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Abstract
This work investigates the dissemination mechanism of pine wilt disease. The basic
reproduction number is computed explicitly, and an ultimate invariable level of
contagious hosts and vectors, without and with disease, is discussed by using this
number. Highly effective techniques, Lyapunov functional and graph theoretic, are
utilised to obtain the ultimate constant level of the whole population. The idea of
complete disease eradication and reduction of endemic level is explored through the
utilisation of two efficient methods. Using sensitivity analysis approach, necessary
control measures are suggested to overcome the disease. Using the literature data,
the robustness of control strategies is shown graphically.

Keywords: Deterministic model; Stability; Real data; Vital factors for disease
spreading; Effective control strategies

1 Introduction
Pine trees are evergreen conifers. These are some of the famous plants around the world
because of trade of timber (Fig. 1). Manufacturing of turpentine, pulp rosin and paper
explores the value of these trees. Some species have seeds (called pine nuts) that are used
for cooking and baking.

Pine wilt disease (PWD), the disease of pines, is so nasty that after getting the disease
the infected tree becomes dead within a few weeks to a few months. The usual symptom
is needles’ discolouration. Their colour first changes to greyish green and finally it turns
out to be totally brown. Infected pine trees cease oleoresin after succumbing to the disease
(Fig. 2). It was reported that PWD first occurred in Japan in the early twentieth century [1].
It was observed in the Japanese prefecture Hyogo in 1921. In 1930, this disease appeared
in distant places of Kyushu. This malady ultimately spread to the shore of Seto Inland Sea
[2].

Bursaphelenchus xylophilus, which has an international common name “pine wood ne-
matode (PWN)”, is the casual pathogen of this malady (Fig. 3). This nematode exists in
the upper portions of pine trees. Disturbed water conditions, through small air pockets,
are created by Bursaphelenchus xylophilus in the xylem of pine tree, which prevents water
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Figure 1 Types of pine trees

Figure 2 Healthy and infected pine trees

movement. As a result, the tree becomes dead soon [3]. After more than 60 years, this
pathogen has been discovered. It was first reported as the casual agent in Japanese native
pines in 1971 [4]. Numerous genetic varieties of PWN were studied, and it was concluded
that it came to Japan from the United States. From this place, it spread to China, Portugal,
Korea and Spain [5].

PWN is not capable of moving itself from one tree to another. Bark beetles (pine sawyer)
serve as the transporting agent (Fig. 4). Monochamus alternatus, commonly known as the
Japanese pine sawyer, is a species of beetles that belong to the family of Cerambycidae.
These are the vectors for the transmission of PWN. When nematode approaches the dis-
persal stage, it attaches to the insects’ respiratory system, and when adult beetles feed on
healthy pine trees, this Bursaphelenchus xylophilus is transferred into the tree.

Transmission mechanism of PWD occurs in three ways: First, when infected pine
sawyers fly and start maturation feeding. These infected pine sawyers feed on the twigs of
a pine tree, and during this process the nematode is transferred into the tree. It is called the
primary transmission. Second transmission occurs during the egg laying activities of the
pine sawyer on a freshly cut, dying or dead pine tree [6]. Third transmission, which may be



Khan et al. Advances in Difference Equations        (2021) 2021:261 Page 3 of 31

Figure 3 Picture of nematode separately and in pine wood

Figure 4 Bark beetle, transporting agent of nematode

called horizontal transmission, occurs during the mating process of the pine sawyer [7].
The PWD cycle can be explained through Fig. 5.

Modelling is the branch of science in which we use inspirational approaches of applied
mathematics equipped with inspiration. In order to analyse the dynamics of an ecosystem
and quantitative prediction, mathematical treatment is an indispensable tool. Mathemat-
ical modelling has become an essential tool which enables one to comprehend the causes,
patterns and effects of the disease. Mathematicians, through investigations and prediction
of an epidemic, provide an invaluable assistance to health care agencies who attempt and
allocate resources to control an infectious disease or epidemic in the community.

Various mathematical models have been proposed for investigation of Bursaphelenchus
xylophilus transmission. A simple deterministic model for wilt disease of pines has been
presented by Yoshimura et al. [8]. The model demonstrates disease epidemic through three
important factors, namely, initial pine density, beetles’ density and the capability of elim-
ination of the pine sawyer. Takasu et al. [9] presented a mathematical model based on
integro-change equation to explain the range expansion of PWD. Mechanistic contact of
beetles and pine trees is supposed in [10]. In this article, it was shown that the Alee ef-
fect appears from the reality that the beetles have contact with the pine tree at least twice
to reproduce successfully. Shi and Song [11] presented the mathematical model of PWD
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Figure 5 Transmission of PWD

and analysed it qualitatively by considering two types of transmissions: maturation feed-
ing of infectious beetles on healthy pine trees and oviposition of the pine sawyer on dying
or dead trees due to the pine wilt infection. However, another transmission that happens
through copulation of pine sawyers, as suggested by Togashi and Arakawa, has not been
discussed in their work [12]. Other mathematical models based on ordinary and fractional
derivatives are comprehensively explained in [13–25].

This work is based on the reconsideration of model studied in [26] with the addition of
the following distinguished aspects:

• The exploitation rate of tainted pines is higher than all other compartments
containing pine trees.

• Transmission of nematode in vector population occurs during copulation.
• Formulation of optimal control problem through sensitivity analysis of the threshold

parameter, pine trees having nematodes and beetles having nematodes.
This work has three fold intentions:

1. To reveal the stability of equilibria.
2. To recognise those factors, for basic reproduction number and infectious

compartments, that have high impact.
3. To formulate the optimal control techniques by making use of sensitivity analysis.

2 Model formulation and flow diagram
We construct the mathematical model by considering two populations, host and vector.
The host population consists of susceptible, exposed, asymptomatic and infectious carri-
ers represented by Sh(t), Eh(t), Ah(t) and Ih(t), respectively. There are two compartments of
vector population, susceptible and infectious vectors. These are denoted by Sv(t) and Iv(t),
respectively. Transmission of nematode among vectors and the pine sawyer arises during
maturation feeding of the pine sawyer and oviposition of these vectors. However, the pine
sawyer may also attain infection through copulation. Suppose that Nh and Nv denote the
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whole host and vector population at any time t, respectively. So, Nh = Sh + Eh + Ah + Ih and
Nv = Sv + Iv.

Suppose that the planting rate of healthy pines is λh and the recruitment rate of a ma-
ture pine sawyer is λv. The exploitation rate of pine trees (except infectious pines, which
is denoted by δ) is μh and the fatality rate of vectors is μv. The transferring rate of ne-
matodes through an infectious pine sawyer during maturation feeding is α. The mean
number of daily contacts of fully developed infectious vectors with the susceptible pines
is φ. Suppose that the pine sawyer makes a mean number of ψ contacts with the tree for
reproducing themselves and β is the transmission rate of nematode through oviposition.
The parameter θ shows the probability that a dead tree was not infected with the nema-
tode and ceases oleoresin due to natural causes. Let γ denote the emergence rate of an
infectious pine sawyer from an expired tree. Exposed trees move to either the infectious
or the asymptomatic carrier class. These trees move with the per capita rate k, the fraction
ρ (0 < ρ < 1) of them move to the infectious compartment.

We design a system of nonlinear ODEs, based on the above stated assumptions, as fol-
lows:

dSh

dt
= λh – αφShIv – βψθShIv – μhSh,

dEh

dt
= αφShIv – (μh+k)Eh,

dAh

dt
= (1 – ρ)kEh – μhAh,

dIh

dt
= kρEh + βψθShIv – δIh, (1)

dSv

dt
= λv – γ IhSv – β1SvIv – μvSv,

dIv

dt
= γ IhSv + β1SvIv – μvIv.

Figure 6 shows the flow sheet of the model. All the above variables will be nonnegative,
because we are dealing with the population, and the whole populace of both species has

Figure 6 Flow diagram of model (1)
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the following form of differential equations:

dNh

dt
= λh – μh(Sh + Eh + Ah) – δIh,

dNv

dt
= λv – μvNv. (2)

Obviously, � = {(Sh, Eh, Ah, Ih, Sv, Iv) ∈ R6
+| λh

δ
≤ Nh ≤ λh

μh
, Nh ≤ λv

μv
} is invariant positively.

The global attractor for (1) exists in the set �, and the system is dissipative.

3 Equilibria and basic reproduction number
Two kinds of equilibria, disease free equilibrium (DFE) and endemic equilibrium (EE),
exist for the above presented model. We denote DFE by Eo and EE by E∗, respectively.
Disease free equilibrium can be easily computed by putting all the diseased classes and
right-hand sides of each class of system (1) equal to zero. We get Eo = ( λh

μh
, 0, 0, 0, λv

μv
, 0).

The whole dynamics of the disease is based on the threshold parameter known as the
basic reproduction number. It identifies the status of the disease, i.e. whether the disease is
spreading in the community or not. It is termed “the mean number of secondary infections
brought about by an infectious individual during its complete course of infection”. We find
the expression of basic reproduction number with the help of the next generation matrix
method.

Let x = (y1, y2, . . . , yn)T ∈ Rn and y = (z1, z2, . . . , zm)T ∈ Rm denote the population
in the infected and non-infected classes, respectively. F̌ = (F̌1, F̌2, . . . , F̌n)T and V̌ =
(V̌1, V̌2, . . . , V̌n)T , where F̌l shows a new infection rate in the lth infected compartment, V̌l

symbolises the transition terms, for example, recovery and fatality in the lth infected class
[27]. The dominant eigenvalue of the matrix F̂V̂ –1 with F̃ = [ ∂(F̌l(E◦))

∂(yj)
] and Ṽ = [ ∂(V̌l(E◦))

∂(yj)
] is

called the basic reproduction number. Contaminated compartments are Eh, Ah, Ih and Iv.
Therefore

⎡
⎢⎢⎢⎣

F̌1

F̌2

F̌3

F̌4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

αφShIv

0
βψθShIv

γ IhSv + β1SvIv

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

V̌1

V̌2

V̌3

V̌4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

(k + μh)Eh

μhAh – k(1 – ρ)Eh

δIh – kρEh

μvIv

⎤
⎥⎥⎥⎦ .

Thus,

F̃ =

⎛
⎜⎜⎜⎜⎝

0 0 0 αφ
λh
μh

0 0 0 0
0 0 0 βψθ

λh
μh

0 0 γ λv
μv

β1
λv
μv

⎞
⎟⎟⎟⎟⎠

, Ṽ =

⎛
⎜⎜⎜⎝

(k + μh) 0 0 0
–k(1 – ρ) μh 0 0

–kρ 0 δ 0
0 0 0 μv

⎞
⎟⎟⎟⎠,

which gives

F̃Ṽ –1 =

⎡
⎢⎢⎢⎢⎣

0 0 0 αφ
λh

μhμv

0 0 0 0
0 0 0 θβψ

λh
μhμv

kγρ λv
μv(kδ+δμh) 0 γ

δ

λv
μv

β1
λv
μ2

v

⎤
⎥⎥⎥⎥⎦

.
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As R◦ is the dominant eigenvalue of F̂V̂ –1, hence

R◦ =
β1λv
μ2

v
+
√

( β1λv
μ2

v
)2 + 4λhλvγ ( θβψ

δμhμ2
v

+ kαφρ

δμhμ2
v (k+μh) )

2
.

Suppose that E∗ = (S∗
h, E∗

h, A∗
h, I∗

h , S∗
v , I∗

v ) is the endemic equilibrium for the reproduction
number greater than one and

S∗
h =

λh

I∗
v (αφ + βψθ ) + μh

,

E∗
h =

αφλhI∗
v

(I∗
v (αφ + βψθ ) + μh)(k + μh)

,

A∗
h =

k(1 – ρ)αφλhI∗
v

μh(I∗
v (αφ + βψθ ) + μh)(k + μh)

,

I∗
h =

λh

δ

(
κραφ + βψθ (κ + μh)

(κ + μh)(I∗
v (αφ + βψθ ) + μh)

)
I∗

v ,

S∗
v =

λv

γ I∗
h + β1I∗

v + μv
,

and we can get the value I∗
v by solving the following second degree equation:

AI∗2
v + BI∗

v + C = 0,

where

A = β1μv(k + μh)(αφ + βψθ ),

B = γμv
λh

δ

(
(κ + μh + κραφ)βψθ

)
+ β1μvμh(κ + μh)

+ (κ + μh)(αφ + βψθ )
(
μ2

v – β1λv
)
,

C = μh(κ + μh)μ2
v

[
1 –

{
β1λv

μ2
v

+ γ λvλh

(
κραφ

δμ2
vμh(κ + μh)

+
βψθ

δμ2
vμh

)}]
.

The changes in signs of coefficients A, B and C tell us about the zeros of the above quadratic
equation. We can see that A is always positive and C < 0 if and only if R◦ > 1. Paying no
attention to the sign of B, we conclude that there is a unique positive value of I∗

v because
there is only one sign change for R◦ > 1. Hence the unique EE E∗ = (S∗

h, E∗
h, A∗

h, I∗
h , S∗

v , I∗
v ) of

model (1) exists for R◦ > 1.

4 Global behaviour of equilibria
We explore the global behaviour of equilibria by using Lyapunov functional theory and
graph theory. The comprehensive procedure of global stability using graph theory has
been omitted here. We recommend the keen reader to go through [28].

Theorem 1 The set of equations (1) expresses the global asymptotic stability about Eo in-
side the positively unvarying set �, whenever R◦ ≤ 1.
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Proof Suppose that we have the Lyapunov function

L =
kργλv

δμv(μh + k)
Eh +

γ λv

δμv
Ih + Iv.

Differentiation of L w.r.t time t leads to

L′ =
kργλv

δμv(μh + k)
E′

h +
γ λv

δμv
I ′

h + I ′
v

=
kργλv

δμv(μh + k)
(
αφShIv – (k + μh)Eh

)
+

γ λv

δμv
(kρEh + βψθShIv – δIh)

+ (γ IhSv + β1SvIv – μvIv)

≤ μv

(
αφ

λh

μhμv

kργλv

δμv(μh + k)
+ βψθ

λh

μhμv

γ λv

δμv
+ a3β1

λv

μvμv
– 1
)

Iv

+
(

γ λv

δμv
kρ –

kργλv

δμv(μh + k)
(k + μh)

)
Eh +

(
γ

λv

μv
–

γ λv

δμv
δ

)
Ih

≤ μv

(
αφkργλvλh

δμhμ2
v(μh + k)

+
βψθγλvλh

δμhμ2
v

+ β1
λv

μ2
v

– 1
)

Iv.

It can be easily observed that L′ ≤ 0 when R◦ ≤ 1 and L′ = 0 for Eh = Ih = Iv = 0. Thus,
the maximal dense unvarying set, for a system of equations (1), contains a single compo-
nent which is E◦. With the help of Lasalle’s invariance principle [29], we can say that Eo is
globally asymptotically stable in �. �

Theorem 2 The endemic equilibrium point (E∗) exhibits global asymptotic stability in �

for R◦ > 1.

Proof Suppose that

D̃1 = Sh – S∗
h ln

Sh

S∗
h

– S∗
h,

D̃2 = Eh – E∗
h ln

Eh

E∗
h

– E∗
h,

D̃3 = Ah – A∗
h ln

Ah

A∗
h

– A∗
h,

D̃4 = Ih – I∗
h ln

Ih

I∗
h

– I∗
h ,

D̃5 = Sv – S∗
h ln

Sv

S∗
v

– S∗
v ,

D̃6 = Iv – I∗
v ln

Iv

I∗
v

– I∗
v .

Taking the rate of change of above D′s w.r.t t and by making use of the result 1 + ln x – x ≤
0 for positive x, the derivatives can be expressed as follows:

D̃′
1 =

(
1 –

S∗
h

Sh

)
S′

h
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=
(

1 –
S∗

h
Sh

)
(λh – αφShIv – βψθShIv – μhSh)

=
(

1 –
S∗

h
Sh

)(
αφS∗

hI∗
v + βψθS∗

hI∗
v + μhS∗

h – αφShIv – βψθShIv – μhSh
)

=
(

1 –
S∗

h
Sh

)(
αφS∗

hI∗
v – αφShIv

)
+
(

1 –
S∗

h
Sh

)(
βψθS∗

hI∗
v – βψθShIv

)

+
(

1 –
S∗

h
Sh

)(
μhS∗

h – μhSh
)

= αφS∗
hI∗

v

(
1 –

S∗
h

Sh

)(
1 –

ShIv

S∗
hI∗

v

)
+ βψθS∗

hI∗
v

(
1 –

S∗
h

Sh

)(
1 –

ShIv

S∗
hI∗

v

)

+ μhS∗
h

(
1 –

S∗
h

Sh

)(
1 –

Sh

S∗
h

)

= αφS∗
hI∗

v

(
1 –

S∗
h

Sh
–

ShIv

S∗
hI∗

v
+

Iv

I∗
v

)
+ βψθS∗

hI∗
v

(
1 –

S∗
h

Sh
–

ShIv

S∗
hI∗

v
+

Iv

I∗
v

)

– μhS∗
h

(Sh – S∗
h)2

ShS∗
h

≤ αφS∗
hI∗

v

(
ln

Sh

S∗
h

+ ln
Iv

I∗
v

– ln
Iv

I∗
v

–
ShIv

S∗
hI∗

v
+

Iv

I∗
v

)

+ βψθS∗
hI∗

v

(
ln

Sh

S∗
h

+ ln
Iv

I∗
v

– ln
Iv

I∗
v

–
ShIv

S∗
hI∗

v
+

Iv

I∗
v

)

≤ αφS∗
hI∗

v

(
ln

ShIv

S∗
hI∗

v
–

ShIv

S∗
hI∗

v
– ln

Iv

I∗
v

+
Iv

I∗
v

)

+ βψθS∗
hI∗

v

(
ln

ShIv

S∗
hI∗

v
–

ShIv

S∗
hI∗

v
– ln

Iv

I∗
v

+
Iv

I∗
v

)

:= a14G14 + a16G16,

and similarly,

D̃′
2 ≤ αφS∗

hI∗
v

(
ln

ShIvE∗
h

S∗
hI∗

v Eh
–

ShIvE∗
h

S∗
hI∗

v Eh
– ln

ShIv

S∗
hI∗

v
+

ShIv

S∗
hI∗

v

)
:= a21G21,

D̃′
3 ≤ μhA∗

h

(
ln

A∗
h

Ah

Eh

E∗
h

–
A∗

h
Ah

Eh

E∗
h

– ln
Eh

E∗
h

+
Eh

E∗
h

)
:= a35G35,

D̃′
4 ≤ kρE∗

h

(
ln

EhI∗
h

E∗
hIh

–
EhI∗

h
E∗

hIh
– ln

Eh

E∗
h

+
Eh

E∗
h

)

+ βψθS∗
hI∗

v

(
ln

ShIvI∗
h

S∗
hI∗

v Ih
+

ShIvI∗
h

S∗
hI∗

v Ih
– ln

ShIv

S∗
hI∗

v
+

ShIv

S∗
hI∗

v

)

:= a43G43 + a46G46,

D̃′
5 ≤ γ I∗

h S∗
v

(
ln

IhSv

I∗
h S∗

v
–

IhSv

I∗
h S∗

v
– ln

Ih

I∗
h

+
Ih

I∗
h

)

+ β1S∗
v I∗

v

(
ln

SvIv

S∗
v I∗

v
–

SvIv

S∗
v I∗

v
– ln

Iv

I∗
v

+
Iv

I∗
v

)

:= a52G52 + a56G56,
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Figure 7 Weighted digraph

D̃′
6 ≤ γ I∗

h S∗
v

(
ln

I∗
v IhSv

IvI∗
h S∗

v
–

I∗
v IhSv

IvI∗
h S∗

v
– ln

IhSv

I∗
h S∗

v
+

IhSv

I∗
h S∗

v

)

+ β1S∗
v I∗

v

(
ln

Sv

S∗
v

–
Sv

S∗
v

– ln
SvIv

S∗
v I∗

v
+

SvIv

S∗
v I∗

v

)

:= a62G62 + a63G63.

Figure 7 shows a weighted digraph with ten arcs and six vertices. One can observe that
Fig. 7 contains five cycles, and for each of these cycle, G21 + G52 + G35 + G43 + G14 = 0,
G21 + G52 + G35 + G63 + G16 = 0, G21 + G62 + G46 + G14 = 0, G35 + G63 + G56 = 0. Thus, by
Theorem 3.5 from [28], there exist c1, c2, c3, c4, c5, c6 such that

D̃ = c1D̃1 + c2D̃2 + c3D̃3 + c4D̃4 + c5D̃5 + c6D̃6.

Using Theorem 3.3 given in [28], we have

c2a21 = c1(a16 + a14),

c2a21 = c5a52 + c6a62,

c3a35 = c4a43 + c6a63,

c1a14 = c4(a43 + a46),

c3a35 = c5(a52 + a56).

Solving the above equations, we get

D̃ = D̃1 +
(

βψθ

αφ
+ 1
)

a21D̃2 +
γ I∗

h S∗
v + β1S∗

v I∗
v

μhA∗
h

D̃3 +
αφS∗

hI∗
v

kρE∗
h + βψθS∗

hI∗
v

D̃4 + D̃5

+
1

γ I∗
h S∗

v + β1S∗
v I∗

v

(
βψθS∗

hI∗
v + αφS∗

hI∗
v + β1S∗

v I∗
v –

αφβ1S∗
hS∗

v I∗
v

2

kρE∗
h + βψθS∗

hI∗
v

)
D̃6

is the Lyapunov function for system (1). Utilising LaSalle’s invariance principle and the
Lyapunov function D̃ [29], E∗ is GAS in the set (�). �
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5 Application of the model
Now the given model (1) is applied on real data containing infectious pines in order to
check the robustness of the model. Numerical values obtained through the calibration of
model outcomes with the real number of spoiled pines will be used for the identification of
crucial factors for the transmission of the disease as well as to design the control strategies
to reduce the malady from tree community. We used the data of the real number of spoiled
pines that were infected in Korea from 2010 to 2019 and were given in [30]. Explanation
of the parameters used in model (1) and their estimated values are shown in Table 1. It can
be seen from Fig. 8 that the model outcomes are in great ascension with the real figure of
pines that become infected in Korea during the period of 10 years.

Table 1 Definition, dimension and parameter values of model (1)

Parameter Description Dimension Value

λh Input rate of pine trees Trees× year–1 0.601
λv Emergence rate of adult pine sawyer Pine sawyer× year–1 0.948
μh Felling rate of healthy pine trees year–1 0.8838
δ Expolitation rate of infected pine trees year–1 0.98
μv Pine sawyer mortality rate year–1 0.857
α Transmission rate per contact through maturation feeding year–1 0.00323
φ Mean number of contacts of adult pine sawyer during

maturation feeding
dimensionless 2.44

β Rate of nematodes’ transmission of pine sawyer through
oviposition

year–1 0.427

ψ Mean number of contacts at ovipostion moment dimensionless 9.73
θ The probability of healthy pines not to be tainted through

nematode but cease oleoresin naturally
dimensionless 0.443

k Transition rate of pine trees from the exposed class into the
infectious one

year–1 0.814

γ Possessing rate of nematode of adult vectors at the time of
emergence from dead pines

year–1 0.790202

β1 Nematode transmission rate into beetles during mating year–1 0.8844
ρ Transition rate of exposed pines to either Ah compartment or

to Ih compartment at the per capita rate k
year–1 0.802

Figure 8 Comparison of real and estimated data
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6 Sensitivity analysis
The primary concern about PWD is to ponder the potential of this malady in the commu-
nity. Sensitivity analysis will be performed to comprehend the main factors which play the
key role in dissemination or persistence of the disease in the community. The complete
eradication of PWD from tree community is an ideal situation. It means that we cannot
make R◦ less than unity absolutely. However, attention can be paid to those parameters
that cause high infection level. They can be identified by observing the variation in a con-
stant level of the infectious compartments by swapping parameter values. We can focus
specially on those parameters due to which huge fluctuation in the endemic state of con-
tagious pine trees and pine sawyers occurs.

6.1 Sensitivity indices of R0

For brief introduction about the calculation of sensitivity indices, one can consult [31]. We
use its definition here in the form of partial derivative. It is given as follows:

�x
p =

∂x
∂p

× p
x

.

Using the above definition, mathematical expressions to calculate the sensitivity indices
of R0 are obtained. For instance, R0 has the sensitivity index with respect to δ and μv as
follows:

�
R0
δ × δ

R0
=
(

2γ δλvλh

(
–

ακρφ

δ2μh(κ + μh)μv2 –
βθψ

δ2μhμv2

))

/(√β12λv2

μv4 + 4γ λvλh

(
ακρφ

δμh(κ + μh)μv2 +
βθψ

δμhμv2

)

×
(

β1λv

μv2 +

√
β12λv2

μv4 + 4γ λvλh

(
ακρφ

δμh(κ + μh)μv2 +
βθψ

δμhμv2

)))
,

�R0
μv × μv

R0
=

μv(– 2β1λv
μv3 +

– 4β12λv2

μv5 +4γ λvλh(– 2ακρφ

δμh(κ+μh)μv3 – 2βθψ

δμhμv3 )

2
√

β12λv2
μv4 +4γ λvλh( ακρφ

δμh(κ+μh)μv2 + βθψ

δμhμv2 )
)

β1λv
μv2 +

√
β12λv2

μv4 + 4γ λvλh( ακρφ

δμh(κ+μh)μv2 + βθψ

δμhμv2 )
.

Mathematical expressions given in the above two equations do not provide any informa-
tion on how much difference happens in the value of basic reproduction number when
values of δ and μv are changed. However, after utilisation of fitted values of all the pa-
rameters mentioned in Table 1, we examine that R0 has sensitivity index –0.276506 with
respect to δ. It means that deceleration in the basic reproduction number by almost 3%

occurs as a result of enhancement of falling rate of infectious pines by 10%. If we have a
look at all the sensitivity indices of the threshold parameter (R0) given in Table 2, we in-
spect that the most responsive parameter for R0 is the fatality rate of pine sawyer. It has
value –1.44699. This value indicates that the reproduction number is going to decelerate
by almost 15% if we amplify the fatality rate of pine sawyer by 10%.

6.2 Parameters’ influence on infectious pines and pine sawyer
The most important parameters by which R◦ can be made less than unity have been cal-
culated in the above subsection. It seems an impractical task to get rid of PWD completely
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Table 2 Sensitivity indices of R0 corresponding to all parameters

Parameter Sensitivity index Parameter Sensitivity index

λh 0.276506 λv 0.723494
μh –0.276743 δ –0.276506
μv –1.44699 α 0.000454517
φ 0.000454517 β 0.276051
ψ 0.276051 θ 0.276051
κ 0.000236602 γ 0.276506
β1 0.446988 ρ 0.000454517

from pine tree community. However, the factors that help to reduce the infection may be
identified. This objective can be obtained by the calculation of a relative change in the
number of infectious hosts and vectors with the amplification of difference in parameter
values.

6.2.1 Reduction of infectious pines
We can see from Figures 9–22 that a constant level of infectious pine trees is extremely
influenced by the parameters α, β , δ, λh and μh. However, the computation of percentage
difference of I∗

h shows that the most sensitive parameter is the probability of susceptible
pines not to be infectious (θ ). Its value is 8765.984. It means that we should cut those trees
that stop oleoresin as soon as possible. Percent enhancement in the number of infectious
pines with respect to all parameters given in the model has been calculated in Table 3.

6.2.2 Reduction of pine sawyer
Figures 23–36 show that if we increase the fatality rate of pine sawyers, exploitation rate
of infectious pines and decrease the transmission probability through maturation feeding,
the number of infectious pine sawyers can be reduced significantly. We also observe from
Table 4 that the removal of adult pine sawyers is essential to decreasing the infection.
This observation tells us that we should focus on the minimum possible emergence of
pine sawyers. It can be made achievable through the use of pesticide spray into newly cut
timber or bark of dead trees.

Figure 9 Number of infectious pines for different values of α



Khan et al. Advances in Difference Equations        (2021) 2021:261 Page 14 of 31

Figure 10 Number of infectious pines for different values of β

Figure 11 Number of infectious pines for different
values of β1

Figure 12 Number of infectious pines for different
values of δ
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Figure 13 Number of infectious pines for different values of γ

Figure 14 Number of infectious pines for different values of k

Figure 15 Number of infectious pines for different values of λh
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Figure 16 Number of infectious pines for different values of λv

Figure 17 Number of infectious pines for different values of μh

Figure 18 Number of infectious pines for different values of μv
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Figure 19 Number of infectious pines for different values of φ

Figure 20 Number of infectious pines for different values of ψ

Figure 21 Number of infectious pines for different values of ρ



Khan et al. Advances in Difference Equations        (2021) 2021:261 Page 18 of 31

Figure 22 Number of infectious pines for different values of θ

Table 3 Sensitivity of I∗h corresponding to all parameters:

Para-
me-
ters

Initial Final
value

Change Percentage
change

Initial
value
of I∗v

Final
value
of I∗v

Change Percentage
change

C5/
42.85714286

C9 ∗ C10

α 0.06 0.3 0.24 400 61.66 36.37 –25.29 –41.01524489 9.333333 –382.809
β 0.4 2 1.6 400 11.94 36.37 24.43 204.6063652 9.333333 1909.659
κ 0.06 0.4 0.34 566.6666667 36.56 38.46 1.9 5.196936543 13.22222 68.71505
γ 0.002 0.07 0.068 3400 33.51 37.23 3.72 11.10116383 79.33333 880.6923
β1 0.001 0.25 0.249 24,900 36.03 37.5 1.47 4.079933389 581 2370.441
μv 0.2 0.9 0.7 350 38.02 32.43 –5.59 –14.70278801 8.166667 –120.073
λh 21 30 9 42.85714286 30.42 43.82 13.4 44.04996713 1 44.04997
ψ 2 12 10 500 10.37 36.37 26 250.7232401 11.66667 2925.104
φ 0.01 0.1 0.09 900 67.79 36.37 –31.42 –46.34901903 21 –973.329
θ 0.0001 0.001 0.0009 900 7.029 36.37 29.341 417.4277991 21 8765.984
μh 0.06 0.6 0.54 900 37.78 26.35 –11.43 –30.2541027 21 –635.336
ρ 0.01 0.5 0.49 4900 35.03 42.33 7.3 20.83928062 114.3333 2382.624
λv 10 32 22 220 31.57 36.53 4.96 15.71111815 5.133333 80.65041
δ 0.3 0.9 0.6 200 36.37 11.62 –24.75 –68.05059115 4.666667 –317.569

Figure 23 Endemic level of infectious pine sawyer
for different values of α
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Figure 24 Endemic level of infectious pine sawyer
for different values of β

Figure 25 Endemic level of infectious pine sawyer
for different values of β1

Figure 26 Endemic level of infectious pine sawyer
for different values of δ
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Figure 27 Endemic level of infectious pine sawyer
for different values of γ

Figure 28 Endemic level of infectious pine sawyer
for different values of κ

Figure 29 Endemic level of infectious pine sawyer
for different values of λh

Figure 30 Endemic level of infectious pine sawyer
for different values of λv
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Figure 31 Endemic level of infectious pine sawyer
for different values of μh

Figure 32 Endemic level of infectious pine sawyer
for different values of μv

Figure 33 Endemic level of infectious pine sawyer
for different values of φ

Figure 34 Endemic level of infectious pine sawyer
for different values of ψ
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Figure 35 Endemic level of infectious pine sawyer
for different values of ρ

Figure 36 Endemic level of infectious pine sawyer
for different values of θ

Table 4 Sensitivity of I∗v corresponding to all parameters:

Para-
me-
ters

Initial
value

Final
value

Change Percentage
change

Initial
value
of I∗v

Final
value
of I∗v

Change Percentage
change

C5/
42.85714286

C9 ∗ C10

α 0.06 0.3 0.24 400 36.95 30.47 –6.48 –17.53721245 9.333333 –163.681
β 0.4 2 1.6 400 17.69 30.47 12.78 72.24420577 9.333333 674.2793
κ 0.06 0.4 0.34 566.6666667 30.57 31.16 0.59 1.929996729 13.22222 25.51885
γ 0.002 0.07 0.068 3400 12.25 51.08 38.83 316.9795918 79.33333 25,147.05
β1 0.001 0.2 0.199 19,900 26.16 57.58 31.42 120.1070336 464.3333 55,769.7
μv 0.2 0.9 0.7 350 125.1 9.77 –115.33 –92.1902478 8.166667 –752.887
λh 21 30 9 42.85714286 28.27 32.78 4.51 15.95330739 1 15.95331
ψ 2 12 10 500 16.18 30.47 14.29 88.31891224 11.66667 1030.387
φ 0.01 0.1 0.09 900 38.07 30.47 –7.6 –19.96322564 21 –419.228
θ 0.0001 0.001 0.0009 900 12.65 30.47 17.82 140.8695652 21 2958.261
μh 0.06 0.6 0.54 900 30.95 26.52 –4.43 –14.31340872 21 –300.582
ρ 0.01 0.5 0.49 4900 30.01 32.35 2.34 7.797400866114.3333 891.5028
λv 10 32 22 220 8.33632.93 24.594295.0335893 5.133333 1514.506
δ 0.3 0.9 0.6 200 30.47 17.31 –13.16 –43.19002297 4.666667 –201.553

7 Optimal control
The observations of former section indicates that we should target the appearance of ma-
ture pine sawyers, ousting the spoiled pines rapidly and demise of pine sawyers. Now, we
have to redesign model (1) to get the results of some control strategies to overcome this
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disease. Model (1) gets the following shape after the inclusion of these controls:

dSh

dt
= λh – αφ(1 – u1)ShIv – βψθShIv – μhSh,

dEh

dt
= (1 – u1)αφShIv – (μh + k)Eh,

dAh

dt
= kEh(1 – ρ) – μhAh, (3)

dIh

dt
= kρEh + βψθShIv – δIh – r0u2Ih,

dSv

dt
= λv(1 – u3) – γ IhSv – β1SvIv – μvSv – r1u3Sv,

dIv

dt
= γ IhSv + β1SvIv – μvIv – r1u3Iv.

The control u1(t) expresses the defensive measures like the application of nematocide in-
serted into the cane of well fit pines and vaccination for the reduction of the strength of
infection. Control u2(t) means ousting the spoiled pines quickly so that pine sawyers have
no option to lay eggs on them. To keep the number of vectors in control, we are using u3 as
control which is the application of adulticide. Objective functional J has been formulated
in the way to cut down this malady. The main objective of its construction is to minimise
the spoiled pines and also to reduce the expenses of implemented controls u1, u2 and u3.
One has

Õ(u1, u2, u3) =
∫ T

0

(
M1Ih + M2Iv +

1
2

D1u2
1 +

1
2

D2u2
2 +

1
2

D3u2
3

)
dt,

where M1, M2 are the weights having positive values. The main objective of applying the
controls is to make the effort to retrench the number of contaminated pines and vectors
keeping in mind that the cost of applied controls should be minimum. It is done with the
help of the above objective functional. Controls u∗

1, u∗
2 and u∗

3 can be found in such a way
that

Õ
(
u∗

1, u∗
2, u∗

3
)

= min
{

Õ(u1, u2, u3), (u1, u2, u3) ∈ U
}

.

The set U is called control set. It is defined as

U =
{

(u1, u2, u3)|ui(t) is Lebsgue measurable on the unit interval [0, 1],

0 ≤ ui(t) ≤ 1, i = 1, 2, 3
}

.

We have a very useful result in the form of a principle called Pontryagin’s maximum prin-
ciple and given in [32]. We will use it to get the mandatory states and the solution of (3).

8 Persistence of optimal control
A very powerful procedure is applied for existence and analysis of the optimal control.
According to [33], the necessary hypotheses are as follows:

(H1) A set of control and corresponding described unknowns has at least one element.
(H2) U must fulfil the two properties, convexity and closeness.
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(H3) The right-hand side of the described system is bounded by a linear function with
respect to state and control.

(H4) The integrand of the objective functional is convex on U and has lower
c1(
∑3

i=1 |ui|2) τ
2 – c2, where c1, c2 > 0 and τ > 1.

The existence of solutions of system (3) can be proved by utilising the result given in
([34], Th. 9.2.1, p. 182). In this manner, we validate the above axioms. (H1) is fulfilled
because of finiteness of coefficients. The finiteness of solutions reflects that U attains the
2nd hypothesis. Note that system (3) is bilinear in u1, u2, u3. Because of bilinearity of
controls and boundedness of solutions, R. H. S of (3) satisfy the 3rd hypothesis H3. As the
integrand of the integral J is convex, we have the assurance of H4.

M1Ih + M2Iv +
1
2

D1u2
1 +

1
2

D2u2
2 +

1
2

D3u2
3 ≥ c1

( 3∑
i=1

|ui|2
) τ

2

– c2,

where D1, D2, D3, M1, M2, c1, c2 > 0 and τ is greater than 1, hence we come up with the
conclusion given below.

Theorem 3 For the objective functional Õ(u1, u2, u3) =
∫ T

0 (M1Ih + M2Iv + 1
2 D1u2

1 + 1
2 D2u2

2 +
1
2 D3u2

3) dt, where U = {(u1, u2, u3)|0 ≤ u1, u2, u3 ≤ 1, t ∈ [0, T]} corresponding to Eqs. (3)
with initial conditions, there exists an optimal value of control u = (u∗

1, u∗
2, u∗

3) so that
Õ(u∗

1, u∗
2, u∗

3) = min{Õ(u1, u2, u3), (u1, u2, u3) ∈ U}.

The optimal solution of system (3) can be obtained through the Lagrangian and Hamil-
tonian. We consider the Lagrangian for (3) as follows:

L(Ih, Iv, u1, u2, u3) = M1Ih + M2Iv +
1
2

D1u2
1 +

1
2

D2u2
2 +

1
2

D3u2
3 ≥ c1(|u1|2 + |u2|2 + |u3|2.

We have to find the least possible value of the Lagrangian L given above. To do this, we
introduce the Hamiltonian H as follows:

Let us take X = (Sh, Eh, Ah, Ih, Sv, Iv), μ = (μ1,μ2,μ3,μ4,μ5,μ6) and U = (u1, u2, u3), then
we have

H(X, U ,μ) = M1Ih + M2Iv +
B1

2
u2

1 +
B2

2
u2

2 +
B3

2
u2

3

+ μ1
(
μh – αφ(1 – u1)ShIv – βψθShIv – μhSh

)

+ μ2
(
αφ(1 – u1)ShIv – (μh + k)Eh

)
+ μ3

(
(1 – ρ)kEh – μhAh

)

+ μ4(kρEh + βψθShIv – δIh – r0u2Ih)

+ μ5
(
μv(1 – u3) – γ IhSv – β1SvIv – μvSv – r1u3Sv

)

+ μ6(γ IhSv + β1SvIv – μvIv – r1u3Iv).

8.1 The optimality system
We have made use of Pontryagin’s maximum principle, contained in [35], for finding nec-
essary states for the control. This has been done in the following way:



Khan et al. Advances in Difference Equations        (2021) 2021:261 Page 25 of 31

For a streamlined arrangement (u∗
1, u∗

2, u∗
3) of system (3), a nontrivial relation μ(t) =

(μ1(t), . . . ,μ6(t)) satisfies the following conditions:

dx
dt

=
∂

∂μ

(
H
(
t, U∗,μ(t)

))
,

0 =
∂

∂u
(
H
(
t, U∗,μ(t)

))
,

dμ

dt
= –

∂

∂x
(
H
(
t, U∗,μ(t)

))
.

Theorem 4 For U∗(u∗
1, u∗

2, u∗
3) and (S∗

h, E∗
h, A∗

h, I∗
h , S∗

v , I∗
v ), which are solutions of system (3),

unknowns μ1, . . . ,μ6 occur having

dμ1

dt
= (μ1 – μ2)αφ(1 – u1)Iv – (μ4 – μ1)βψθ Iv + μ1μh,

dμ2

dt
= (μ2 – μ3)k + (μ4 – μ3)kρ + μ2μh,

dμ3

dt
= μ3μh,

dμ4

dt
= –M1 + μ4(δ + r0u2) + (μ5 – μ6)γ Sv,

dμ5

dt
= (μ5 – μ6)(γ Ih + β1Iv) + μ5(μv + r1u3),

dμ6

dt
= –M2 + (μ1 – μ2)αφ(1 – u1)Sh – (μ4 – μ1)βψθSh

+ (μ5 – μ6)β1Sv + μ6(μv + r1u3),

with the boundary conditions μ1(T) = μ2(T) = · · · = μ6(T) = 0. Furthermore, u∗
1, u∗

2, u∗
3 are

considered as

u∗
1 = max

{
min

{
1,

(μ2 – μ1)αφShIv

B1

}
, 0
}

,

u∗
2 = max

{
min

{
1,

μ4r0Ih

B2

}
, 0
}

,

u∗
3 = max

{
min

{
1,

μ5μv + μ5r1Sv + μ6r1Iv

B3

}
, 0
}

.

Proof Transversality states and adjoint equations can be obtained with the help of H . Tak-
ing (Sh, Eh, Ah, Ih, Sv, Iv) = (S∗

h, E∗
h, A∗

h, I∗
h , S∗

v , I∗
v ) and calculating the rate of change of Hamil-

tonian with respect to all state variables, we obtain

dμ1

dt
= (μ1 – μ2)αφ(1 – u1)Iv + (μ1 – μ4)βψθ Iv + μ1μh,

dμ2

dt
= (μ2 – μ3)k + (μ3 – μ4)kρ + μ2μh,

dμ3

dt
= μ3μh,

dμ4

dt
= –M1 + μ4(δ + r0u2) + (μ5 – μ6)γ Sv,
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dμ5

dt
= (μ5 – μ6)(γ Ih + β1Iv) + μ5(μv + r1u3),

dμ6

dt
= –M2 + (μ1 – μ2)αφ(1 – u1)Sh + (μ4 – μ1)βψθSh

+ (μ5 – μ6)β1Sv + μ6(μv + r1u3),

with boundary conditions μ1(T) = μ2(T) = · · · = μ6(T) = 0. The property of the control
set U and optimality conditions give the result

u∗
1 = max

{
min

{
1,

(μ2 – μ1)αφShIv

B1

}
, 0
}

,

u∗
2 = max

{
min

{
1,

μ4r0Ih

B2

}
, 0
}

,

u∗
3 = max

{
min

{
1,

μ5μv + μ5r1Sv + μ6r1Iv

B3

}
, 0
}

. �

One can also draw the conclusions, when control strategies have been used to limit the
spread of PWD, numerically. It can be seen from Fig. 37 that the strength of healthy trees
goes on increasing due to these controls. It seems true because after the application of
controls all infected pine trees will be removed, as a result we have more tress in the sus-
ceptible class. Figure 38 shows the substantial depletion in exposed pines when we apply
these controls. Figure 39 depicts the behaviour of asymptotic carrier trees when the con-
trol is applied, one can see a little decrease here. From Fig. 40, we can clearly see that there
is a substantial decrease in spoiled pine trees due to these controls.

To get the information about the number of susceptible pine sawyers by the application
of controls, we see Fig. 41; it shows no significant depletion. On the other hand, Fig. 42
shows the outstanding result of the use of these controls on a class of infected vectors: first
they are approaching zero for ten days, then they increase moderately. This behaviour of

Figure 37 Susceptible pines with and without control
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Figure 38 Exposed pines with and without control

Figure 39 Asymptomatic carrier pines with and without control

infectious pine sawyer guides us to the periodic use of adulticide. We have shown the
control profile in Fig. 43.

9 Conclusions
PWD has been analysed in this work through a deterministic model. First, we studied the
model qualitatively and calculated the explicit formula for the basic reproduction num-
ber. Constant levels (infection free and disease present) of all the compartments have been
calculated. We have also shown that if at any stage we are able to reduce the basic repro-
duction number below unity, then the disease will be completely eradicated from the com-
munity. If the policy makers of any country fail to get the basic reproduction number less
than one, then we have identified the constant level of vector and host population.
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Figure 40 Infectious pines with and without control

Figure 41 Susceptible bark beetles with and without control

The actual data of infectious Korean pines from 2010 to 2010 have been used, and the
model has been simulated. The values of parameters for which the model outcomes had
the best match with the actual data have been identified. We performed sensitivity analysis
so that an effective control strategy could be designed to remove the disease from pine tree
community completely or to obtain the least figure of infectious pines. We computed the
sensitivity indices of the threshold parameter by using the fitted values of the parameters.
The parameters that play a significant role in reducing the threshold parameter to less than
one have been identified. The effects of parameters on the constant level of contaminated
trees and vectors have been observed if we fail to get the value of the basic reproduction
number below unity. We varied the values of the parameters and noticed the correspond-
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Figure 42 Exposed bark beetles with and without control

Figure 43 Control profile

ing difference in the constant level of infectious hosts (pines) and vectors (bark beetles).
To get the most effective parameters for the endemic position of contaminated trees and
pine sawyers, we used the least value to normalise all the percentage changes.

For successful strategies to overcome the disease, we have done sensitivity analysis. We
modified the model by inserting the control functions and calculated the optimal values of
these functions. We simulated the model by using the fitted values of the parameters used
in the model, and the efficacy of implemented strategies has been examined. It can be seen
that control strategies are very effective in reducing the number of infectious pines and
vectors. The same idea can be applied to any community whose real data is available. The
model can also be modified by taking the fractional derivative instead of ordinary deriva-
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tives to gain a better insight about PWD. It will be included in the future research, and
comparison of outcomes through ordinary and fractional derivatives will be performed.
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