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Abstract
In this paper, a novel coronavirus infection system with a fuzzy fractional differential
equation defined in Caputo’s sense is developed. By using the fuzzy Laplace method
coupled with Adomian decomposition transform, numerical results are obtained for
better understanding of the dynamical structures of the physical behavior of
COVID-19. Such behavior on the general properties of RNA in COVID-19 is also
investigated for the governing model. The results demonstrate the efficiency of the
proposed approach to address the uncertainty condition in the pandemic situation.
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1 Introduction
Recently, the whole globe has been suffering from a novel coronavirus pandemic, which
was named “2019 novel coronavirus”, abbreviated by “2019-nCoV”, and claimed to out-
break for the first time in Wuhan city, central China [1]. It has been observed that 2019-
nCoV is transmitted from animal to human; as many infected claimed that they had been
infected due to a local fish and wild animal market in Wuhan as early as 28 November [2].
Soon after, some researchers confirmed that the transmission also happens from a person
to a person [3]. According to the data reported by WHO (World Health Organization),
on March 21, 2020, the reported laboratory confirmed human infections in 187 countries,
territories, or areas around the world have reached more than 292,142, including 12,784
death cases [4]. Even in some countries, like Italy and Spain, the death rate was as high as
almost 0.066. This verifies the severity and high infectivity of 2019-nCoV. It is confirmed
that most people infected with 2019-nCoV will experience mild to moderate respiratory
illness, such as breath difficulty, low fever, sick, cough, and other symptoms. However,
other symptoms such as gastroenteritis and neurological diseases of varying severity have
also been reported [5]. The 2019-nCoV is transmited mainly through droplets from the
nose when an infected person coughs or sneezes. Once a person breaths the droplets from
infected people in the air, he/she will be exposed to the danger of getting the infection. As
a result, the best way to prevent the virus is to avoid meetings and touching other people.
For this purpose, the Chinese government decided to lock down Wuhan city and cut or
limit the transportation system of the country, including airplanes, trains, buses, and pri-
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vate cars, etc., to control population flow and movement. People were required to stay at
home and get body temperature taken each day. Respirators were advocated to be worn if
people had to go out. With the transmission and outbreak of 2019-nCoV around the world,
more governments joined the antivirus battle by following the Chinese government. It was
heard that more and more countries started to release regulations to ban international
travel, close schools, shopping malls, and companies. The 2019-nCoV pandemic has lead
to a serious economic damage in the whole world, and it has also been a great ordeal for
the administrations of countries and even to all human beings. A great number of doc-
tors and researchers also devoted themselves to the antipandemic war and did researches
based on their expertise. They looked into 2019-nCoV from various points of view, such
as virology, infectious diseases, microbiology, public environmental occupational health,
veterinary sciences, sociology, media studies, political economics, etc. China, USA, and
Korea are the leading countries on the 2019-nCoV research because the early outbreak
of virus urged them to start relevant research immediately. A group of researchers stud-
ied the origin of 2019-nCoV. Initially, it was said that bats are the origin of 2019-nCoV,
which is similar to SARS (Severe Acute Respiratory Syndrome), an epidemic which broke
out in China and other regions of the world in 2003 [6, 7]. Then some researchers com-
pared 2019-nCoV with SARS and MERS (Middle East Respiratory Syndrome) from 2012
to prove the possibilities to learn lessons from the two pandemics happened before in
the human history. According to Lu, SARS-CoV, MERS-CoV, and 2019-nCoV all belongs
to the same family of Betacoronavirus genus [8]. According to Zhou, previous research
indicates that 2019-nCoV has high similarity to SARS-CoV, which is supported by the
full-length genome phylogeny analysis, and therefore, has the putative similar cell en-
try mechanism and human cell receptor usage [9]. Xiaolong and Mose also considered
the high identity of RBD (Receptor Binding Domain) in 2019-nCoV and SARS-CoV, and
raised the idea that the SARS-CoV specific human antibody, CR3022, could bind potently
with 2019-nCoV RBD, KD of 6.3 nM, which indicates that the difference within the RBD of
SARS-CoV and 2019-nCoV incorporates a crucial influence on the cross-reactivity of neu-
tralizing antibodies, which is still necessary to develop novel monoclonal antibodies that
would bind specifically to 2019-nCoV RBD [10]. Based on the previous studies on SARS-
Cov immunological system and structures, Syed et al. determined SARS-CoV-derived B
lymphocyte epitopes and T cell epitopes experimentally, and located that they are similar
and comprise no mutation within the available 2019-nCoV sequences, which is critical to
narrow down the hunt for potent targets for an efficient vaccine against the 2019-nCoV.
Some researchers put their focus on the transmission of 2019-nCoV virus among humans
and its identification. It’s well accepted that human-to-human transmission is leading to
the rapid growth of infections. Ahmed claimed that viral strains from the infected peo-
ple of the area have been sequenced; but only little genetic variation was found, imply-
ing that they have descended from a common ancestor [11]. On the other hand, Zhou
argued that sequences of the seven conserved viral replicase domains in ORF 1ab show
94.6% similarity in 2019-nCoV and SARS-CoV [9]. Chaudhury et al. proved that compu-
tational protein–protein docking with accurate, physics-based energy functions is able to
reveal the native-like, low-energy protein–protein complex from the unbound structures
of two individual, interacting protein components [12]. In our work we try to investigate
2019-nCoV infection system mathematically. The fuzzy Laplace transform based on Ado-
mian decomposition is employed to obtain the numerical results which can be helpful
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for the understanding of the dynamical structures of the physical behavior of 2019nCoV.
We define the system of six equations illustrating the outbreak of the coronavirus in the
form of nonlinear fractional order differential equations (FODEs), involving the suscepti-
ble people Sk(t), the exposed population Ek(t), total infected strength Ik(t), asymptotically
infected population Ak(t), the total number of humans recovered Rk(t), reservoir Mk(t),
and corresponding interaction, which are presented as follows [13]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dγ
t Sk(t) = nk – mkSk – bkSk(Ik + κAk) – bkSkMk ,

Dγ
t Ek(t) = bkSk(Ik + δAk) + blSkM – (1 – δk)ωkEk – δkω

′
kEk – mkEk ,

Dγ
t Ik(t) = (1 – δk)ωkEk – (γk + mk)Ik ,

Dγ
t Ak(t) = δkω

′
kEk – (γ ′

k + mk)Ak ,

Dγ
t Rk(t) = γkIk + γ ′

kAk – mkRk ,

Dγ
t Mk(t) = ξ Ik + ηAk – νMk ,

(1)

where nk represents the rate of birth, mk represents the death of infected population, bk

represents the transmission coefficient, bl represents disease transmission coefficient, κ is
transmissibility multiple, ωk and ω′

k denote signified incubation period, γk and γ ′
k repre-

sent the recovery rate of Ik and Ak , respectively, ξ and η denote the influence of the virus
from Ik and Ak to Mk , and ν represents the rate of eliminating the virus from Mk . The
parameters are explained in Table 1.

In the last few years, modern calculus and DEs have been extended to fuzzy calculus
and FODEs [14–18], respectively. Then FODEs were extended to fuzzy FODEs [19–21].
FODEs and fuzzy integral equations have been studied by many researchers to estab-
lish the existence and uniqueness theory of solutions [22–27]. When dealing with fuzzy
FODEs, it is really tedious to compute more precise solutions to every fuzzy FODE. A lot
of efforts have been made by mathematicians in solving fuzzy FODEs by using various
methods like perturbation method, integral transform methods, as well as spectral tech-
niques [28–33]. Some researchers performed stability analysis of fuzzy DEs [34]. Here,
we are going to investigate model (1) with a fuzzy fractional-order derivative where the
uncertainty lies in the initial data. For 0 < γ ≤ 1,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dγ
t Yk(t) = ñk – m̃kYk – b̃kYk(Ik + κ̃Ak) – b̃kYkMk ,

Dγ
t Vk(t) = b̃kYk(Ik + δ̃Ak) + b̃lYkM – (1 – δ̃k)ω̃kVk – δ̃kω̃

′
kVk – m̃kVk ,

Dγ
t Ik(t) = (1 – δ̃k)ω̃kVk – (γ̃k + m̃k)Ik ,

Dγ
t Ak(t) = δ̃kω̃

′
kVk – (γ̃ ′

k + m̃k)Ak ,

Dγ
t Rk(t) = γ̃kIk + γ̃ ′

kAk – m̃kRk ,

Dγ
t Mk(t) = ξ̃Ik + η̃Ak – ν̃Mk ,

(2)

associated to fuzzy initial condition, for α ∈ [0, 1],

Ỹ(0,α) =
(
Y(0,α),Y(0,α)

)
,

Ṽ(0,α) =
(
V(0,α),V(0,α)

)
,

Ĩ(0,α) =
(
I(0,α),I(0,α)

)
,
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Ã(0,α) =
(
A(0,α),A(0,α)

)
,

R̃(0,α) =
(
A(0,α),A(0,α)

)
,

M̃(0,α) =
(
A(0,α),A(0,α)

)
.

Regarding the above explanations and to address the current uncertain situation, we
were motivated to propose a novel coronavirus infection system under fuzzy fractional
calculus. In fact, considering the proposed model which also enhances the physical be-
havior of such an infection system, we ensure that the model is closer to the real behavior
of a system evolving the general properties of RNA in COVID-19.

2 Preliminaries
Definition 1 ([35, 36]) Let μ : R → [0, 1] be a fuzzy set of the real line satisfying the fol-
lowing properties:

(i) μ is normal (for any a0 ∈ R;μ(a0) = 1);
(ii) μ is upper semicontinuous on R (∀ε > 0 ∃δ > 0 � |μ(a) – μ(a0)| < ε, |a – a0| < δ);

(iii) μ is convex (μ(κa + (1 – κ)b) ≥ (μ(a) ∧ μ(b)) ∀κ ∈ [0, 1], a, b ∈R);
(iv) cl{a ∈R,μ(a) > 0} is compact.
Then it is called a fuzzy number.

Definition 2 ([35]) On a fuzzy number μ, the p-level set is defined by

[μ]p =
{

x ∈R : μ(x) ≥ p
}

,

where p ∈ (0, 1] and x ∈R.

Definition 3 ([35, 36]) Let [μ(ϑ),μ(ϑ)] be the parametric form of a fuzzy number μ,
where 0 ≤ ϑ ≤ 1, which satisfies the following properties:

(i) μ(ϑ) is left continuous, bounded, and increasing function over (0, 1], and right
continuous at 0.

(ii) μ(ϑ) is right continuous, bounded, and decreasing over [0, 1], and right continuous
at 0.

(iii) μ(ϑ) ≤ μ(ϑ).
Also, if μ(ϑ) = μ(ϑ) = 0, then ϑ is called a crisp number.

Definition 4 ([31]) Consider a mapping ρ : E × E → R and let v = (v(ϑ), v(ϑ)) and
w = (w(ϑ), w(ϑ)) be two fuzzy numbers in their parametric form. The Hausdorff distance
between v and w is defined by

ρ(v, w) = sup
ϑ∈[0,1]

[
max

{∣
∣v(ϑ) – w(ϑ)

∣
∣,

∣
∣v(ϑ) – w(ϑ)

∣
∣
}]

.

In E, the metric ρ has the following properties:
(i) ρ(v + υ, w + υ) = ρ(v, w) for all v,υ, w ∈ E;

(ii) ρ(v�, w�) = |�|ρ(v, w) for all v, w ∈ E, � ∈R;
(iii) ρ(v + ξ , w + ς ) ≤ ρ(v, w) + ρ(ξ ,ς ) for all v, w, ξ ,ς ∈ E;
(iv) (E,ρ) is a complete metric space.
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Definition 5 ([31]) Let τ1, τ2 ∈ E. If there exist τ3 ∈ E such that τ1 = τ2 + τ3 then τ3 is said
to be the H-difference of τ1 and τ2, denoted by τ1 � τ2.

Definition 6 ([31]) Let Θ : R → E be a fuzzy mapping. Then Θ is called continuous if for
any ε > 0 ∃δ > 0 and a fixed value of λ0 ∈ [ζ1, ζ2], we have

ρ
(
Θ(λ),Θ(λ0)

)
< ε whenever |λ – λ0| < δ.

Definition 7 ([28, 31]) Let Φ be a continuous fuzzy function on [0, b] ⊆ R, a fuzzy frac-
tional integral in Riemann–Liouville sense corresponding to t is defined by

IκΦ(t) =
1

Γ (κ)

∫ t

0
(t – ζ )κ–1Φ(ζ ) dζ , where κ , ζ ∈ (0,∞).

Further, if Φ ∈ CF [0, b] ∩ LF [0, b], where CF [0, b] and LF [0, b] are the spaces of fuzzy con-
tinuous functions and fuzzy Lebesgue integrable functions, respectively, then fuzzy frac-
tional integral is defined as

[
IκΦ(t)

]

p =
[
IκΦP(t), IκΦp(t)

]
, 0 ≤ p ≤ 1,

where

IκΦp(t) =
1

Γ (κ)

∫ t

0
(t – ζ )κ–1Φp(t) dζ , κ , ζ ∈ (0,∞),

IκΦp(t) =
1

Γ (κ)

∫ t

0
(t – ζ )κ–1Φp(t) dζ , κ , ζ ∈ (0,∞).

Definition 8 ([31]) If a fuzzy function Φ ∈ CF [0, b] ∩ LF [0, b] is such that Φ = [Φp(t),
Φp(t)], 0 ≤ p ≤ 1 and t1 ∈ (0, b), then the fuzzy fractional Caputo’s derivative is defined as

[
DβΦ(t0)

]
p =

[
DβΦp(t0), DβΦp(t0)

]
, 0 ≤ β ≤ 1,

where

DβΦp(t0) =
1

Γ (n – β)

[∫ t

0
(t – ζ )n–β–1 dn

dζ n Φp(ζ ) dζ

]

t=t0

,

DβΦp(t0) =
1

Γ (n – β)

[∫ t

0
(t – ζ )n–β–1 dn

dζ n Φp(ζ ) dζ

]

t=t0

,

whenever the integrals on the right-hand sides converge and n = �β�.

Definition 9 ([30, 31, 33]) Let Φ be a continuous fuzzy-valued function. Assume that
Φ(χ ) · e–sχ is improper fuzzy Riemann-integrable on [0,∞), then its fuzzy Laplace trans-
form is represented by

L
[
Φ(χ )

]
=

∫ ∞

0
Φ(χ ) · e–sχ dχ .
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For 0 ≤ r ≤ 1, the parametric form of Φ(χ ) is represented by

∫ ∞

0
Φ(χ , r) · e–sχ dχ =

[∫ ∞

0
Φ(χ , r) · e–sχ dχ ,

∫ ∞

0
Φ(χ , r) · e–sχ dχ

]

.

Hence,

L
[
Φ(χ , r)

]
=

[
LΦ(χ , r), LΦ(χ , r)

]
.

Theorem 1 ([31]) Let Φ ∈ CF [0, b]∩LF [0, b], then for 0 ≤ p ≤ 1, and 0 < β ≤ 1, the Laplace
transform of fuzzy fractional derivative in Caputo’s sense is given by

L
[(

DβΦ(t)
)

p

]
= sβL

[
Φ(t)

]
– sβ–1[Φ(0)

]
.

3 Main results
In the following section, the existence and uniqueness of solution to the subsequent fuzzy
fractional model are discussed; and we provide the procedure for finding a semianalytic
solution of model (2) by using fuzzy Laplace transform.

3.1 Existence and uniqueness
In this section, by the use of fixed point theory, the existence and uniqueness of the sub-
sequent fuzzy fractional model is discussed. Consider the right-hand sides of model (2):

Ψ
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)

= ñk – m̃kYk – b̃kYk(Ik + κ̃Ak) – b̃kYkMk ,

Ξ
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)

=
{

b̃kYk(Ik + δ̃Ak) + b̃lYkMk – (1 – δ̃k)ω̃kVk – δ̃kω̃
′
kVk – m̃kVk

}
,

f
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)
= (1 – δ̃k)ω̃kVk – (γ̃k + m̃k)Ik ,

g
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)
= δ̃kω̃

′
kVk –

(
γ̃ ′

k + m̃k
)
Ak ,

h
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)
= γ̃kIk + γ̃ ′

kAk – m̃kRk ,

y
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)
= ξ̃Ik + η̃Ak – ν̃Mk ,

where Ψ , Ξ , f , g , h, and y are fuzzy functions. Thus, for 0 < γ ≤ 1, the given model (2) can
be written as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dγ
t Yk(t) = Ψ (t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)),

Dγ
t Vk(t) = Ξ (t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)),

Dγ
t Ik(t) = f (t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)),

Dγ
t Ak(t) = g(t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)),

Dγ
t Rk(t) = h(t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)),

Dγ
t Mk(t) = y(t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)),

(3)

with fuzzy initial conditions

Ỹ(0,α) =
(
Y(0,α),Y(0,α)

)
, Ṽ(0,α) =

(
V(0,α),V(0,α)

)
,
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Ĩ(0,α) =
(
I(0,α),I(0,α)

)
, Ã(0,α) =

(
A(0,α),A(0,α)

)
,

R̃(0,α) =
(
R(0,α),R(0,α)

)
, M̃(0,α) =

(
M(0,α),M(0,α)

)
.

Now applying fuzzy fractional integral Ir and using initial conditions, we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yk(t) = Ỹ(0,α) + 1
Γ (γ )

∫ t
0 (t – s)γ –1Ψ (s,Yk(s),Vk(s),Ik(s),Ak(s),Rk(s),Mk(s)) ds,

Vk(t) = Ṽ(0,α) + 1
Γ (γ )

∫ t
0 (t – s)γ –1Ξ (s,Yk(s),Vk(s),Ik(s),Ak(s),Rk(s),Mk(s)) ds,

Ik(t) = Ĩ(0,α) + 1
Γ (γ )

∫ t
0 (t – s)γ –1f (s,Yk(s),Vk(s),Ik(s),Ak(s),Rk(s),Mk(s)) ds,

Ak(t) = Ã(0,α) + 1
Γ (γ )

∫ t
0 (t – s)γ –1g(s,Yk(s),Vk(s),Ik(s),Ak(s),Rk(s),Mk(s)) ds,

Rk(t) = R̃(0,α) + 1
Γ (γ )

∫ t
0 (t – s)γ –1h(s,Yk(s),Vk(s),Ik(s),Ak(s),Rk(s),Mk(s)) ds,

Mk(t) = M̃(0,α) + 1
Γ (γ )

∫ t
0 (t – s)γ –1y(s,Yk(s),Vk(s),Ik(s),Ak(s),Rk(s),Mk(s)) ds.

(4)

Let us define a Banach space as B = B1 ×B2 under the fuzzy norm:

∥
∥
(
Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)∥
∥

= max
t∈[0,T]

[∣
∣(Yk(t) + Vk(t) + Ik(t) + Ak(t) + Rk(t) + Mk(t)

∣
∣
]
.

One can write equation (4) as

ℵ̃k(t) = ℵ̃(0,α) +
1

Γ (γ )

∫ t

0
(t – Λ)γ –1Θ

(
Λ, ℵ̃k(Λ)

)
dΛ, (5)

where

ℵ̃k(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yk(t),

Vk(t),

Ik(t),

Ak(t),

Rk(t),

Mk(t),

ℵ̃k(0,α) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ỹ(0,α),

Ṽ(0,α),

Ĩ(0,α),

Ã(0,α),

R̃(0,α),

M̃(0,α),

and

Θ
(
t, ℵ̃k(t)

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ (t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)),

Ξ (t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)),

f (t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)),

g(t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)),

h(t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)),

y(t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)).

We make several assumptions on the nonlinear function Θ : B → B as follows:
(C-1) There exists constant Kℵ > 0 such that for each ℵ̃k1 (t), ℵ̃k2 (t) ∈ B,

∣
∣Θ

(
t, ℵ̃k1 (t)

)
– Θ

(
t, ℵ̃k2 (t)

)∣
∣ ≤ Kℵ

∣
∣ℵ̃k1 (t) – ℵ̃k2 (t)

∣
∣.
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(C-2) There exist constants Mℵ > 0 and Nℵ > 0 such that

∣
∣Θ

(
t, ℵ̃k(t)

)∣
∣ ≤ Mℵ

∣
∣ℵ̃k(t)

∣
∣ + Nℵ.

Theorem 2 Under Assumption (C-2), the considered model (3) has at least one solution.

Proof Let A = {ℵ̃k(t) ∈ B : ‖ℵ̃k(t)‖ ≤ r} ⊂ B be a closed and convex fuzzy set, and ψ : A →
A be a mapping defined as

ψ
(ℵ̃k(t)

)
= ℵ̃(0,α) +

1
Γ (γ )

∫ t

0
(t – Λ)γ –1Θ

(
Λ, ℵ̃k(Λ)

)
dΛ. (6)

For any ℵ̃k(t) ∈A, we have

∥
∥ψ

(ℵ̃k(t)
)∥
∥ = max

t∈[0,T]

∣
∣
∣
∣ℵ̃(0,α) +

1
Γ (γ )

∫ t

0
(t – Λ)γ –1Θ

(
Λ, ℵ̃k(Λ)

)
dΛ

∣
∣
∣
∣

≤ ∣
∣ℵ̃(0,α)

∣
∣ +

1
Γ (γ )

∫ t

0
(t – Λ)γ –1∣∣Θ

(
Λ, ℵ̃k(Λ)

)∣
∣dΛ

≤ ∣
∣ℵ̃(0,α)

∣
∣ +

1
Γ (γ )

∫ t

0
(t – Λ)γ –1[Mℵ

∣
∣ℵ̃k(t)

∣
∣ + Nℵ

]
dΛ

≤ ∣
∣ℵ̃(0,α)

∣
∣ +

τ γ

Γ (γ + 1)
[
Mℵ

∣
∣ℵ̃k(t)

∣
∣ + Nℵ

]
.

From the last inequality, we have ψ(A) ⊂ A, which implies that the operator ψ is
bounded. Next we show that the operator ψ is completely continuous. For this, let φ1,φ2 ∈
[0, T] be such that φ1 < φ2, then

∥
∥ψ

(ℵ̃k(t)
)
(φ2) – ψ

(ℵ̃k(t)
)
(φ1)

∥
∥ =

∣
∣
∣
∣

1
Γ (γ )

∫ φ2

0
(φ2 – Λ)γ –1Θ

(
Λ, ℵ̃k(Λ)

)
dΛ

–
1

Γ (γ )

∫ φ1

0
(φ1 – Λ)γ –1Θ

(
Λ, ℵ̃k(Λ)

)
dΛ

∣
∣
∣
∣

≤ [
φ

γ
2 – φ

γ
1
] [Mℵ|ℵ̃k(t)| + Nℵ]

Γ (γ + 1)
.

From the last inequality, we see that the right-hand side goes to zero as φ2 → φ1. Hence,

∥
∥ψ

(ℵ̃k(t)
)
(φ2) – ψ

(ℵ̃k(t)
)
(φ1)

∥
∥ → 0 as φ2 → φ1.

Thus, the operator ψ is equicontinuous. By Arzela–Ascoli theorem, the operator ψ is
completely continuous, also ψ is bounded as proved earlier. Therefore, system (3) has at
least one solution by Schauder’s fixed point theorem. �

Theorem 3 If Assumption (C-1) holds, then the considered system (3) has a unique solu-
tion if τ γ Kℵ < Γ (γ + 1).
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Proof Let ℵ̃k1 (t), ℵ̃k2 (t) ∈ B, then

∥
∥ψ

(ℵ̃k1 (t)
)

– ψ
(ℵ̃k2 (t)

)∥
∥ = max

t∈[0,T]

∣
∣
∣
∣

1
Γ (γ )

∫ t

0
(t – Λ)γ –1Θ

(
Λ, ℵ̃k1 (Λ)

)
dΛ

–
1

Γ (γ )

∫ t

0
(t – Λ)γ –1Θ

(
Λ, ℵ̃k2 (Λ)

)
dΛ

∣
∣
∣
∣

≤ τ γ

Γ (γ + 1)
Kℵ

∣
∣ℵ̃k1 (t) – ℵ̃k2 (t)

∣
∣.

Hence ψ is a contraction. Hence, by Banach contraction theorem, system (3) has a unique
solution. �

3.2 Procedure for solution
Here a general method is provided in order to find the solution of the considered system
by the fuzzy Laplace transform.

Taking fuzzy Laplace transform of (3) and using initial conditions, we get

L
[
Dγ

t
[
Yk(t)

]]
= L

[
Ψ

(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
,

L
[
Dγ

t
[
Vk(t)

]]
= L

[
Ξ

(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
,

L
[
Dγ

t
[
Ik(t)

]]
= L

[
f
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
,

L
[
Dγ

t
[
Ak(t)

]]
= L

[
g
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
,

L
[
Dγ

t
[
Rk(t)

]]
= L

[
h
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
,

L
[
Dγ

t
[
Mk(t)

]]
= L

[
y
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
,

sγ L
[
Yk(t)

]
= sγ –1Ỹ(0,α) + L

[
Ψ

(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
,

sγ L
[
Vk(t)

]
= sγ –1Ṽ(0,α) + L

[
Ξ

(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
,

sγ L
[
Ik(t)

]
= sγ –1Ĩ(0,α) + L

[
f
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
,

sγ L
[
Ak(t)

]
= sγ –1Ã(0,α) + L

[
g
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
,

sγ L
[
Rk(t)

]
= sγ –1R̃(0,α) + L

[
h
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
,

sγ L
[
Mk(t)

]
= sγ –1M̃(0,α) + L

[
y
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
,

L
[
Yk(t)

]
=

1
s
Ỹ(0,α) +

1
sγ

L
[
Ψ

(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
,

L
[
Vk(t)

]
=

1
s
Ṽ(0,α) +

1
sγ

L
[
Ξ

(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
,

L
[
Ik(t)

]
=

1
s
Ĩ(0,α) +

1
sγ

L
[
f
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
,

L
[
Ak(t)

]
=

1
s
Ã(0,α) +

1
sγ

L
[
g
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
,

L
[
Rk(t)

]
=

1
s
R̃(0,α) +

1
sγ

L
[
h
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
,

L
[
Mk(t)

]
=

1
s
M̃(0,α) +

1
sγ

L
[
y
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
.
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The infinite series solution is given by:

Yk(t) =
∞∑

n=0

Ykn (t), Vk(t) =
∞∑

n=0

Vkn (t),

Ik(t) =
∞∑

n=0

Ikn (t), Ak(t) =
∞∑

n=0

Akn (t),

Rk(t) =
∞∑

n=0

Rkn (t), Mk(t) =
∞∑

n=0

Mkn (t),

Yk(t)Ik(t) =
∞∑

n=0

Z1,n,

Yk(t)Ak(t) =
∞∑

n=0

Z2,n,

Yk(t)Mk(t) =
∞∑

n=0

Z3,n,

where Z1n , Z2n , and Z3n are Adomian polynomials, representing nonlinear terms. So the
last equation becomes

L

[ ∞∑

n=0

Ykn (t)

]

=
1
s
Ỹ(0,α) +

1
sγ

L
[
Ψ

(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
,

L

[ ∞∑

n=0

Vkn (t)

]

=
1
s
Ṽ(0,α) +

1
sγ

L
[
Ξ

(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
,

L

[ ∞∑

n=0

Ikn (t)

]

=
1
s
Ĩ(0,α) +

1
sγ

L
[
f
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
,

L

[ ∞∑

n=0

Akn (t)

]

=
1
s
Ã(0,α) +

1
sγ

L
[
g
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
,

L

[ ∞∑

n=0

Rkn (t)

]

=
1
s
R̃(0,α) +

1
sγ

L
[
h
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
,

L

[ ∞∑

n=0

Mkn (t)

]

=
1
s
M̃(0,α) +

1
sγ

L
[
y
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
.

Taking the inverse Laplace transform, we have

∞∑

n=0

Ykn (t) = Ỹ(0,α) + L–1
[

1
sγ

L
[
Ψ

(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
]

,

∞∑

n=0

Vkn (t) = Ṽ(0,α) + L–1
[

1
sγ

L
[
Ξ

(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
]

,

∞∑

n=0

Ikn (t) = Ĩ(0,α) + L–1
[

1
sγ

L
[
f
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
]

,
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∞∑

n=0

Akn (t) = Ã(0,α) + L–1
[

1
sγ

L
[
g
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
]

,

∞∑

n=0

Rkn (t) = R̃(0,α) + L–1
[

1
sγ

L
[
h
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
]

,

∞∑

n=0

Mkn (t) = M̃(0,α) + L–1
[

1
sγ

L
[
y
(
t,Yk(t),Vk(t),Ik(t),Ak(t),Rk(t),Mk(t)

)]
]

.

Comparing the terms on both sides, we consider the first two terms of the series

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yk0
(t) = Y(0,α), Sk0 (t) = Y(0,α),

Vk0 (t) = V(0,α), Vk0 (t) = V(0,α),

Ik0 (t) = I(0,α), Ik0 (t) = V(0,α),

Ak0 (t) = A(0,α), Ak0 (t) = A(0,α),

Rk0 (t) = R(0,α), Rk0 (t) = R(0,α),

Mk0 (t) = M(0,α), Mk0 (t) = M(0,α),

(7)

⎧
⎨

⎩

Yk1
(t) = L–1[ 1

sγ L[ñk – m̃kYk0
– b̃kYk0

(Ik0 + κ̃Ak0 ) – b̃kYk0
Mk0 ]],

Yk1 (t) = L–1[ 1
sγ L[ñk – m̃kYk1 – b̃kYk0 (Ik1 + κ̃Ak0 ) – b̃kYk0Mk0 ]].

(8)

Similarly, we can find the other terms.
Hence, the series solution of the considered system is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yk(t) = Yko
(t) + Yk1

(t) + Yk2
(t) + · · · ,

Yk(t) = Yk0 (t) + Yk1 (t) + Yk2 (t) + · · · ,

Vk(t) = Vko (t) + Vk1 (t) + Vk2 (t) + · · · ,

Vk(t) = Vk0 (t) + Vk1 (t) + Vk2 (t) + · · · ,

Ik(t) = Iko (t) + Ik1 (t) + Ik2 (t) + · · · ,

Ik(t) = Ik0 (t) + Ik1 (t) + Ik2 (t) + · · · ,

Ak(t) = Ako (t) + Ak1 (t) + Ak2 (t) + · · · ,

Ak(t) = Ak0 (t) + Ak1 (t) + Ak2 (t) + · · · ,

Rk(t) = Rko (t) + Rk1 (t) + Rk2 (t) + · · · ,

Rk(t) = Rk0 (t) + Rk1 (t) + Rk2 (t) + · · · ,

Mk(t) = Mko (t) + Mk1 (t) + Mk2 (t) + · · · ,

Mk(t) = Mk0 (t) + Mk1 (t) + Mk2 (t) + · · · .

(9)

4 Numerical results and discussion
We consider a table corresponding to the parameters involved in the model.

Consider the proposed model (2) with initial conditions as given in Table 1:

Ỹ(0,α) = (2α – 1, 1 – 2α), Ṽ(0,α) = (2α – 1, 1 – 2α),

Ĩ(0,α) = (2α – 1, 1 – 2α), Ã(0,α) = (2α – 1, 1 – 2α),

R̃(0,α) = (2α – 1, 1 – 2α), M̃(0,α) = (2α – 1, 1 – 2α).
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Table 1 Description of the parameters used in model (2)

Notation Parameters description Numerical value

ñk Birth rate 1
m̃k Death rate of infected population 1

(76.79×365)
b̃k Transmission coefficient 0.05
b̃l Disease transmission coefficient 0.001231
ω̃k , ω̃′

k Signified incubation period 0.001243, 0.05
γ̃k , γ̃ ′

k Recovery rate of Ik ,Ak 0.09871, 0.0854302
ξ̃ , η̃ Influence of virus from Ik andAk toMk 0.0398, 0.01
ν̃ Amount of asymptotic infection 0.1243
κ̃ Transmissibility multiple 0.02
η̃ Elimination rate of virus fromMk 0.01
Y0 Initial value of susceptible 220 million
I0 Initial value of infected 0.015 million
V0 Initial value of exposed 100 million
A0 Initial value of asymptotically infected 0.60 million
R0 Initial value of recovered 0 million
M0 Initial value of reservoir 0.1 million

Applying the proposed procedure to (2) and using initial conditions, we have

Yk0
(t,α) = 2α – 1, Yp0 (t,α) = 1 – 2α,

Vk0 (t,α) = 2α – 1, Vp0 (t,α) = 1 – 2α,

Ik0 (t,α) = 1 – 2α, Ip0 (t,α) = 1 – 2α,

Ak0 (t,α) = 1 – 2α, Ap0 (t,α) = 1 – 2α,

Rk0 (t,α) = 1 – 2α, Rp0 (t,α) = 1 – 2α,

Mk0 (t,α) = 1 – 2α, Mp0 (t,α) = 1 – 2α.

The second term of the series solution is
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Yk1
(t,α) = [ñk – m̃k(2α – 1) – b̃k(2α – 1)2

– κ b̃k(2α – 1)2 – b̃k(2α – 1)2] tγ
Γ (γ +1) ],

Yk1 (t,α) = [ñk – m̃k(1 – 2α) – b̃k(1 – 2α)2

– κ b̃k(1 – 2α)2 – b̃k(1 – 2α)] tγ
Γ (γ +1) ],

(10)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Vk1 (t,α) = [b̃k(2α – 1)2 + κ b̃k(2α – 1)2 + b̃k(2α – 1)2 – (1 – δ̃k)ω̃k(2α – 1)

– δ̃kω̃
′
k(2α – 1) – m̃k(2α – 1)] tγ

Γ (γ +1) ],

Vk1 (t,α) = [b̃k(1 – 2α)2 + κ b̃k(1 – 2α)2 + b̃k(1 – 2α)2 – (1 – δ̃k)ω̃k(1 – 2α)

– δ̃kω̃
′
k(1 – 2α) – m̃k(1 – 2α)] tγ

Γ (γ +1) ],

(11)

⎧
⎨

⎩

Ik1 (t,α) = [(1 – δ̃k)ω̃k(2α – 1) – (γ̂p + m̃k)(2α – 1)] tγ
Γ (γ +1) ,

Ik1 (t,α) = [(1 – δ̃k)ω̃k(1 – 2α) – (γ̂p + m̃k)(1 – 2α)] tγ
Γ (γ +1) ,

(12)

⎧
⎨

⎩

Ak1 (t,α) = [δ̃kω̃
′
k(2α – 1) – (γ̂ ′

k + m̃k)(2α – 1)] tγ
Γ (γ +1) ,

Ak1 (t,α) = [δ̃kω̃
′
k(1 – 2α) – (γ̂ ′

k + m̃k)(1 – 2α)] tγ
Γ (γ +1) ,

(13)

⎧
⎨

⎩

Rk1 (t,α) = (2α – 1)[γ̂k + γ̂ ′
k – m̃k] tγ

Γ (γ +1) ,

Rk1 (t,α) = (1 – 2α)[γ̂k + γ̂ ′
k – m̃k] tγ

Γ (γ +1) ,
(14)
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⎧
⎨

⎩

Mk1 (t,α) = (2α – 1)[ξ̃ + η̃ – ν̃] tγ
Γ (γ +1) ,

Mk1 (t,α) = (1 – 2α)[ξ̃ + η̃ – ν̃] tγ
Γ (γ +1) .

(15)

For the sake of simplicity, assume that

C1 = ñk – m̃k(2α – 1) – b̃k(2α – 1)2 – κ b̃k(2α – 1)2 – b̃k(2α – 1)2,

C1 = ñk – m̃k(1 – 2α) – b̃k(1 – 2α)2 – κ b̃k(1 – 2α)2 – b̃k(1 – 2α),

C2 = b̃k(2α – 1)2 + κ b̃k(2α – 1)2 + b̃k(2α – 1)2 – (1 – δ̃k)ω̃k(2α – 1)

– δ̃kω̃
′
k(2α – 1) – m̃k(2α – 1),

C2 = b̃k(1 – 2α)2 + κ b̃k(1 – 2α)2 + b̃k(1 – 2α)2 – (1 – δ̃k)ω̃k(1 – 2α)

– δ̃kω̃
′
k(1 – 2α) – m̃k(1 – 2α),

C3 = (1 – δ̃k)ω̃k(2α – 1) – (γ̂p + m̃k)(2α – 1),

C3 = (1 – δ̃k)ω̃k(1 – 2α) – (γ̂p + m̃k)(1 – 2α),

C4 = δ̃kω̃
′
k(2α – 1) –

(
γ̂ ′

k + m̃k
)
(2α – 1),

C4 = δ̃kω̃
′
k(1 – 2α) –

(
γ̂ ′

k + m̃k
)
(1 – 2α),

C5 = (2α – 1)
[
γ̂k + γ̂ ′

k – m̃k
]
,

C5 = (1 – 2α)
[
γ̂k + γ̂ ′

k – m̃k
]
,

C6 = (2α – 1)[ξ̃ + η̃ – ν̃],

C6 = (1 – 2α)[ξ̃ + η̃ – ν̃].

Now the third term of the series is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yk2
(t,α) = ñk

tγ
Γ (γ +1) – m̃kC1

t2γ

Γ (2γ +1) [b̃k(2α – 1)C3 + C1] t2γ

Γ (2γ +1)

– [b̃k(2α – 1)(C6 + C1)] t2γ

Γ (2γ +1) ,

Yk2 (t,α) = ñk
tγ

Γ (γ +1) – m̃kC1
t2γ

Γ (2γ +1) [b̃k(1 – 2α)C3 + C1] t2γ

Γ (2γ +1)

– [b̃k(1 – 2α)(C6 + C1)] t2γ

Γ (2γ +1) ,

Vk2 (t,α) = [b̃k(2α – 1)(C3 + C1)] t2γ

Γ (2γ +1) + [b̃kκ(2α – 1)(C4 + C1)] t2γ

Γ (2γ +1)

– C2[(1 – δ̃k) – δ̃kω̃
′
k – m̃k] t2γ

Γ (2γ +1) ,

Vk2 (t,α) = [b̃k(1 – 2α)(C3 + C1)] t2γ

Γ (2γ +1) + [b̃kκ(1 – 2α)(C4 + C1)] t2γ

Γ (2γ +1)

– C2[(1 – δ̃k) – δ̃kω̃
′
k – m̃k] t2γ

Γ (2γ +1) ,

Ik2 (t,α) = (1 – δ̃k)ω̃kC2
t2γ

Γ (2γ +1) – (γ̂k + m̃k)C3
t2γ

Γ (2γ +1) ,

Ik2 (t,α) = (1 – δ̃k)ω̃kC2
t2γ

Γ (2γ +1) – (γ̂k + m̃k)C3
t2γ

Γ (2γ +1) ,

Ak2 (t,α) = δ̃kω̃
′
kC2

t2γ

Γ (2γ +1) – (γ̂ ′
k + m̃k)C4

t2γ

Γ (2γ +1) ,

Ak2 (t,α) = δ̃kω̃
′
kC2

t2γ

Γ (2γ +1) – (γ̂ ′
k + m̃k)C4

t2γ

Γ (2γ +1) ,

Rk2 (t,α) = (γ̂kC3 – γ̂ ′
kC4 – m̃kC5) t2γ

Γ (2γ +1) ,

Rk2 (t,α) = (γ̂kC3 – γ̂ ′
kC4 – m̃kC5) t2γ

Γ (2γ +1) ,

Mk2 (t,α) = (ξ̃C3 – η̃C4 – υ̃C6) t2γ

Γ (2γ +1) ,

Mk2 (t,α) = (ξ̃C3 – η̃C4 – υ̃C6) t2γ

Γ (2γ +1) .

(16)
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In Figs. 1–6 we presented comparisons of approximate fuzzy and approximate normal
solutions for the considered model at the given uncertainty against various fractional or-
der. We see that as the susceptible class value is decreasing, the exposed papulation in-
creases and hence infection spreads with different rate due to various fractional order.
Similarly, the death cases are increasing so the recovered class also grows and the asymp-
totically infected class also increases, and hence the population of virus in the reservoir is
growing. From the figures we observe that fuzzyness along with fractional calculus pro-

Figure 1 Comparison of approximate fuzzy and normal solution for susceptible compartment for three
terms at the given uncertainty values α ∈ [0, 1] against various fractional order

Figure 2 Comparison of approximate fuzzy and normal solution for exposed compartment for three terms at
the given uncertainty values α ∈ [0, 1] against various fractional order

Figure 3 Comparison of approximate fuzzy and normal solution for infected compartment for three terms at
the given uncertainty values α ∈ [0, 1] against various fractional order
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Figure 4 Comparison of approximate fuzzy and normal solution for recovered compartment for three terms
at the given uncertainty values α ∈ [0, 1] against various fractional order

Figure 5 Comparison of approximate fuzzy and normal solution for asymptotically infected compartment for
three terms at the given uncertainty values α ∈ [0, 1] against various fractional order

Figure 6 Comparison of approximate fuzzy and normal solution for reservoir compartment for three terms at
the given uncertainty values α ∈ [0, 1] against various fractional order

vides global dynamics to such a kind of nonlinear problems where uncertainty lies in the
data.

Remark 1 Regarding the provided results, it is clear that the lower bound is an increas-
ing set-valued function and an upper bound is a decreasing one, which proves that the
solutions are fuzzy numbers. Also, it is worthy to mention that for general cases, similar
results can be obtained under fuzzy differentiability.



Ahmad et al. Advances in Difference Equations        (2020) 2020:472 Page 16 of 17

Remark 2 Considering the fact that stochastic and random parameters are more complex
to address, the uncertainty can lead to an increase in the computation cost, so employing
fuzzy concepts for modeling such real-world systems can be the most suitable choice.

5 Conclusions
In this paper, we have demonstrated the existence and uniqueness of the solution to the
fuzzy fractional order model of COVID-19 infection using the Banach fixed point the-
orem. We also established a proper procedure for the fuzzy Laplace transform coupled
with Adomian decomposition method to obtain an approximate solution for the pro-
posed model. We have presented comparisons between fuzzy and normal results up to
three terms to depict the efficiency of this approach. We observed that fuzzyness coupled
with fractional calculus approach excellently produced global dynamics of those problems
where uncertainty lies in the data.
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