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Abstract
In the present paper, we formulate a new mathematical model for the dynamics of
COVID-19 with quarantine and isolation. Initially, we provide a brief discussion on the
model formulation and provide relevant mathematical results. Then, we consider the
fractal-fractional derivative in Atangana–Baleanu sense, and we also generalize the
model. The generalized model is used to obtain its stability results. We show that the
model is locally asymptotically stable ifR0 < 1. Further, we consider the real cases
reported in China since January 11 till April 9, 2020. The reported cases have been
used for obtaining the real parameters and the basic reproduction number for the
given period,R0 ≈ 6.6361. The data of reported cases versus model for classical and
fractal-factional order are presented. We show that the fractal-fractional order model
provides the best fitting to the reported cases. The fractional mathematical model is
solved by a novel numerical technique based on Newton approach, which is useful
and reliable. A brief discussion on the graphical results using the novel numerical
procedures are shown. Some key parameters that show significance in the disease
elimination from the society are explored.

Keywords: COVID-19 model; Quarantine and isolation; Fractal-fractional model;
Estimation of the parameters; Numerical results

1 Introduction
The coronavirus is a new, fatal and highly spreading infection that has put great panic
around the globe since January 2, 2020. It is believed that the coronaviruses belong to a
class of related viruses that initiate the diseases in birds and mammals. However, in hu-
mans, the coronaviruses initiate respiratory tract infections that can be insignificant, for
example, the common cold. But others can be fatal, for instance, the SARS, MERS, and the
new COVID-19. It is important to note that, although it is believed that they constitute a
group of viruses, they can, however, be altered significantly, posing a risk factor. From the
available literature, it is known that some of them can kill more than 30% of infected pa-
tients, for example, the MERS-Cov; nevertheless, other are really harmless, for example,
the common cold. Up to date, the world has witnessed the appearance of seven strains of
human coronaviruses, namely, Human coronavirus OC43 (HCoV-OC43), human coron-
avirus 229E (HCoV-229E), severe acute respiratory syndrome coronavirus (SARS-CoV),
human coronavirus NL63 (HCoV-NL63), human coronavirus HKU1, Middle East respi-
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ratory syndrome-related coronavirus (MERS-CoV), and finally the latest version, called
2019-nCoV.

In general, it is known that the coronavirus can initiate direct or indirect viral or bacterial
pneumonia, respectively. In this paper, we are interested more in the latest version of the
so-called 2019-nCoV, which is also believed to be originated from bats. However, there are
many controversies around its origin. If one assumes that such a virus is originated from
bats, the first question one would ask is if such bats are new to our world, and if not, why
such a virus has not spread before? Does this mean that such a virus has not been in contact
with humans before? It was believed that the virus may have come in contact with humans,
white humans began to eat bats without being properly cooked. However, if this hypothesis
is correct and gives the mode of transmission of such a virus, one would go back to some
villages in Africa where villagers directly eat fruits that were previously bitten by these bats.
Also, in some of those villages, the bats can be consumed, killed, cleaned, and cooked, it is
therefore possible that during the process of cleaning, villagers are exposed to the virus if
really such a virus is received from bats. These observations make it suspicious to believe
that the latest virus is originated from bats. On the other hand, there exist several books
that were written in 1981, for instance, the Eyes of Darkness, where the author gives a clear
narrative on how and where the breakout of the virus will start. In another book, titled
“The End of the World Book”, the author gives a clear date when this pandemic will take
place. It has become a trend that the attention of humans has shifted toward sport, music,
and other social activities, production of knowledge does not matter anymore, scientists
do not really have a say in their various societies. From the narrator of the book “The Eyes
of Darkness”, it is believed that the virus is a biological weapon.

There are number of mathematical models that reported the COVID-19 dynamics, see
[1]. In [1], a mathematical model for Wuhan outbreak has been presented with real statis-
tical cases. The authors provide detailed analysis of the infection based on the real data.
A mathematical model for COVID-19 to predict its dynamics for Italy is proposed in [2].
In another study, the authors studied the dynamics of COVID-19 in Italy [3]. A fractional
model for intercity network is considered in [4]. A mathematical model of COVID-19 and
its simulations are considered in [5]. A model of COVID-19 using fractional derivative has
been considered in [6]. Recently, a coronavirus model has been considered mathemati-
cally in [7], where the authors used the real data from Pakistan and explored the possible
control of infection and its elimination from Pakistan. The data of Ghana and its analysis
through a mathematical model have been considered in [8], where the possible elimina-
tion of the virus from the country has been studied. In another study, the author explored
the dynamics of coronavirus with the lockdown effect, where comprehensive statistical
and mathematical results were explored for a better understanding of the infection [9].

While the aim of this paper is not agreeing or disagreeing with the discussion under-
pinning the origin of this virus, we shall recall that mathematicians use mathematical
models to understand, control, and predict the spread of a given infectious disease. They
use mathematical tools called differential operators to construct systems of mathematical
equations that are able to replicate the real world scenario. Very recently, Atangana and
Altaf [6] suggested a novel mathematical model able to predict the number of susceptible,
infected, dead, recovered, and other individuals. Their mathematical model suggested a
reproductive number ofR0 = 2.4829, a value that is in good agreement with that suggested
by the WHO. The mathematical model predicted an exponential increase in infections and
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deaths, which indeed is in good agreement with the real world observation. Nevertheless,
in their model, the effects of temperature, distancing, and source of infection were not
included.

Mathematical models that addressed the physical or biological problems are numer-
ous in the literature; see, for example, [10–20]. For instance, the authors in [10] consid-
ered a numerical scheme to obtain the solution of a fractional optimal-control problem.
Whereas the authors in [11] presented results for a fractional optimal-control problem
with a general derivative. In [12], the authors considered a nonsingular operator and ob-
tained the results for fractional Euler–Lagrange equations. The dynamics of human liver
with Caputo–Fabrizio derivative has been studied in [13]. The time fractional optimal-
control problem with nonsingular operator has been discussed in [14]. A fractional model
for HRSV with optimal control has been analyzed in [15]. The authors studied the fish
model with Mittag-Leffler law in [16]. Using the new method, called Bernstein wavelets,
to obtain the solution of SIR model was considered in [17]. In [18], the authors studied the
exothermic reactions model with Mittag-Leffler law. The solution of a cold plasma prob-
lem with hybrid method was studied in [19]. A new fractional model for measles with
vaccine application was considered in [20].

We extend the model given in [6] by incorporating the quarantine and isolations classes
to predict the dynamics of COVID-19 in China with real data. The model formulation is
shown initially using integer order and then the model is generalized to obtain the fractal-
fractional model. The fractional models and their applications to biological and physical
problems are numerous in the literature; see [21–25]. We provided above comprehensive
details on the mathematical modeling of the coronavirus infection and its background
results. We organized the rest of the work in this paper as follows: The model formulation
is shown in Sect. 2. Some mathematical results for the model have been shown in Sect. 3.
The basics of the fractal-fractional calculus and its application to the COVID-19 model
are shown briefly in Sect. 4. In Sect. 5, we consider a new numerical approach for the
solution of the fractional COVID-19 model with quarantine and isolation based on the
Newton polynomial approach. Estimation of the model parameters is shown in Sect. 6.
The numerical results are discussed briefly in Sect. 7 while the concluding remarks are
shown in Sect. 8.

2 Model formulation
2.1 Formulation of coronavirus with quarantine and hospitalization
The disease dynamics of COVID-19 is now a global issue with millions of infections and
deaths worldwide. The countries who restrict their individuals to isolation and quarantine
get a decrease in the infection cases of COVID-19. The isolation and quarantine have been
considered a useful control in order to get rid of this infection. Therefore, the model con-
sidered here is for the transmission dynamics of the novel coronavirus (2019-nCoV) with
the analysis of the quarantine of exposed individuals and isolation of individuals infected
with the disease clinically. We also considered in this study the asymptomatically infected
individuals who take part in infection generation without any symptoms. Thus, the model
total population N(t) is divided into seven human subclasses, namely, the susceptible indi-
viduals S(t), exposed E(t) (infected, but not showing any disease symptoms), symptomat-
ically infected or infected individuals I(t) (with clinical symptoms), asymptomatically in-
fected A(t) (not showing any clinical symptoms), quarantined Q(t), hospitalized H(t), and
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the recovered individuals R(t). The infection that is mainly caused due to the seafood mar-
ket, which is considered here as M(t), is an environment for generating the infection by
visiting the market by the people for purchasing food. The assumptions above lead to the
following system of evolutionary differential equations:

dS
dt

= Λ – μS(t) – λ(t)S(t),

dE
dt

= λ(t)S(t) –
(
(1 – θ )ω + θρ + μ + δ1

)
E(t),

dI
dt

= (1 – θ )ωE(t) – (τ1 + μ + ξ1 + γ )I(t),

dA
dt

= θρE(t) – (τ2 + μ)A(t),

dQ
dt

= δ1E(t) – (μ + φ1 + δ2)Q(t),

dH
dt

= γ I(t) + δ2Q(t) – (μ + φ2 + ξ2)H(t),

dR
dt

= τ1I(t) + τ2A(t) + φ1Q(t) + φ2H(t) – μR(t),

dM
dt

= q1I(t) + q2A(t) – q3M(t),

(1)

where

λ(t) =
η1(I + ψA)

N
+ η2M. (2)

Susceptible individuals acquire infection, following effective contacts with symptomati-
cally infected, asymptomatically infected and the infection from the seafood market (I , A,
M) shown by λ(t). The birth rate for the susceptible individuals is given by Λ. The natural
mortality rate of the human population is shown by μ. The healthy individuals require in-
fection after contacting with infected and asymptomatically infected individuals by a rate
η1, while ψ denotes the transmissibility factor. The asymptomatic infection is generated
by the parameter θ . The incubation periods are shown by ω and ρ . The parameters τ1, τ2,
φ1, φ2 denote, respectively, the recovery of infected, asymptomatically infected, quaran-
tined, and hospitalized individuals. The hospitalization rate of infected and quarantined
individuals are shown respectively by γ and δ2. The disease death rate of infected and hos-
pitalized individuals is shown by ξ1 and ξ2. The parameter δ1 represents the quarantine
rate of exposed individuals. Individuals who are visiting the seafood market and catch the
infection are increasing with rate η2. The infection generated in the seafood market due
to infected and asymptomatically infected is shown by the parameters q1 and q2, respec-
tively, while the removal of infection from the market is given by q3. The above transfer
flow rate has been shown in Fig. 1.
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Figure 1 The description of the flow rate of the parameters of the model

3 Model analysis
3.1 Solution positivity
Lemma 1 Let the initial data be G(0) ≥ 0, where G(t) = (S(t), E(t), I(t), A(t), Q(t), H(t), R(t),
M(t)). Then, for every t > 0, we have nonnegative solution for model (1). Further,

lim
t→∞ N(t) ≤ Λ

μ
,

with N(t) = S(t) + E(t) + I(t) + A(t) + Q(t) + H(t) + R(t).

Proof Consider t1 = sup{t > 0 : G(t) > 0}. So, t1 > 0. It follows from the first equation of
system (1) that

dS
dt

= Λ – μS(t) – λ(t)S(t), (3)

with λ(t) = η1(I+ψA)
N + η2M. Then, we can write equation (3) as

d
dt

{
S(t) exp

(
μt +

∫ t1

0
λ(ρ) dρ

)}
= Λ exp

(
μt +

∫ t1

0
λ(ρ) dρ

)
. (4)

Hence,

S(t1) exp

(
μt1 +

∫ t1

0
λ(ρ) dρ

)
– S(0) = Λ exp

(
μx +

∫ x

0
λ(ζ ) dζ

)
dx, (5)
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so that

S(t1) = S(0) exp

{
–
(

μt1 +
∫ t1

0
λ(ρ) dρ

)}
+ exp

{
–
(

μt1 +
∫ t1

0
λ(ρ) dρ

)}

×
∫ t1

0
Λ exp

(
μx +

∫ x

0
λ(ζ ) dζ

)
dx > 0. (6)

For the rest of the equations, we can take a similar approach as above for system (1) to show
G(t) > 0 for every t > 0. To show the other claim, note that 0 < S(0) ≤ N(t), 0 < E(0) ≤ N(t),
0 < I(0) ≤ N(t), 0 < A(0) ≤ N(t), 0 < Q(0) ≤ N(t), 0 < H(0) ≤ N(t), 0 ≤ R(0) ≤ N(t). Adding
all the equations of system (1) except for the last equation, we have

dN
dt

= Λ – μN – ξ1I – ξ2H ≤ Λ – μN ,

so

lim
t→∞ N(t) ≤ Λ

μ
. �

Next, we show the invariant regions for the given model (1). Consider the feasible region
Ω , given by

Ω =
{
(
S(t), E(t), I(t), A(t), Q(t), H(t), R(t)

) ∈R
7
+ : N(t) ≤ Λ

μ
, M(t) ∈R+ :

Λ

μ

q1 + q2

q3

}
.

We have the following results for this feasible region.

Lemma 2 The region given by Ω is positively invariant for model (1) with the nonnegative
initial conditions in (7).

Proof Adding the components of human population in model (1), we have

dN
dt

= Λ – μN – ξ1I – ξ2H ≤ Λ – μN .

Hence, dN(t)
dt ≤ 0, if N(0) ≥ Λ

μ
. So, N(t) ≤ N(0)e–μt + Λ

μ
(1 – e–μt). Thus, the region given by

Ω is positively invariant. Also, if N(0) > Λ
μ

and N(0) > Λ
μ

, then either the solution enters
Ω in finite time, or N(t) tends to Λ

μ
asymptotically. So, the regions given by Ω attract all

the solutions in R
7
+. �

4 A basic of fractal-fractional calculus and its application to the COVID-19
model

In this section, we discuss the essential literature related to the fractal-fractional operator
and its applications to the model of COVID-19. The flowing definitions are taken from
[26].

4.1 Basic of fractal-fractional calculus
We present here some related results about the fractal-fractional operators.
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Definition 1 For a function g(t) ∈ W 1
2 (0, 1), b > a and α1 ∈ [0, 1], the definition of

Atangana–Baleanu derivative in the Caputo sense is given by

ABC
0 Dα1

t g(t) =
AB(α1)
1 – α1

∫ t

0

d
dτ

g(τ )Eα1

[
–

α1

1 – α1
(t – τ )α1

]
dτ ,

where

AB(α1) = 1 – α1 +
α1

Γ (α1)
.

Definition 2 Suppose that g(t) is continuous on an open interval (a, b), then the fractal-
fractional integral of g(t) of order α1 having Mittag-Leffler-type kernel and given by

FFMJα1,α2
0,t

(
g(t)

)
=

α1α2

AB(α1)Γ (α1)

∫ t

0
sα2–1g(s)(t – s)α1 ds +

α2(1 – α1)tα2–1g(t)
AB(α1)

.

4.2 A fractional COVID-19 model
We present the dynamics of the COVID-19 model (1) using fractal-fractional Atangana–
Baleanu derivative. We have the following model:

FF Dα1,α2
0,t S = Λ – μS(t) – λ(t)S(t),

FF Dα1,α2
0,t E = λ(t)S(t) –

(
(1 – θ )ω + θρ + μ + δ1

)
E(t),

FF Dα1,α2
0,t I = (1 – θ )ωE(t) – (τ1 + μ + ξ1 + γ )I(t),

FF Dα1,α2
0,t A = θρE(t) – (τ2 + μ)A(t),

FF Dα1,α2
0,t Q = δ1E(t) – (μ + φ1 + δ2)Q(t),

FF Dα1,α2
0,t H = γ I(t) + δ2Q(t) – (μ + φ2 + ξ2)H(t),

FF Dα1,α2
0,t R = τ1I(t) + τ2A(t) + φ1Q(t) + φ2H(t) – μR(t),

FF Dα1,α2
0,t M = q1I(t) + q2A(t) – q3M(t),

(7)

where

λ(t) =
η1(I + ψA)

N
+ η2M, (8)

and α1 and α2 respectively represent fractal and fractional order.
The initial conditions are

S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0, A(0) = A0 ≥ 0,

Q(0) = Q0 ≥ 0, H(0) = H0 ≥ 0, R(0) = R0 ≥ 0, M(0) = M0 ≥ 0.
(9)

4.3 Stability analysis
We show the analysis of model (7) in this subsection. The disease-free equilibrium of the
model (1) is given by P0 and obtained as follows:

P0 =
{

S0, 0, 0, 0, 0, 0, 0, 0
}

=
{

Λ

μ
, 0, 0, 0, 0, 0, 0, 0

}
.
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The basic reproduction number for model (7) using the next generation approach [27] is
shown below:

F =

⎛

⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎝

0 η1 ψη1 0 0 Λη2
μ

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎠

,

V =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

k1 0 0 0 0 0
(θ – 1)ω k2 0 0 0 0

–θρ 0 k3 0 0 0
–δ1 0 0 k4 0 0
0 –γ 0 –δ2 k5 0
0 –q1 –q2 0 0 q3

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

,

R0 =
(

θk2ρ(η2Λq2 + η1μq3ψ) + (1 – θ )k3ω(η2Λq1 + η1μq3)
k1k2k3μq3

)

=
η1θρψ

k1k3︸ ︷︷ ︸
R1

+
η1(1 – θ )ω

k1k2︸ ︷︷ ︸
R2

+
η2θΛρq2

k1k3μq3︸ ︷︷ ︸
R3

+
η2(1 – θ )Λq1ω

k1k2μq3︸ ︷︷ ︸
R4

,

where k1 = δ1 + θρ + (1 – θ )ω + μ, k2 = γ + μ + ξ1 + τ1, k3 = μ + τ2, k4 = δ2 + μ + φ1, and
k5 = μ + ξ2 + φ2. In the following, we show the local stability of model (7).

Theorem 1 System (1) at equilibrium point P0 is locally asymptotically stable if R0 < 1.

Proof Calculating the Jacobian matrix of system (7) at P0, we get

JP0 =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜
⎝

–μ 0 –η1 –ψη1 0 0 0 – Λη2
μ

0 –k1 η1 ψη1 0 0 0 Λη2
μ

0 (1 – θ )ω –k2 0 0 0 0 0
0 θρ 0 –k3 0 0 0 0
0 δ1 0 0 –k4 0 0 0
0 0 γ 0 δ2 –k5 0 0
0 0 τ1 τ2 φ1 φ2 –μ 0
0 0 q1 q2 0 0 0 –q3

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟
⎠

. (10)

It can be seen from the above Jacobian matrix JP0 that the eigenvalues –μ, –μ, –k4, –k5

have negative real parts. There are more eigenvalues (four) that can be obtained through
the equation given by

λ4 + c1λ
3 + c2λ

2 + c3λ + c4 = 0, (11)
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where

c1 = k1 + k2 + k3 + q3,

c2 = k1k3(1 – R1) + k1k2(1 – R2) + (k1 + k2 + k3)q3 + k2k3,

c3 = k1k2k3(1 – R2) + k1k3q3(1 – R3) + k1k2q3(1 – R4)

+ k2k3q3 – η1
(
θk2ρψ + q3

(
θρψ + (1 – θ )ω

))

︸ ︷︷ ︸
,

c4 = k1k2k3q3(1 – R0).

(12)

Obviously, the coefficients ci for i = 1, 2, 3, 4 given above are positive and the last one
is positive whenever R0 < 1. Further, it will easily satisfy the Rough–Hurtwiz criterion
c1c2c3 – c2

1c4 – c2
3 > 0. The Rough–Hurtwiz conditions can be satisfied simply, which will

ensure the stability of model (7) at the disease-free point P0, which is locally asymptotically
stable if R0 < 1. �

Next, we obtain the equilibria at the endemic point, P1 = {S∗, E∗, I∗, A∗, Q∗, H∗, R∗, M∗},
given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗ = Λ∗
λ+μ

,

E∗ = λ∗S∗
k1

,

I∗ = (1–θ )ωE∗
k2

,

A∗ = θρE∗
k3

,

Q∗ = δ1E∗
k4

,

H∗ = γ I∗+δ2Q
k5

,

R∗ = τ2A∗+φ2H∗+τ1I∗+φ1Q∗
μ

,

M∗ = q2A∗+q1I∗
q3

.

(13)

Inserting the above result into

λ(t) =
η1(I + ψA)

N
+ η2M, (14)

we have

F
(
λ∗) = l1

(
λ∗)2 + l2λ

∗ + l3,

where

l1 = k1k2k3q3
(
k3

(
δ1k2

(
δ2(μ + φ2) + k5(μ + φ1)

)
+ k4k6

)
+ θk2k4k5ρ(μ + τ2)

)
,

l2 = k1k2k3μq3
(
k3

(
δ1k2

(
δ2(μ + φ2) + k5(μ + φ1)

)
+ k4k8

)
+ θk2k4k5ρ(–η1ψ + μ + τ2)

)

+ η2k7Λ
(
(1 – θ )k3q1ω – θk2ρq2

)
+ k2

1k2
2k4k5k2

3μq3,

l3 = k2
1k2

2k2
3k4k5μ

2q3(1 – R0),
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and

k6 = γ (1 – θ )ω(μ + φ2) + k5
(
(1 – θ )ω(μ + τ1) + k2μ

)
,

k7 = k3
(
–δ1k2

(
δ2(μ + φ2) + k5(μ + φ1)

)
– k4k6

)
– θk2k4k5ρ(μ + τ2),

k8 = γ (1 – θ )ω(μ + φ2) + k5
(
(1 – θ )ω(–η1 + μ + τ1) + k2μ

)
.

Here, l1 > 0, and l3 depends on the sign of R0, which is positive when R0 < 1 and negative
when R0 > 1. We summarize the above as follows:

Theorem 2 System (7) has the following properties:
(i) If l3 < 0 and R0 > 1, then there exists a unique endemic equilibrium;

(ii) If l2 < 0 and l3 = 0, then we have a unique endemic equilibrium;
(iii) If l3 > 0, l2 < 0 and their discriminant is positive then two endemic equilibria exist;

and
(iv) No possibilities of equilibria otherwise.

It can be seen from the first point (i) of Theorem (2) that for R0 > 1, we have clearly a
unique positive endemic equilibrium. Theorem (2)(iii) gives the possibility of backward
bifurcation when R0 < 1.

5 A new numerical procedure
In order to present the numerical algorithm for the fractal-fractional COVID-19 model
(7), we first describe the general system and present the steps by considering the Cauchy
problem below:

FFM
0 Dα1,α2

t x(t) = g
(
t, x(t)

)
. (15)

The following is obtained by integrating the above equation:

x(t) – x(0) =
1 – α1

C(α1)
α2tα2–1g

(
t, x(t)

)

+
α1α2

C(α1)Γ (α1)

∫ t

0
τα2–1g

(
τ , x(τ )

)
(t – τ )α1–1 dτ . (16)

Let K(t, x(t)) = α2tα2–1g(t, x(t)), then equation (16) becomes

x(t) – x(0) =
1 – α1

C(α1)
K

(
t, x(t)

)
+

α1

C(α1)Γ (α1)

∫ t

0
K

(
τ , x(τ )

)
(t – τ )α1–1 dτ . (17)

At tn+1 = (n + 1)�t, we have

x(tn+1) – x(0) =
1 – α1

C(α1)
K

(
tn, x(tn)

)

+
α1

C(α1)Γ (α1)

∫ tn+1

0
K

(
τ , x(τ )

)
(tn+1 – τ )α1–1 dτ . (18)
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Also, we have

x(tn+1) = x(0) +
1 – α1

C(α1)
K

(
tn, x(tn)

)

+
α1

C(α1)Γ (α1)

n∑

j=2

∫ tj+1

tj

K
(
τ , x(τ )

)
(tn+1 – τ )α1–1 dτ . (19)

Approximating the function K(t, x(t)), using the Newton polynomial, we have

Pn(τ ) = K
(
tn–2, x(tn–2)

)
+

K(tn–1, x(tn–1)) – K(tn–2, x(tn–2))
�t

(τ – tn–2)

+
K(tn, x(tn)) – 2K(tn–1, x(tn–1)) + K(tn–2, x(tn–2))

2(�t)2 (τ – tn–2)(τ – tn–1). (20)

Inserting equation (20) into (19), we have

xn+1 = x0 +
1 – α1

C(α1)
K

(
tn, x(tn)

)

+
α1

C(α1)Γ (α1)

n∑

j=2

∫ tj+1

tj

{
K

(
tj–2, xj–2) +

K(tj–1, xj–1) – K(tj–2, xj–2)
�t

(τ – tj–2)

+
K(tj, xj) – 2K(tj–1, xj–1) + K(tj–2, xj–2)

2(�t)2 (τ – tj–2)(τ – tj–1)
}

× (tn+1 – τ )α1–1 dτ . (21)

Reordering the above equation, we have

xn+1 = x0 +
1 – α1

C(α1)
K

(
tn, x(tn)

)

+
α1

C(α1)Γ (α1)

n∑

j=2

[∫ tj+1

tj

K
(
tj–2, xj–2)(tn+1 – τ )α1–1 dτ

+
∫ tj+1

tj

K(tj–1, xj–1) – K(tj–2, xj–2)
�t

(τ – tj–2)(tn+1 – τ )α1–1 dτ

+
∫ tj+1

tj

K(tj, xj) – 2K(tj–1, xj–1) + K(tj–2, xj–2)
2(�t)2 (τ – tj–2)(τ – tj–1)

× (tn+1 – τ )α1–1 dτ

]
. (22)

Writing further equation (22), we have

xn+1 = x0 +
1 – α1

C(α1)
K

(
tn, x(tn)

)

+
α1

C(α1)Γ (α1)

n∑

j=2

K
(
tj–2, xj–2)

∫ tj+1

tj

(tn+1 – τ )α1–1 dτ

+
α1

C(α1)Γ (α1)

n∑

j=2

K(tj–1, xj–1) – K(tj–2, xj–2)
�t

∫ tj+1

tj

(τ – tj–2)(tn+1 – τ )α1–1 dτ
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+
α1

C(α1)Γ (α1)

n∑

j=2

K(tj, xj) – 2K(tj–1, xj–1) + K(tj–2, xj–2)
2(�t)2

×
∫ tj+1

tj

(τ – tj–2)(τ – tj–1) × (tn+1 – τ )α1–1 dτ . (23)

Now, calculating the integrals in equation (23), we obtain the following:

∫ tj+1

tj

(tn+1 – τ )α1–1 dτ =
(�t)α1

α1

[
(n – j + 1)α1 – (n – j)α1

]
,

∫ tj+1

tj

(τ – tj–2)(tn+1 – τ )α1–1 dτ =
(�t)α1+1

α1(α1 + 1)
[
(n – j + 1)α1 (n – j + 3 + 2α1)

– (n – j + 1)α1 (n – j + 3 + 3α1)
]
,

∫ tj+1

tj

(τ – tj–2)(τ – tj–1) × (tn+1 – τ )α1–1 dτ

=
(�t)α1+2

α1(α1 + 1)(α1 + 2)

× [
(n – j + 1)α1

[
2(n – j)2 + (3α1 + 10)(n – j) + 2α2

1 + 9α1 + 12
]

– (n – j)α1
[
2(n – j)2 + (5α1 + 10)(n – j) + 6α2

1 + 18α1 + 12
]]

,

(24)

and inserting them into (23), we get

xn+1 = x0 +
1 – α1

C(α1)
K

(
tn, x(tn)

)

+
α1(�t)α1

C(α1)Γ (α1 + 1)

n∑

j=2

K
(
tj–2, xj–2)[(n – j + 1)α1 – (n – j)α1

]

+
α1(�t)α1

C(α1)Γ (α1 + 2)

n∑

j=2

[
K

(
tj–1, xj–1) – K

(
tj–2xj–2)]

× [
(n – j + 1)α1 (n – j + 3 + 2α1) – (n – j + 1)α1 (n – j + 3 + 3α1)

]

+
α1(�t)α1

2C(α1)Γ (α1 + 3)

n∑

j=2

[
K

(
tj, xj) – 2K

(
tj–1, xj–1) + K

(
tj–2, xj–2)]

× {
(n – j + 1)α1

[
2(n – j)2 + (3α1 + 10)(n – j) + 2α2

1 + 9α1 + 12
]

– (n – j)α1
[
2(n – j)2 + (5α1 + 10)(n – j) + 6α2

1 + 18α1 + 12
]}

. (25)

Finally, we have the following approximation:

xn+1 = x0 +
1 – α1

C(α1)
α2tα2–1

n K
(
tn, x(tn)

)

+
α1α2(�t)α1

C(α1)Γ (α1 + 1)

n∑

j=2

tα2–1
j–2 K

(
tj–2, xj–2)[(n – j + 1)α1 – (n – j)α1

]

+
α1α2(�t)α1

C(α1)Γ (α1 + 2)

n∑

j=2

[
tα2–1
j–1 K

(
tj–1, xj–1) – tα2–1

j–2 K
(
tj–2, xj–2)]
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× [
(n – j + 1)α1 (n – j + 3 + 2α1) – (n – j + 1)α1 (n – j + 3 + 3α1)

]

+
α1α2(�t)α1

2C(α1)Γ (α1 + 3)

n∑

j=2

[
tα2–1
j K

(
tj, xj) – 2tα2–1

j–1 K
(
tj–1, xj–1) + tα2–1

j–2 K
(
tj–2, xj–2)]

× {
(n – j + 1)α1

[
2(n – j)2 + (3α1 + 10)(n – j) + 2α2

1 + 9α1 + 12
]

– (n – j)α1
[
2(n – j)2 + (5α1 + 10)(n – j) + 6α2

1 + 18α1 + 12
]}

. (26)

6 Estimation of parameters
In order to obtain the model parameters based on the real data of COVID-19 of the main-
land China, we consider some of the parameters such as the birth and death rates from
the literature while the rest of the parameters have been fitted to the data. We consider the
data of WHO [28] from January 11, 2020 until April 9, 2020, with total reported daily cases
being 83249 with 3344 deaths. For parameterizations of model (7), we fixed α1 = α2 = 1
and simulated the model using the least-squares fitting; the obtained realistic parameters
are as shown in Table 1. The total population of China is considered to be 1,300,000,000,
with N(0) = 1,300,000,000. The cumulative number of cases suggests that the initial value
of the infected individuals is I(0) = 41, with the possible exposed cases due to fitting be-
ing E(0) = 20,000. The susceptible population in the absence of disease is estimated to
be S(0) = 1,299,979,959 while the other compartments of the model with the initial condi-
tions are considered to be A(0) = 0, Q(0) = 0, H(0) = 0, R(0) = 0, and M(0) = 44,000 (subject
to data fitting). The birth rate is calculated as Λ = 46,381 per day, while the natural death
rate is given by μ = 1/76.79 per day. The estimated basic reproduction number for the
mainland China for the given period of infected cases is obtained as R0 ≈ 6.6361. The
parameter values in Table 1 are used to show the model (7) versus data fitting in Figs. 2
and 3. In Fig. 2, we show the model fitting versus data when α1 = α2 = 1 while Fig. 3 is
plotted in order to show the effectiveness of the fractal-fractional model when α1 = 0.99,
α2 = 0.98. The result in Fig. 3 is better than that with integer order derivative.

Table 1 The estimated and fitted parameter values for model (7), when α1 = α2 = 1

Parameter Description Value Source

Λ Birth rate μ × N(0) Estimated
μ Natural death rate 1

76.79×365 [29]
η1 Contact rate 0.003 Fitted
η2 Disease transmission coefficient 0.00000034002 Fitted
ψ Transmissibility multiple 0.004 Fitted
θ Asymptomatic infection 0.21003 Fitted
ω Incubation period 0.00001111 Fitted
ρ Incubation period 0.0180322 Fitted
τ1 Recovery rate due to I 0.00023 Fitted
τ2 Recovery rate due to A 0.19 Fitted
q1 Infection contribution toM by I 0.00101 Fitted
q1 Infection contribution toM by A 0.0214 Fitted
q3 Removing rate of virus fromM 0.23008 Fitted
δ1 Quarantine rate of exposed individuals 0.1223 Fitted
ξ1 Disease death rate of infected individuals I 0.0002 Fitted
γ Hospitalization rate of infected individuals 0.0005 Fitted
φ1 Recovery rate of quarantined individuals 0.1 Fitted
δ2 Hospitalization rate of quarantined individuals 0.06 Fitted
φ2 Recovery rate of hospitalized individuals 0.2 Fitted
ξ2 Disease death rate of hospitalized individuals 0.01 Fitted
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Figure 2 Reported number of COVID-19 cases in China versus model fit, α1 = α2 = 1

Figure 3 Reported number of COVID-19 cases in China versus model fit, α1 = 0.99, α2 = 0.98

7 Numerical results
In the present section, we are studying model (7) numerically by using the novel approach
presented above. We consider the unit of time being a day. The parameter values consid-
ered in this simulation are shown in Table 1. Figures 2 and 3 show the curve fitting with
integer and noninteger order. The graphical results show the importance of the fractal-
fractional operator for data comparison. The total number of infected people for different
values of parameter η2 is shown. Decreasing the infection in the seafood market, reduces
the number of total infected decreases very fast, see Fig. 4. Thus, the closing of the seafood
market by the Chinese government was an important decision to control the spread of the
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Figure 4 The total number of infected people for various values of η2

Figure 5 The total number of infected people for various values of θ

infection further. The proportion of asymptomatic infection parameter θ is shown graph-
ically in Fig. 5. By decreasing the value of θ , the total number of infected people is de-
creasing. Therefore, the asymptomatic infection plays an important role in the infection
generation, and therefore, the people should be educated to avoid the interaction with such
people. Similarly, the effect of parameters ρ , δ1, and q3 are shown in Figs. 6–8. Also, by
decreasing the values of these parameters, the total number of infected people is decreas-
ing. Therefore, the quarantine class is important in the modeling of novel coronavirus.
In Figs. 9 to 14, we present the dynamics of the model variables for fractal and fractional
order parameter values. In Figs. 9 and 10, we choose α2 = 1 and α1 = 1, 0.96, 0.92, 0.88. In
Figs. 11 and 12, we choose α1 = 1 and α2 = 1, 0.96, 0.92, 0.88. In Figs. 13 and 14, we choose
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Figure 6 The total number of infected people for various values of ρ

Figure 7 The total number of infected people for various values of δ1

α1 = α2 = 1, 0.96, 0.92, 0.88. In these figures with different values of the fractal-fractional
operators, a novel analysis and a variety of choices for choosing the fractal and fractional
order parameters is extensively illustrated, which is the beauty of the fractal-fractional op-
erator. One can see that the modeling of a real-life problem with fractal-fractional operator
is more useful than that with the ordinary derivative. The infected data and its comparison
with proposed model and the possible elimination of the infection can be assessed well
with this new fractal-fractional operator. Our results suggest that, when decreasing the
values of both the fractal and fractional order, one can see a decrease in the infected com-
partment, which is better than for the integer-order compartment. The suggested fractal
and fractional order values are arbitrary, and one can choose any value to simulate the
model.
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Figure 8 The total number of infected people for different values of q3

Figure 9 The dynamics of the model variables for α1 = 1, 0.96, 0.92, 0.88 and α2 = 1, subfigures (a)–(d)
respectively represent the susceptible, exposed, infected, and asymptomatic individuals

8 Conclusions
We investigated the dynamics of COVID-19 with quarantine and isolations with real sta-
tistical cases reported in the mainland China. We first developed the model using ordinary
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Figure 10 The dynamics of the model variables for α1 = 1, 0.96, 0.92, 0.88 and α2 = 1, subfigures (a)–(d)
respectively represent the quarantined, hospitalized, recovered, and contaminated environment

Figure 11 The dynamics of the model variables for α2 = 1, 0.96, 0.92, 0.88 and α1 = 1, subfigures (a)–(d)
respectively represent the susceptible, exposed, infected, and asymptomatic individuals
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Figure 12 The dynamics of the model variables for α2 = 1, 0.96, 0.92, 0.88 and α1 = 1, subfigures (a)–(d)
respectively represent the quarantined, hospitalized, recovered, and contaminated environment

Figure 13 The dynamics of the model variables for α1 = α2 = 1, 0.96, 0.92, 0.88, subfigures (a)–(d) respectively
represent the susceptible, exposed, infected, and asymptomatic individuals
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Figure 14 The dynamics of the model variables for α1 = α2 = 1, 0.96, 0.92, 0.88, subfigures (a)–(d) respectively
represent the quarantined, hospitalized, recovered, and contaminated environment

derivative and then used the fractal-fractional derivative in Atangana–Baleanu sense to
generalize the model. The mathematical results for the model were shown. The stability
of the model for disease-free case is obtained for R0 < 1. We use the real cases in the main-
land of China for the model parameterizations. Using the realistic parameter values, we
obtained the basic reproduction number R0 ≈ 6.6361. We considered a new numerical
technique, which is very accurate for the solution of fractional differential equations, and
obtained results for the proposed model. The curve fitting for the integer and noninteger
cases has been shown and proved that the fractal-fractional model is more suitable than
the classical one. We consider many parameters and their effect on the model graphically,
which can be regarded as the controls for disease eradication. The fractal-fractional model
was used further to simulate it and obtained many graphical results for various values of
the fractal and fractional orders. We considered some of the key parameters as controls
with suggested values to obtain the possible elimination of the disease in the society. The
biological explanation of the key parameters, such as ρ , δ1, etc., has been already explained
in the model formulation section in details. The results in the paper are very useful in the
early eradication of the disease in the community. In the future, this model can be extended
by using other fractional operators and numerical schemes to obtain new and more results
about the dynamics of COVID-19. Further, the effect of saturated incidence rate can also
be considered to extend this model and obtain the results.
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