) Tr (t) R(t)

0.4 1.05112 7.80868 0.479676 5.54749 2.05462 0.939257 1.22645 0.0100528
0.5 1.28501 6.42222 0.460259 22.7302 8.97247 4.30678 6.09028 0.0597087
0.6 1.5936 5.20667 0.447773 34.0631 14.3929 7.27218 11.2752 0.137503
0.7 2.00963 4.15105 0.446238 40.6776 18.4898 9.86124 17.0242 0.274584
0.8 2.585 3.24442 0.465033 43.5676 21.4267 12.0998 23.7261 0.564907
0.9 3.4056 2.47579 0.532295 43.5977 23.3559 14.0136 32.0547 1.45703
1. 4.62122 1.83421 0.788711 41.513 24.4194 15.6284 43.3057 21.6528
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Figure 3 Endemic equilibrium state of SVELITR at different values of α for R0 > 1 and τ = 0.035 < τ0

7 Conclusions
A system of seven fractional order differential equations was designed with time delay to
illustrate the seven epidemiological compartments. These compartments elaborated each
stage of any individual from being susceptible and exposed to infection till its treatment
and recovery or being vaccinated and safe. In addition, time delay was also added in the
treatment compartment to show the dynamics of the individuals of exposed, latent, or
infected stages going through the treatment with different rates and being recovered later.
Moreover, we applied a special case of the proportional fractional derivative on the system
of equations. This simplified form made it computationally easy to discuss the variations
and equilibrium states of the functions by converting the system into an integer order
without losing the originality of the fractional index. This definition also enabled to study
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Figure 4 Endemic equilibrium state of SVELITR at different values of α for R0 > 1 and τ = 0.9 > τ0

the significant impact of the fractional index change on the basic reproduction number
and the stability of the equilibrium states. Furthermore, the point-to-point outcomes of
the study can be summarized as follows:

• The basic reproduction number R0 does not remain constant throughout the
dynamic process of an epidemic in a particular time interval, but a fractional index
variation in the system will also cause change in its value within the time interval.

• For any delay in time taken by an individual for the treatment and recovery, if the
basic reproduction number of the infection for each fractional index step is less than
1, then a disease-free state can be achieved.

• If R0 > 1 for each fractional index value and time delay by an individual is less than the
Hopf bifurcation point, then the infection becomes endemic with a constant rate.
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Figure 5 The phase diagrams of SVELITR at different values of α for R0 > 1 and τ = 1.5 > τ0

Figure 6 The phase diagrams of SVELITR at different values of α for R0 > 1 and τ = 3 > τ0

• If R0 > 1 for each fractional value and time delay by an individual is greater than the
Hopf bifurcation point, then the system moves towards an unstability state bit by bit,
and so the infection outbreaks.



Alzahrani et al. Advances in Difference Equations        (2021) 2021:292 Page 19 of 20

As the proposed epidemiological model for the transmission of an infection that shows
the impact of fractional operator on the basic reproduction number of any infection has
not been found in the literature yet, it will be greatly advantageous for the epidemiologist
to cope with the infection at each fractional index value before the occurrence of a com-
plete change. In future, we will design a model that will demonstrate the age classification
and impact of fractional index variation of an infection on different age groups.
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