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Abstract
A disastrous coronavirus, which infects a normal person through droplets of infected
person, has a route that is usually by mouth, eyes, nose or hands. These contact
routes make it very dangerous as no one can get rid of it. The significant factor of
increasing trend in COVID19 cases is the crowding factor, which we named “crowding
effects”. Modeling of this effect is highly necessary as it will help to predict the
possible impact on the overall population. The nonlinear incidence rate is the best
approach to modeling this effect. At the first step, the model is formulated by using a
nonlinear incidence rate with inclusion of the crowding effect, then its positivity and
proposed boundedness will be addressed leading to model dynamics using the
reproductive number. Then to get the graphical results a nonstandard finite
difference (NSFD) scheme and fourth order Runge–Kutta (RK4) method are applied.

Keywords: Mathematical COVID-19 model; Nonlinear incidence rate; Reproduction
number; Stability analysis; Nonstandard finite difference scheme

1 Introduction
Coronaviruses cause a common group of infections that results in common cold type
symptoms being one of the old classes of viruses in human history, but COVID19 be-
came most disastrous, resulting in the highest death tolls in its track records. In history it
became deadly in the shape of Serious Intense Respiratory Conditions (SARS) and Middle
East Respiratory Disorder (MERS). The Severe Acute Respiratory Syndrome Coronavirus
2 (SARS-CoV-2) opened new doors for researchers and on February 12, 2020, it was for-
mally named Novel Coronavirus disease 2019 (COVID-19) by the World Health Organi-
zation (WHO). The spread mechanism is very simple: when somebody infected sneezes
or coughs, the droplets enter nearby people and soon enter their bodies through contact
routes like mouth, nose, and later their lungs, and start damaging their respiratory system
as it is operated through the lungs. Later it was claimed by researchers that contacting
infected surfaces also causes transmission of the virus. There are many researchers stat-
ing the possible lifetime of virus on different surfaces; WHO also gave many guidelines
on that. The National Institute of Health in our country states that the virus that causes
coronavirus illness 2019 (COVID-19) is stable for many hours to days in aerosols and on
surfaces. So far researchers are giving different time frames for the life of the virus on dif-
ferent surfaces. The patients are categorized in three types in start by WHO. (i) Suspect
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case: These are the patients with acute respiratory illness and who have been in contact
with a COVID19 infected person. (ii) Exposed case: These are the patients who are in-
fected but so far showing no symptoms of COVID19. (iii) Confirmed case: These are in-
fectious people with authentic laboratory assertion with all the symptoms, and they are
put in isolation to protect other people and the community.

Measuring the spread of a disease is a significant factor in epidemic models, which is
determined by incidence rates. Generally, it is thought of as the newly infected rate per
unit of time. For this purpose, βSI with an extension of βSI/(1 + αI) are used. The satu-
rated nonlinear incidence Sf (I) approach was used by Capasso and Serio [1] in the case of
a cholera epidemic model. It is commonly observed in most communicable diseases that
the acquired immunity may disappear after some time such as with pertussis, influenza,
malaria and cholera (time may vary from disease to disease) and this puts individuals at
risk again; see [2, 3]. It is also reported that in some situations the recovered patients may
get mixed with a susceptible group of people with the belief of having a transient antibody
[4, 5]. The SIRS model designed by Chen, having a standard incident, disease related stan-
dard incidence and death, and we have transference from the infected group to the suscep-
tible class. So far, many research domains are in process to address the current pandemic
using different mathematical models like differential equations (in integer and fractional
form) (see [6–25] and the references therein).

Getting motivation from the above work, in this work a new approach is used to ad-
dress COVID19 by taking the “crowding impact” in considerations. The theme behind this
work is how crowding of infected individuals affects the susceptible class or population.
In mathematical models this effect is addressed by a nonlinear incidence rate.

The structure of paper is as follows: in Sect. 2, we will show the proposed model, Sect. 3 is
the qualitative analysis whereas Sect. 4 is all about the numerical solution of the proposed
model. In the last section our conclusion and future work will be presented.

2 Model formulation
In order to illustrate the crowding effects in a COVID-19 mathematical model, we pro-
posed a model with recruitment rate μN for the susceptible individual and nonlinear in-
cidence rate βSI

1+αI . The complete dynamics is given by

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = μN – βSI

1+αI – μS,
dI
dt = βSI

1+αI – (γ + μ)I,
dR
dt = γ I – μR,

(1)

where the infection force of the disease is expressed by βI , the crowding effect by 1
1+αI ,

the susceptible population by S(t), the infectious population by I(t) and the recovered
population by R(t) at time t. Furthermore, μ is the death rate, γ is the recovery rate and β

is the transmission coefficient. N(t) is the total constant population,

N(t) = S(t) + I(t) + R(t), (2)

with

N(0) = S(0) + I(0) + R(0). (3)
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Furthermore, from

S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0,

we have

S(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0. (4)

So the solution possesses the property of positivity.

3 Dynamics of the model
3.1 Basic properties
Theorem 1 (Positivity) Suppose that the related solution of the initial data (S(0), I(0),
R(0)) ∈ R3

+ is (S(t), I(t), R(t)). Then for model (1) the positively invariant set is R3
+.

Proof By setting � = μN and λ1 = βI
1+αI , the first equation of system (1) implies that

dS
dt

= � – λ1S – μS.

Suppose that the solution exists of system (1) for a certain interval J ∈ [0; +∞[, then the
above equation can be solved, for all t ∈ J , as

dS
dt

+ (λ1 + μ)S = �,

d
dt

(
S(t)eμt+

∫ t
0 λ1(s) ds) ≥ �eμt+

∫ t
0 λ1(s) ds,

which implies that

S(t)eμt+
∫ t

0 λ1(s) ds – S(0) ≥
∫ t

0
�eμt+

∫ w
0 λ1(u) du dw,

S(t)eμt+
∫ t

0 λ1(s) ds ≥ S(0) +
∫ t

0
�eμw+

∫ w
0 λ1(u) du dw,

S(t) ≥ S(0)e–μt–
∫ t

0 λ1(s) ds + e–μt–
∫ t

0 λ1(s) ds ×
∫ t

0
�eμt+

∫ w
0 λ1(u) du dw > 0.

Hence, ∀t ∈ J , S(t) is positive. Now the second equation of the model (1) implicitly shows
that

dI
dt

=
βSI

1 + αI
– (γ + μ)I ≥ –(γ + μ)I,

or

dI
dt

≥ –(γ + μ)I,

which can be written as

dI
I

≥ –(γ + μ) dt (I �= 0).
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By integrating, we get

ln I ≥ –(γ + μ)t + C,

I ≥ e–(γ +μ)t+C ,

I ≥ C1e–(γ +μ)t ,

at t = 0,

I ≥ I(0)e–(γ +μ)0 ≥ 0.

Therefor, for all values of t, I(t) is positive. Similarly, the last equation of system (1) implies
that

dR
dt

= γ I – μR ≥ –μR,

or

dR
dt

≥ –μR,

which can be written as

dR
R

≥ –μdt (R �= 0).

By integrating, we get

ln R ≥ –μt + K ,

R ≥ e–μt+K ,

R ≥ K1e–μt ,

at t = 0,

R ≥ R(0)e–μ0 ≥ 0.

Hence, R(t) also is positive in the given interval. �

3.2 Existence and uniqueness of the solution
The first-order ODE in general form is

ź = g(t, z), z(t0) = z0. (5)

With the help of the theorem below, we can establish the existence and uniqueness of the
solution for the considered model.
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Theorem 2 (Uniqueness of solution) Let us use D to denote the domain

|t – t0| ≤ a, |z – z0| ≤ b, z = (z1, z2, . . . , zn), z0 = (z10, z20, . . . , zn0), (6)

and assume that the Lipschitz condition is satisfied by h(t, z):

∥
∥h(t, z1) – h(t, z2)

∥
∥ ≤ c‖z1 – z2‖, (7)

and the two pairs (t, z1) and (t, z2) are in D, where c is a positive constant. Then there exists
a constant δ > 0 such that for the interval |t – t0| ≤ δ there exists a unique continuous vector
solution z(t) of the system (5). It should be noticed that condition (6) is satisfied with

∂hi

∂zj
, i, j = 1, 2, . . . , n, (8)

in the domain D, being continuous and bounded.

Lemma 1 If the continuous partial derivative of h(t, z) (i.e., ∂hi
∂zj

) exists for a bounded closed
convex domain 	, then, for 	, it satisfies a Lipschitz condition. We are interested in the
domain

1 ≤ ε ≤ 	. (9)

Hence, a solution in the form of condition (10) is searched:

0 < 	 < ∞. (10)

Now the existence theorem can be proved as follows.

Theorem 3 Assume D represents the domain of (6) in such a manner that (7) and (8) hold.
Then the bounded solution in domain D of (1) exists.

Proof Let

h1 = μN –
βSI

1 + αI
– μS, (11)

h2 =
βSI

1 + αI
– (γ + μ)I, (12)

h3 = γ I – μR. (13)

To show that ∂hi
∂zj

j = 1, 2, 3 are continuous and bounded, the following partial derivatives
for the proposed model are performed. By taking the partial derivative of Eq. (11) we have

∂h1

∂S
= –

βI
1 + αI

– μ,
∣
∣
∣
∣
∂h1

∂S

∣
∣
∣
∣ =

∣
∣
∣
∣–

βI
1 + αI

– μ

∣
∣
∣
∣ < ∞,
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∂h1

∂I
= –

βS
(1 + αI)2

∣
∣
∣
∣
∂h1

∂I

∣
∣
∣
∣ =

∣
∣
∣
∣–

βS
(1 + αI)2

∣
∣
∣
∣ < ∞,

and

∂h1

∂R
= 0,

∣
∣
∣
∣
∂h1

∂R

∣
∣
∣
∣ = |0| < ∞.

For class I , from Eq. (12)

∂h2

∂S
=

βI
1 + αI

,
∣
∣
∣
∣
∂h2

∂S

∣
∣
∣
∣ =

∣
∣
∣
∣

βI
1 + αI

∣
∣
∣
∣ < ∞,

∂h2

∂I
=

βS
(1 + αI)2 – (γ + μ),

∣
∣
∣
∣
∂h2

∂I

∣
∣
∣
∣ =

∣
∣
∣
∣

βS
(1 + αI)2 – (γ + μ)

∣
∣
∣
∣ < ∞,

and

∂h2

∂R
= 0,

∣
∣
∣
∣
∂h2

∂R

∣
∣
∣
∣ = |0| < ∞.

Similarly, for class R, from Eq. (13)

∂h3

∂S
= 0,

∣
∣
∣
∣
∂h3

∂S

∣
∣
∣
∣ = |0| < ∞,

∂h3

∂I
= γ ,

∣
∣
∣
∣
∂h3

∂I

∣
∣
∣
∣ = |γ | < ∞,

and

∂h3

∂R
= –μ,

∣
∣
∣
∣
∂h3

∂R

∣
∣
∣
∣ = | – μ| < ∞,

therefore, it can be concluded that all partial derivatives are bounded in the considered
domain and are continuous. Hence, from Theorem 2, it is proved that there exists a unique
solution of system (1) in D. �
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3.3 Equilibria and the reproduction number
For finding the equilibrium points of model (1), we take the algebraic system

μN –
βSI

1 + αI
– μS = 0,

βSI
1 + αI

– (γ + μ)I = 0,

γ I – μR = 0.

(14)

Two solutions of the system (1) are obtained by some algebraic manipulations, one is
D0 = (N , 0, 0), a disease free equilibrium (DFE) point and the second will be discussed
after computing the reproduction number of the model (1). The reproductive number is
computed with the help of the next generation matrix approach presented by van den
Driessche and Watmough [26].

Let x = (I, S) and rewrite the model (1) for the susceptible and infected classes in the
general form

dx
dt

= F (x) – V(x), (15)

where

F (x) =

(
βSI

1+αI
0

)

, V(x) =

(
(γ + μ)I

–μN + βSI
1+αI + μS

)

. (16)

Now the Jacobian of F (x) and V(x) of the disease free equilibrium point is

F =

(
βN 0

0 0

)

, V =

(
γ + μ 0
βN μ

)

, (17)

and further by using the idea of van den Driessche and Watmough [26], the reproduction
number of the model (1) is follows:

R0 = ρ
(
FV –1) =

βN
μ + γ

. (18)

Theorem 4 For system (1), there exists a unique positive endemic equilibrium point D∗, if
R0 > 1.

Proof By some algebraic manipulations, the second solution of the system (14) yields

S∗ =
μαN + μ + γ

β + αμ
,

I∗ =
μ(R0 – 1)
β + αμ

,

R∗ =
γ (R0 – 1)
β + αμ

.

It is clear from the values of I∗ and R∗ that is there exists a unique positive endemic equi-
librium point D∗, if R0 > 1. �
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3.4 Stability analysis of the model
Theorem 5 The system (1) is locally stable related to the virus free equilibrium point E0,
if R0 < 1 and unstable if R0 > 1.

Proof For local stability the Jacobian of system (1) is

J =

⎛

⎜
⎝

–μ – βI
1+αI – βS

(1+αI)2 0
βI

1+αI
βS

(1+αI)2 – (μ + γ ) 0
0 γ –μ

⎞

⎟
⎠ . (19)

At E0, the Jacobian becomes

J(E0) =

⎛

⎜
⎝

–μ –βN 0
0 βN – (μ + γ ) 0
0 γ –μ

⎞

⎟
⎠ , (20)

from which it follows that the eigenvalues are λ1 = –μ < 0,λ3 = –μ < 0 and λ2 = βN – (μ +
γ ), implying that λ2 < 0, if R0 < 1. So the system (1) is locally stable for R0 < 1 and unstable
for R0 > 1. The proof is complete. �

Theorem 6 If R0 < 1, then the DFE point of the system (1) is globally stable.

Proof For the proof of this theorem, first we construct the Lyapunov function L:

L(I) = ln
I
I0

. (21)

Differentiating Eq. (21) with respect to time, we have

d
dt

(
L(I)

)
=

1
I

dI
dt

,

d
dt

(
L(I)

)
=

1
I

(
βSI

1 + αI
– (γ + μ)I

)

=
βS

1 + αI
– (γ + μ)

= (γ + μ)
(

βS
(γ + μ)(1 + αI)

– 1
)

≤ (γ + μ)
(

βS
γ + μ

– 1
)

= (γ + μ)(R0 – 1)

≤ 0 for R0 < 1.

(22)

Therefore, if R0 < 1, then d
dt (L(I)) < 0, which implies that, for R0 < 1, the DFE point of the

system (1) is globally stable. �

Theorem 7 For R0 > 1, the system (1) at the positive endemic equilibrium point E∗ is lo-
cally stable.
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Proof The Jacobian matrix of system (1) is

J =

⎛

⎜
⎝

–μ – βI
1+αI – βS

(1+αI)2 0
βI

1+αI
βS

(1+αI)2 – (μ + γ ) 0
0 γ –μ

⎞

⎟
⎠ . (23)

At E∗, the Jacobian becomes

J(E∗) =

⎛

⎜
⎝

–μ – βI∗
1+αI∗ – βS∗

(1+αI∗)2 0
βI∗

1+αI∗
βS∗

(1+αI∗)2 – (μ + γ ) 0
0 γ –μ

⎞

⎟
⎠ , (24)

which yields one eigenvalue λ = –μ and the characteristic equation

λ2 +
(

μ +
βI∗

1 + αI∗
–

βS∗
(1 + αI∗)2 + (μ + γ )

)

λ

+
(

μ +
βI∗

1 + αI∗

)(
βS∗

(1 + αI∗)2 + (μ + γ )
)

+
(

βS∗
(1 + αI∗)2

)(
βI∗

1 + αI∗

)

= 0. (25)

It is clear, for R0 > 1, that

(

μ +
βI∗

1 + αI∗
–

βS∗
(1 + αI∗)2 + (μ + γ )

)

=
(

μ +
βI∗

1 + αI∗
–

γ + μ

(1 + αI∗)
+ (μ + γ )

)

> 0

and

(

μ +
βI∗

1 + αI∗

)(
βS∗

(1 + αI∗)2 + (μ + γ )
)

+
(

βS∗
(1 + αI∗)2

)(
βI∗

1 + αI∗

)

> 0.

Hence, the system (1) is locally stable at E∗ for R0 > 1. The proof is complete. �

Remark 1 Although the stability analysis of E∗ is an interesting and separate mathematical
problem, while for prevention of the disease one is to find an effective strategy, the main
focus of this work is on the specific condition R0 < 1.

3.5 R0 sensitivity analysis
From Theorem 6 it follows that we can control the parameters such that R0 < 1. This leads
to the best strategy to prevent and restrain the disease. In detail, when R0 < 1, then

lim
t→∞ S(t) = N , lim

t→∞ I(t) = lim
t→∞ R(t) = 0,

which shows that the spreading speed of the coronavirus can be reduced and prevented
in the future. Hence, a sensitivity analysis of R0 is carried out to select the influential
parameters to control the rapidly spreading current pandemic.
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It is easy to verify that

∂R0

∂β
=

N
μ + γ

> 0,

∂R0

∂μ
= –

βN
(μ + γ )2 < 0,

∂R0

∂γ
= –

βN
(μ + γ )2 < 0.

(26)

Equation (26) can be used to obtain different parameters in such a way that R0 remains
less than one. Hence, necessary actions can be taken on the basis of Eq. (26) to reduce the
speed of the coronavirus.

4 Numerical method and results
In order to get the numerical output from model (1), the NSFD method is utilized. The
solution via the NSFD method is obtained via an iteration process [27, 28]. Assume the
nonstandard ODE

w′
k = f [t, w1, w2, . . . , wn],

where k = 1, 2, , . . . , n, then by the NSFD method

w′
1 =

w1,k+1 – w1,k

h
,

w′
2 =

w2,k+1 – w2,k

h
,

· · ·
w′

n =
wn,k+1 – wn,k

h
.

Now, for a numerical solution of system (1) using the NSFD method, it gives the following
results:

Sk+1 =
hμN + Sk

1 + hμ + hβIk/(1 + αIk)
, (27)

Ik+1 =
hβIkSk+1/(1 + αIk) + Ik

1 + h(μ + γ )
, (28)

and

Rk+1 =
hγ Ik+1 + Rk

1 + hμ
. (29)

Figures 1–3 show the solutions for S(t), I(t) and R(t) obtained by NSFD, RK4, and ode45
for R0 < 1, when the contact rate is chosen in a small range, then the spread of the cur-
rent coronavirus disease may be controlled. From Fig. 1, we see how the disease controls
which results are leading to an increase of the susceptible class. On the other hand as the
susceptibility is increasing the infection goes to extinction reaching stability in Fig. 2. The
decrease in the infection class yields increase an in the recovered class as shown in Fig. 3.
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Figure 1 Plot for S(t) versus time t

Figure 2 Plot for I(t) versus time t

For the numerical solutions, we consider the initial values S = 40, I = 20, R = 10 and for
the parameters values from [21], for the remaining features of the model one can use the
real-life data of some specific country or of the whole world.

5 Conclusion
This work presented the crowding effects of infective individuals over the susceptible pop-
ulation specially for the current pandemic. The crowding effect is described by a nonlinear
incidence rate in the mathematical model. In this work, the formulation of the model is
presented keeping in mind the crowding effect, which is in a large range of interaction of
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Figure 3 Plot for R(t) versus time t

the infected population with the susceptible population. The dynamics of the model is pre-
sented based on the reproductive number and one showed the local and global stability
of the proposed model. For a numerical solution we used the nonstandard finite differ-
ence (NSFD) scheme and the fourth-order Runge–Kutta (RK4) method and the obtained
results are shown graphically.
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