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Abstract

In this research work, we present a mathematical model for novel coronavirus-19
infectious disease which consists of three different compartments: susceptible,
infected, and recovered under convex incident rate involving immigration rate. We
first derive the formulation of the model. Also, we give some qualitative aspects for
the model including existence of equilibriums and its stability results by using various
tools of nonlinear analysis. Then, by means of the nonstandard finite difference
scheme (NSFD), we simulate the results for the data of Wuhan city against two
different sets of values of immigration parameter. By means of simulation, we show
how protection, exposure, death, and cure rates affect the susceptible, infected, and
recovered population with the passage of time involving immigration. On the basis of
simulation, we observe the dynamical behavior due to immigration of susceptible
and infected classes or one of these two.

Keywords: Mathematical model; Novel coronavirus-19; Nonstandard finite
difference scheme; Immigration rate

1 Introduction

Recently, the whole world has been suffering due to a novel coronavirus pandemic. It was
named novel coronavirus infectious disease (COVID-19) which was claimed to outbreak
first in Wuhan, central China (see [1]). Novel coronavirus-19 is a new chain of corona
group of viruses that had not been identified in human history before December 2019. For
the first time COVID-19 was found in Wuhan, China in December 2019 and has spread to
various urban areas in China as well as round about 196 different countries of the world. It
has since been declared an outbreak by World Health Organization (WHO). According to
the data reported by WHO (World Health Organization), on 11 June 2020, the reported
laboratory confirmed that the number of affected humans reached more than 7.5 mil-
lion including more than 0.425 million death cases recorded. Some researchers have also
claimed that there are other sources of this corona virus including dogs, pangolin, etc. As
per recoded data, the death rate is different in different countries. Currently the highest
death rate has been observed in Europe, USA, and Iran. The number of confirmed cases
has been growing on a very fast track on a daily basis, and it has been declared a worldwide
pandemic disease.
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On 31 December 2019, the WHO reported a novel corona virus (2019-nCoV) in Wuhan
City, Hubei Province of China in humans, see [2, 3]. It was named severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) by the International Committee on Taxon-
omy of Viruses on 11 February 2020 (for details, we refer to [4—10]). Firstly, this outbreak
was identified in Wuhan with most early cases being reported in the city and later spread
to other countries at an alarming rate and became a lethal disease. There are different
schools of thought behind the origin of COVID-19: some say that it might be of bat origin
(see [11]), some say that it might be related to a seafood market exposure (see [12]). Inter-
national travel of any form has been a potential reason for the fast spread of COVID-19
[2,12-14]. So, immigration has a severe impact on the severity of spreading of COVID-19.
It has been stated (fact) that the origin of novel COVID-19 is the transmission from animal
to human as many infected cases claimed that they had been to alocal fish and wild animal
market in Wuhan in November [15]. Soon, some researchers confirmed that the transmis-
sion also happened person to person (see [2]). In the present situation this pandemic has
produced a very harmful effect on health, economics, and social life of the whole globe. In
the whole world researchers, policy makers, and doctors are struggling to control this se-
rious pandemic so that the lives of maximum people may be secured. They observed this
disease from their own point of view. Also it is a fact that most people infected with novel
COVID-19 will experience mild to moderate respiratory illness. Common symptoms are
fever, tiredness, dry cough, and throat infection. Some people may experience aches and
pains, nasal congestion, runny nose, sore throat, diarrhoea, etc.

Since mathematical models are powerful tools to understand the dynamics of real world
phenomena, particulary the transmission of an infectious disease, in literature large num-
bers of mathematical models of infectious disease have been studied, we refer to a few of
them [16—-22]. Also the area of modeling has been extended recently to noninteger order
and nonlocal derivatives of fractional order [23, 24]. By using mathematical models for
understanding the transmission dynamics of a disease can help the researchers to make
future prediction and to adopt some precautionary measures to save maximum population
from being lost. Also the mentioned tools help to make strategies to control or eliminate
the disease from society. Same as the case of current novel COVID-19, which has been
studied from different aspects in the last few months (for details, see [25-29]). Therefore,
motivated by the aforesaid discussion, we observed that immigration has major roles in
spreading the current disease in our society. It has been observed that due to immigration,
this disease has spread in the whole globe within two to three months. Therefore in this
work we construct a modified SIR type model involving immigration rate to investigate the
transmission dynamics of the aforementioned disease. For numerical simulation, we use
the nonstandard finite difference (NSFD) scheme. The concerned method is an efficient
and powerful method to find numerical solutions to many nonlinear problems. Therefore
various researchers have used this method for the numerical simulation of many bathetical
models (for instance, see [17, 30] and the references therein).

2 Model formulation

This part of the paper is devoted to constructing the mathematical model for our proposed
problem. We take here three compartments: susceptible S(¢), infected I(¢), and recovered
R(t). We construct the required model under convex incidence rate which is assumed to
be a convex function with respect to the infective class due to host population. The ben-
efit of using convex incidence rate is that it corresponds to an increased rate of infection
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Figure 1 Flow chart of the model (1) a
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Table 1 The physical interpretation of the parameter

Parameters  The physical interpretation

S() Susceptible compartment

1(t) Infected compartment

R(t) Recovered compartment

a The recruitment rate

" Natural death

) Death due to corona

b The immigration rate of infected individuals
B Corona infection recovery rate

C The infection rate

y Rate at which recovered individuals lose immunity
o Rate of recovery from infection

because of two exposures over a small time period: a single contact produces infection at
the rate CIS, while the new infective individuals arise from double exposures with CI>S. It
produces further chance that the recovered individual again may catch infection. Here we
remark that the function @(S,1) = CI(£)S(¢)(1 + yI(t)), where both C, y are positive con-
stants. This is an interesting example for nonlinear incidence rate already used by some
authors [17, 31, 32]. The flow chart of the model is shown in Fig. 1.

The dynamics of the population are described by the following differential equations:

% =a- CI(t)S(t)(l + y](t)) — uS(t) + aR(t),

% = CI(t)S(t)(l + yl(t)) —(B+u+8-b)I(1), (1)
dRr(t)

7 BI(t) — (a + )R(2).

The parameters involved in model (1) are described as in Table 1.
First, for the equilibrium of model (1), we consider its existence. Corresponding to some
values of parameters, there exists a disease-free equilibrium for system (1) denoted by

Ey = (a/u,0,0). To compute the nonnegative equilibrium, we have

a— CI(t)S(t)(l + yl(t)) — uS(t) + aR(t) =0,
CIOS@®)(1+yI(®) = (B+p+8-D)() =0,

BI(t) - (o + w)R(t) = 0.
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To find the basic reproduction number Ry, let x = (S(¢), I(¢)) in model(1). Then

dx_

Z_Foy,
dt v

where

f:<ﬂﬁﬁ@8+yHM)

and

o w-aso
(B+u+8-b)t)

for the disease-free equilibrium Jacobian of F is

0
P 0 CS
0 O
and Jacobian of V to deduce the disease-free equilibrium is given by

v-(H7 0 .
0 B+u+8->b

Hence, for model (1), by simple calculation, we have

o Cu-a
FV'1= Prutd=b )
0 0

Hence the basic reproduction number (reproductive rate) Ry is

ac

Ro= w(B+m+8-b)

From (2), we clearly observe that
(i) There are no positive equilibria of model (6) if Ry < 1;
(i) A unique positive equilibrium also known as endemic equilibrium
E*(t) = (S8*(¢), I*(¢), R*(t)) exists under Ry > 1.
The endemic equilibrium is given by

* _ O[ﬂ *
570 = <CI*(1+yI*)+M—a)I ’

~(u-a)B+u+8-b)+CBya+Q
2Cy(B+u+8-b)

I"(¢) =

’

r@=-2

o+

I(¢)*.
The value of §2 is given as

2= (,u—a)((8 +B-b+d)+ C,Bya)2 —daBcu-a)S+B-b+p). (3)
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Next, we will elaborate on the characteristics of these equilibria and a global mathematical
analysis of system (1).

3 Dynamical behavior of the model

To elaborate the dynamic of system (1), we have the following lemma.

Lemma 1 System (1) has invariant manifold of plane S(t) + I(t) + R(t) = a/w, which is
fascinating in the 1st octant.

Proof Add up all the equations of system (1) and let N(¢) = S(¢) + 1(¢t) + R(¢). Then

ds(e) dir) dR()
a " ar

=a— pS(t) - nl(t) — nR(¢) + bI(t) - 81(2),

%(S(t) +1(t) + R(2)) = a — (8 — b)I(t) — n(S(t) + E(t) + 1(2) + R(2)) v
(4) implies that
d]:i[—t(t) =a—(§-b)I(t)— uN({). (5)
Hence for (5) we present the general solution as
N(t) = %[a — (8 = b)(8) - dN(tp)e™],
which completes our conclusion. O

Now we reduce system (1), because obviously the limit set of (1) on plane S(¢) + I(¢) +
R(t) = % has a limit set:

ai(t)

== C(g — 1) - R(t)) (1+yI() - (B + p+8 - b) 2 w(1(t), RW)),

We have the following theorem with regards to the nonexistence of cyclical shells in system

(6), which shows the nonexistence of cyclical shells of system (1) by Lemma 1.
Theorem 1 There do not exist nontrivial periodic orbits corresponding to system (6).

Proof Consider a “Dulac function” and consider system (6) for I(¢) > 0 and R(z) > 0.

1+yI(t)

D(I(t),R(¥)) = o0

Then we have

(B+up+3-b)1+yIt)
C ’

Do = <E — 1) - R(t)) (1+ 1)) -
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(1 +a)(1 + yI())R(2)

D§ = T(l + )/I(t)) —

d(Dw)

o) ~(1+y1) [1 +2yR(t) + 3y 1(¢)
dDE) _ (n+a)(1+yI1)

IR(t) CI(2) :

By adding all equations of (7), we have

d(Dw) (DE)
o) 9RQ)

Hence

Y
“clBrne-bl- Ci()

which proves the conclusion of the theorem.

CI(2)

(B +uD - b],

——(1+y1u»[1+2yRU)+3y10)—ggz}

(u+a)(1+yIt) <0

7)

O

To study Sy disease-free equilibrium and its properties, and also the endemic equilib-

rium S*, we recall (6) with

C
n+a

y= R(t),
T=(u+a)t.

One can obtain from (6)

dx _ _* B-x-y)—nx
dt  1l+gx 4 ’
dy
E—Px_y;
with

__B

w+o

B+u+8->b
po P THTOTY

W+

_aC

e + o)’
_y(p+a)
=

)

Note Keep in mind that (0,0) may be obtained from system (9). In fact the disease-free
equilibrium Sy of system (1) and (x*, y*) of system (9) is the unique positive equilibrium,
which is, in fact, the endemic equilibrium S* of system (1) under the condition n — B< 0

Page 6 of 13
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with x* = % and y* = px*. At first glance, we investigate for (0, 0) the stability and topo-
logical type trivial equilibrium. At the point (0,0), the Jacobian matrix of system (9) is
given by

M0:<B_" 0). (10)
p -1

The dynamic of system (9) is equivalent to (11). If B — n = 0, then there exists a small
neighborhood Nj of (0,0).

dx
e 2y + O((x,9)%),
(11)
dy
X px—
dr b

From (11) (0,0) is a saddle node. The next results is important.

Theorem 2 The trivial equilibrium point of system (1) possesses the following properties:
(i) As a result the system has a hyperbolic saddle if n < B.
(i) As a result the system has a saddle node if n = B.
(ili) As a result the system has a stable hyperbolic node if n > B.

Proof When n — B < 0, we study the topological type of endemic equilibrium (x*, y*) and
stability.

From (9) at (x*,y*), we have the Jacobian matrix
B-2(l+p)x*—n  —x*
M1 — l+q l+q
p -1
where

21+pl* +n-B  px’
depny) = 2P En =B px

l+qg l+q

_(L+px* +n-B+px*
- l+q '

Thus det(M;) has not a unique sign due to
S 2 +p)x* +n— B+ pX*. (12)

Relation (12) tells that S1 > 0 yields det(M1) > 0 and (x*,y*) is a node (focus or center).
Also, for the stability of (x*,y*), one can find the given results. (|

Theorem 3 The equilibrium (x*,y*) of system (9) is locally stable in a unique way, and
also it has a stable node if n — B < 0.
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Proof From tr(M;) we examine (x*, y*) for stability as follows:

B-2(1+px*-n

tr(Ml)ZT—l
_B-2(1+px*-n-1-q
- l+q '

To determine tr(M;) in sign, we take
Sy=-(21 +p)x* +q+1+n-B).

Let S; = 0. Then n — B < 0. Therefore S, # 0, which gives that tr(M1) # 0. Therefore, for
any positive values of parameters, n — B < 0 does not change the stability of (x*,5*). Let
p=1,q=1,and B = 1, which implies that tr(M1) = —1 < 0 due to the continuity of tr(M;)
corresponding to parameters as tr(M1) < 0 for n — B < 0. O

The following theorem summarizes the results for the stability of the original system (1)

in terms of the basic reproduction number.

Theorem 4 From (2) we define Ry.
(i) If Ro <1, then model (1) has a unique disease-free equilibrium E, = (;%’0’ 0), which

is a global attractor in the 1st octant.

(i) If Ro =1, then model (1) has a unique disease-free equilibrium Eq = (ﬁ, 0,0) which
is an attractor of all orbits in the interior of the 1st octant.

(iti) If Ro > 1, then model (1) has two equilibria, a disease-free equilibrium Ey = (ﬁ, 0,0)
and an endemic equilibrium E*(t) = (S*(¢), I*(¢), R*(t)). The endemic equilibrium
E*(t) is a global attractor in the interior of the 1st octant.

4 Numerical results and discussion
We present numerical simulation for system (6) with the used values. We take two different
sets of values for immigration parameters involved in model (6) and real data of Wuhan
city of China to simulate the results.

According to the NSFD scheme, the first equation of our considered model (6) may be

expressed as

st _

il CI®)S@)(1 + yI(t)) — uS(®) + aR(?), (13)

which is decomposed in the NSFD scheme as follows:

S S 01+ 70) - 150+ aRy ) o

Like (14), we can decompose model (6) in the NSFD scheme and write the whole system
as follows:

Sj+1 = Sj + h(él - CI/(t)SI(t)(l + ]/Il(t)) - /,LSj(t) + O[Rj(lf)),

G =+ (CHOSIO (1 + yH0) + (u +  + 5)I(D), (15)

Ryt = Ry + h(BL(0) ~ (o + R(0)).
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Table 2 The physical interpretation of the parameters and numerical values

Parameters Physical description Numerical value Reference
S(t) Initial susceptible compartment 12.6 million [26]
I(t) Initial infected compartment 0.084 million [26]
R(t) Initial recovered compartment 0 million [26]
a The birth rate of infection 0.1243 [28]
" Natural death 0.002 [28]
) Death due to corona 0.05 [28]
b The immigration rate rate 0.0205 [29]
B Corona infection recovery rate 0.09871 [27]
C Infection rate 0.580 [28]
1% Rate at which recovered individuals lose immunity 0.0003 [29]
o Rate of recovery 0.854302 [27]
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Figure 2 Dynamical behavior of the susceptible class in the presence of given rate of emigrant(s) as Case |
from 10 February to 10 March (2020)
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Figure 3 Dynamical behavior of the infected class in the presence of given rate of emigrant(s) as Case | from
10 February to 10 March (2020)

Using the scheme developed in (15), we present the numerical simulation of the model
corresponding to the given values. In the presence of given rate of emigrant(s) in Case [ as
[0.098,0.067,0.0205,0.0184], we present by graph according to the given data in Figs. 2—4
to investigate the transmission dynamics of the various compartments of the considered
model.
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Figure 4 Dynamical behavior of the recovered class in the presence of given rate of emigrant(s) as Case |
from 10 February to 10 March (2020)
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Figure 5 Dynamical behavior of the susceptible class in the presence of given rate of emigrant(s) as Case Il
from 10 March to 10 April (2020)

During the first thirty days in the presence of excessive rate of immigration the suscep-
tible population is decreasing as shown in Fig. 2. When the immigration rate is high, the
decline in the population of uninfected (susceptible) people is observed, because they are
exposed to infection. Hence the higher the immigration rate, the faster the growth rate
of the infected population and vice versa. As a result, more deaths will occur along with
the recovery from the disease. Therefore the growth in the recovery class is also different
against different immigration. The concerned dynamics are presented by Figs. 3 and 4,
respectively.

Further we present by graphs in Figs. 5-6 the dynamical behavior of the transmis-
sion dynamics corresponding to the second set of values of immigration rate assumed
as [0.0099,0.0064,0.0042,0.0011] as Case II.

We see that the immigration slightly reduced during the thirty days from 10 March to
10 April. The decline in the susceptible population at different rate is shown by Fig. 5,
while the corresponding dynamics of the infectious and recovered classes are presented
via Figs. 6 and 7, respectively. As the immigration rate is decreasing, the susceptibility is
decreasing at rapid speed, and consequently the infection rate is going down. The recov-

Page 10 of 13
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Figure 6 Dynamical behavior of the infected class in the presence of given rate of emigrant(s) as Case Il from
10 March to 10 April (2020)
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Figure 7 Dynamical behavior of the recovered class in the presence of given rate of emigrant(s) as Case I
from 10 March to 10 April (2020)

ered population is also growing with faster speed when immigration rate is low, because
the chance of catching infection is decreasing.

5 Conclusion

A mathematical model addressing the current novel COVID-19 under three compart-
ments, susceptible, infected, and recovered, has been studied. By nonlinear analysis the
existence of global and local stability analysis has been demonstrated. On using nonstan-
dard finite difference numerical method, we have simulated the results by using the real
data of Wuhan city during the last sixty days from 10 February 2020 to 10 April 2020.
Our model has been simulated for the fixed values of the parameters except immigration
rate. In the first set of data we have simulated the model against the highest values of
immigration rate. We observed that due to this the infection has been rapidly transmitted
from person to person during the first thirty days in the mentioned place. During this time
more deaths occurred and the recorded rate also increased accordingly. After reducing the
concerned immigration rate properly, the dynamics was greatly affected and the infection
rate started decreasing, and the recovery rate also increased with different rate because
the rate of immigration was different. With smaller immigration rate, the rate of spread
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of infection is slow as compared at higher order and vice versa. We concluded that min-
imizing the immigration during this outbreak can cause the increase in protection rate.
In other words avoiding unnecessary immigration of people will greatly help in reducing
or controlling this disease. Therefore this model is an indication for further study in this

area.
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