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Abstract
In this paper, a reaction-diffusion trimolecular biochemical model with autocatalysis
and fractional-order derivative is proposed. We establish the existence and
uniqueness of a positive solution to this system in a Besov space. Besides, for this
system, we obtain stability, Hopf and Turing bifurcations and spatial patterns. These
dynamic behaviors of this system are slightly different from those of its corresponding
first-order system. The difference is illustrated by performing some numerical
simulations, through which our main results are verified.
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1 Introduction
In this paper, we deal with a trimolecular autocatalytic biochemical model. The reaction
mechanism is

A
k�

k–
U , B k→ V , U + V k→ U ,

in which A, B, U and V are chemical reactants and products. Moreover, nonnegative con-
stants ki, i = –, , , , represent the reaction rates. It is assumed that the first step of the
reaction process is reversible, that the last two steps of the reaction process are irreversible
and that two molecules of U react with one molecule of V to create an additional molecule
of U . This autocatalytic reaction creates a positive feedback loop, a common component
of the regulatory network []. V is considered to be stable and does not decay on the rele-
vant timescales of the system, whereas U can decay back to A. Each of these components
could in reality represent multiple molecules, but for the sake of simplicity we consider
them as single entities. Further, we assume that U and V are diffusible in a reactor, dis-
regarding convective phenomena and considering an isothermal process only. Then, the
above scheme can be described by the following nonlinear reaction-diffusion system:

⎧
⎨

⎩

∂[U](x,τ )
∂τ

= dU�[U](x, τ ) + k[A] – k–[U](x, τ ) + k[U](x, τ )[V ](x, τ ),
∂[V ](x,τ )

∂τ
= dV �[V ](x, τ ) + k[B] – k[U](x, τ )[V ](x, τ ),

(.)
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where the mark [·] represents the density of some chemical component. � is the Laplacian
operator, showing the molecules’ diffusion, and dU and dV denote the Fickian diffusion
coefficients of [U] and [V ], respectively, which are assumed to be positive constants. To
simplify system (.), we introduce the new dimensionless quantities

u = [U](k/k–)/, v = [V ](k/k–)/, a =
k[A]
k–

(k/k–)/, t = τk,

b =
k[B]
k–

(k/k–)/, d = dU /k–, d = dV /k–.

Substituting these new variables into (.), we have

∂u
∂t

= d�u + a – u + uv,

∂v
∂t

= d�v + b – uv.
(.a)

Here, we assume that these biochemical reactions are limited to a bounded sufficiently
regular domain � ∈R

N , where N is a spatial dimension number such as N = ,  or . Fur-
ther, we assume that system (.a) is equipped with the Neumann boundary conditions,

∂u
∂ν

=
∂v
∂ν

= , x ∈ ∂�, (.b)

where ν is the unit outward normal to ∂�. Besides, we set initial conditions for model
(.a),

u(x, ) = u(x) ≥ , v(x, ) = v(x) ≥ , x ∈ �. (.c)

In fact, system (.a)-(.c) is called Schnakenberg model []. At present, model (.a)-
(.c) has drawn some researchers’ attention. In detail, Liu et al. obtained the Turing and
Hopf bifurcations of system (.a)-(.c). Madzvamuse et al. in [] applied theoretical anal-
ysis and numerical simulations to study a spatial pattern of the cross-diffusion form of
(.). Based on this result, Gambino et al. in [] used the Stuart-Landau equation to capture
patterns of this model. Besides, Jacobo and Hudspeth in [] utilized model (.a)-(.c) to
investigate pattern formation of hair-bundle morphogenesis.

Model (.a)-(.c) is an integer-order system, that is, the first-order derivative and the
second-order derivative with respect to the time variable t and the spatial variable x, re-
spectively. Wherein, the first-order derivative to the variable t implies the transient change
rate of these reactions. However, due to the complexity of biochemical reactions, chemical
reaction processes are often affected by or depend on the history of chemical reactions.
Thus, this phenomenon can be described by fractional-order differential equations.

In fact, fractional calculus is an old mathematical topic developed as a pure theoretical
field of mathematics for more than three centuries. Fractional-order derivatives allow us
to deal comfortably with memory effects in a dynamical system [–], and thus it can be
successfully applied in some fields such as physics, control engineering, biochemical reac-
tion, signal processing, optimal control, quantum mechanics [, ] and so on. At present,
a large number of monographs and papers [–] are devoted to fractional dynamical
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systems. From this viewpoint, we introduce fractional-order derivative into model (.a)-
(.c), which results in a completely different model. In fact, model (.a)-(.c) ultimately
turns into

∂αu
∂tα

= d�u + a – u + uv, (x, t) ∈ � ×R
+, (.a)

∂αv
∂tα

= d�v + b – uv, (x, t) ∈ � ×R
+, (.b)

∂u
∂ν

=
∂v
∂ν

= , x ∈ ∂�, (.c)

u(x, ) = u(x) ≥ , v(x, ) = v(x) ≥ , x ∈ �, (.d)

where ∂α

∂tα is the standard Caputo derivative, α ∈ (, ]. As far as our knowledge goes, few
literature works researched the dynamical properties of the fractional-order model (.a)-
(.d) such as the existence of solution, stability and spatial patterns. In this paper, we first
prove the existence and uniqueness of a solution in Besov spaces for model (.a)-(.d)
with low regularity initial data, which is a matter of interest in the mathematical analysis,
as well as the existence of solution, stability and spatial patterns. Recently, the problem
of initial data in Besov spaces has been widely considered. For instance, Zhai in [, ]
studied the generalized Keller-Segel system of chemotaxis. For more works dealing with
PDEs in Besov spaces, we refer the readers to [–].

The outline of this paper follows here. In Section , some necessary lemmas and def-
initions are introduced. In Section , the solution to the fractional-order PDEs model
(.a)-(.d) is established in Besov spaces. In Section  we study the stability and Hopf
bifurcation of system (.a)-(.d) and perform numerical simulations. In Section , we in-
vestigate the Turing bifurcation of system (.a)-(.d), and some numerical simulations
are made to show spatial patterns. Finally, we end our study with some conclusions.

2 Preliminaries
Definition . [, ] Caputo’s derivative of order q with the lower limit  for the func-
tion h : [,∞) →R can be written as

Dqh(t) =


�(n – q)

∫ t



h(n)(s)
(t – s)q+–n ds, n –  < q < n, n ∈ Z

+.

The space Bσ
p,q,N denotes the Besov space in � with the Neumann boundary condi-

tions. This space can be regarded as the real interpolation space (Lp(�), W ,p
N )σ /,q for

W ,p
N = {ϕ ∈ W ,p(�) : ∂νϕ =  on ∂�}. It is well known that the operators –d� + I and

–d� are sectorial operators from W ,p
N into Lp(�), which are the infinitesimal generators

of analytic and positive semigroups respectively denoted by G(t) and G(t). Thus, the
following property holds:

∥
∥Gi(t)φ

∥
∥

Bσ
p,q,N

≤ Mt–σ /‖φ‖Lp , i = , , (.)

where M ≥  and σ �=  + /p. Moreover, if σ ≤ σ ′ <  and σ ′ �=  + /p, then

∥
∥Gi(t)φ

∥
∥

Bσ ′
p,q,N

≤ Mtσ /–σ ′/‖φ‖Bσ
p,q,N

, i = , , (.)



Yin and Wen Advances in Difference Equations  (2017) 2017:369 Page 4 of 20

see Theorem V... in []. Furthermore, if  < p < ∞, –∞ < s < ∞ and  ≤ q ≤ q ≤ ∞,
we have

Bs
p,q (�) ↪→ Bs

p,q (�). (.)

Let –∞ < s < ∞,  < p < q < ∞ and s – N/p ≥ –N/q, then

Bs
p,q(�) ↪→ Lq(�). (.)

We are interested in mild solutions to (.a)-(.d), i.e., there exists a pair (u, v) ∈
C((, τ ); Bσ

p,q,N × Bσ
p,q,N ) such that, for t > ,

u(t) = T ()
α (t)u +

∫ t


S()

α (t – s)f
(
u(s), v(s)

)
ds, (.a)

v(t) = T ()
α (t)v +

∫ t


S()

α (t – s)f
(
u(s), v(s)

)
ds, (.b)

u() = u ∈ Bσ
p,q,N , v() = v ∈ Bσ

p,q,N , (.c)

where

T (i)
α (t) =

∫ ∞


ζα(θ )Gi

(
tαθ

)
dθ , (.a)

S(i)
α (t) = α

∫ ∞


θ tα–ζα(θ )Gi

(
tαθ

)
dθ , (.b)

ζα(θ ) =


π i

∫

�

eλθ Eα,(–λ) dλ, (.c)

for i = , , and ζα(θ ) is a probability density function defined on [,∞) [, ], and �

is a contour starting and ending at –∞. Eα,(–λ) is a Mittag-Leffler function []. By the
property of the semigroups Gi(t) for i = , , the operators T (i)

α (t) and S(i)
α (t) for i = ,  are

positive ones.
Consider the fractional system

dαx(t)
dtα

= Ax(t) + f (x), x() = x ∈R
n, (.)

where α ∈ (, ), A ∈ R
n×n, f ∈ C(Rn,Rn), Df () = . The following lemma was proved in

[].

Lemma . System (.) with origin as a hyperbolic equilibrium point is linearly stable if
each eigenvalue λ of A, | arg(λ)| > πα

 ; system (.) is linearly unstable if | arg(λ)| < πα
 for

some eigenvalue λ of A.

Now, we consider a Hopf bifurcation of the fractional system with a parameter μ ∈R as
follows:

dαx(t)
dtα

= A(μ)x(t) + f (μ, x), x() = x ∈R
n, (.)

where α ∈ (, ), A(μ) ∈R
n×n, f (μ, x) ∈ C(R×R

n,Rn), Df (μ, ) = .
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It is well known that for system (.) with the first-order derivative, Hopf bifurcation
conditions are

Re
[
λ()

]
= , Im

[
λ()

] �= ,
d{Re[λ()]}

dμ
�= .

The conditions of fractional-order Hopf bifurcation differ from those of the first-order
case and are found in [, ], that is,

∣
∣arg

[
λ
(
μ∗)]∣∣ =

απ


,

d{[λ(μ)]}
dμ

∣
∣
∣
∣
μ=μ∗

�= . (.)

3 Existence and uniqueness of solution to (1.3a)-(1.3d)
In this section, we will give out some necessary a priori estimates. First, we introduce some
notations. Let σ �=  + /p. We look for a mild solution in the closed ball

{
(u, v)T ∈ C

(
[, τ ] : Bσ

p,q,N × Bσ
p,q,N

)
: sup

t∈[,τ ]

(∥
∥u(t) – u

∥
∥

Bσ
p,q,N

+
∥
∥v(t) – v

∥
∥

Bσ
p,q,N

) ≤ R
}

.

Let us denote it byB = B(τ , R, u, v) for fixed τ >  and R > . It is clear thatB is a complete
metric space. We set

R = max
{

R + ‖u‖Bσ
p,q,N

, R + ‖v‖Bσ
p,q,N

}
.

Next, we have the following.

Lemma . Let  < p < ∞, N
p ≤ σ < , σ �=  + 

p and  ≤ q ≤ p. For u, v ∈ Bσ
p,q,N and

(u, v)T ∈ B, we have
∥
∥
∥
∥

∫ t


S()

α (t – s)f
(
u(s), v(s), s

)
ds

∥
∥
∥
∥

Bσ
p,q,N

≤ αME
(
θ – σ


)(|�|/p + |�| 

p R + R) 
α( – σ )

tα(– σ
 ) (.)

and
∥
∥
∥
∥

∫ t


S()

α (t – s)f
(
u(s), v(s), s

)
ds

∥
∥
∥
∥

Bσ
p,q,N

≤ αME
(
θ – σ


)(|�|/p + R) 

α( – σ )
tα(– σ

 ), (.)

where the constant E(θ – σ
 ) is the expectation of the function θ – σ

 for the probability density
function ζα(θ ).

Proof For u, v ∈ Lp(�) and from (.), (.), (.) and (.a)-(.c), we have

∥
∥
∥
∥

∫ t


S()

α (t – s)f
(
u(s), v(s), s

)
ds

∥
∥
∥
∥

Bσ
p,q,N

=
∥
∥
∥
∥α

∫ t



∫ ∞


θ (t – s)α–ζα(θ )G

(
(t – s)αθ

)
f
(
u(s), v(s), s

)
dθ ds

∥
∥
∥
∥

Bσ
p,q,N
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≤ αM

∫ ∞


θ – σ

 ζα(θ ) dθ

∫ t


(t – s)α–– σα


∥
∥f

(
u(s), v(s), s

)∥
∥

Lp ds

≤ αE
(
θ – σ


)
M

∫ t


(t – s)– σα

 +α–(|�|/p + |�| 
p

∥
∥u(s)

∥
∥

Lp +
∥
∥u(s)

∥
∥

Lp

∥
∥v(s)

∥
∥

Lp
)

ds

≤ αE
(
θ – σ


)
M

∫ t


(t – s)– σα

 +α–(|�|/p + |�| 
p

∥
∥u(s)

∥
∥

Bσ
p,q,N

+
∥
∥u(s)

∥
∥

Bσ
p,q,N

∥
∥v(s)

∥
∥

Bσ
p,q,N

)
ds

≤ αME
(
θ – σ


)(|�|/p + |�| 

p R + R) 
α( – σ )

tα(– σ
 ).

According to the properties of the probability density function ζα , we conclude that
E(θ – σ

 ) exists. Thus, we obtain (.). Analogously, we can get (.). �

Lemma . Let  < p < ∞, N
p ≤ σ < , σ �=  + 

p and  ≤ q ≤ p. For u, v ∈ Bσ
p,q,N and

(ui, vi) ∈ B, i = , , we have

∥
∥
∥
∥

∫ t



∫ ∞


θ (t – s)α–ζα(θ )G

[
(t – s)αθ

]

× (
u(s) – u(s) + u

 (s)v(s) – u
(s)v(s)

)
dθ ds

∥
∥
∥
∥

Bσ
p,q,N

≤ Mtα(– σ
 ) sup

t∈[,τ ]

(∥
∥u(t) – u(t)

∥
∥

Bσ
p,q,N

+
∥
∥v(t) – v(t)

∥
∥

Bσ
p,q,N

)
, (.)

∥
∥
∥
∥

∫ t



∫ ∞


θ (t – s)α–ζα(θ )G

[
(t – s)αθ

](
u

(s)v(s) – u
 (s)v(s)

)
dθ ds

∥
∥
∥
∥

Bσ
p,q,N

≤ Mtα(– σ
 ) sup

t∈[,τ ]

(∥
∥u(t) – u(t)

∥
∥

Bσ
p,q,N

+
∥
∥v(t) – v(t)

∥
∥

Bσ
p,q,N

)
, (.)

where

M =
M

α( – σ )
E
(
θ – α


)

max
{|�| 

p + R, R},

M =
MR

α( – σ )
E
(
θ – α


)
.

Proof If ui, vi ∈ Lp(�), i = , , we have

∥
∥u – u + u

 v – u
v

∥
∥

Lp

≤ ‖u – u‖Lp +
∥
∥u

 (v – v)
∥
∥

Lp +
∥
∥v

(
u

 – u

)∥
∥

Lp

≤ ‖�‖ 
p ‖u – u‖Lp + ‖u‖

Lp‖v – v‖Lp + ‖v‖Lp‖u – u‖Lp‖u + u‖Lp .

Then
∥
∥
∥
∥

∫ t



∫ ∞


θ (t – s)α–ζα(θ )G

[
(t – s)αθ

]

× (
u(s) – u(s) + u

 (s)v(s) – u
(s)v(s)

)
dθ ds

∥
∥
∥
∥

Bσ
p,q,N
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≤
∫ t



∫ ∞


θ (t – s)α–ζα(θ )

× ∥
∥G

[
(t – s)αθ

](
u(s) – u(s) + u

 (s)v(s) – u
(s)v(s)

)∥
∥

Bσ
p,q,N

dθ ds

≤ ME
(
θ – α


)
∫ t


(t – s)α–– σα


∥
∥u – u + u

 v – u
v

∥
∥

Lp ds

≤ ME
(
θ – α


)
∫ t


(t – s)α–– σα


[|�| 

p ‖u – u‖Lp + ‖u‖
Lp‖v – v‖Lp

+ ‖v‖Lp‖u – u‖Lp‖u + u‖Lp
]

ds

≤ ME
(
θ – α


)
∫ t


(t – s)α–– σα


[|�| 

p ‖u – u‖Bσ
p,q,N

+ ‖u‖
Bσ

p,q,N
‖v – v‖Bσ

p,q,N

+ ‖v‖Bσ
p,q,N

‖u – u‖Bσ
p,q,N

‖u + u‖Bσ
p,q,N

]
ds

≤ Mtα(– σ
 ) sup

t∈[,τ ]

(∥
∥u(t) – u(t)

∥
∥

Bσ
p,q,N

+
∥
∥v(t) – v(t)

∥
∥

Bσ
p,q,N

)
.

Thus, we get inequality (.). Using the same method, we can get inequality (.). �

Note that ζα(θ ) is one-sided probability density function and that Gi(t), i = , , are strong
continuous contraction semigroups with respect to the variable t. By Lemma . we can
take τ >  small enough such that

∥
∥T ()

α (t)u – u
∥
∥

Bσ
p,q,N

=
∥
∥
∥
∥

∫ ∞


ζα(θ )

[
G

(
tαθ

)
– I

]
u dθ

∥
∥
∥
∥

Bσ
p,q,N

≤ R


, (.)

∥
∥T ()

α (t)u – u
∥
∥

Bσ
p,q,N

=
∥
∥
∥
∥

∫ ∞


ζα(θ )

[
G

(
tαθ

)
– I

]
u dθ

∥
∥
∥
∥

Bσ
p,q,N

≤ R


, (.)

and

αME
(
θ – σ


)(|�|/p + |�| 

p R + R) 
α( – σ )

τα(– σ
 ) ≤ R


. (.)

We now define maps Pi : B → B for i = , , where

P(u, v)(t) = T ()
α (t)u +

∫ t


S()

α (t – s)f
(
u(s), v(s)

)
ds

and

P(u, v)(t) = T ()
α (t)u +

∫ t


S()

α (t – s)f
(
u(s), v(s)

)
ds.

Theorem . Let  < p < ∞, N
p ≤ σ < , σ �=  + 

p and  ≤ q ≤ p. Then, given (u, v)T ∈
Bσ

p,q,N , there exists a constant τ >  such that problem (.a)-(.d) has a unique locally
mild positive solution (u, v)T : [, τ ] → Bσ

p,q,N × Bσ
p,q,N .
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Proof The operators Pi(u, v) : (, τ ] → Bσ
p,q,N for i = ,  are continuous maps for N

p ≤ σ <
 and σ �=  + 

p . In fact, for  < t < t < τ and (u, v)T ∈ Bσ
p,q,N × Bσ

p,q,N , we have

∥
∥P(u, v)(t) – P(u, v)(t)

∥
∥

Bσ
p,q,N

≤
∫ ∞


ζα(θ )

∥
∥
[
G

(
tα
 θ

)
– G

(
tα
 θ

)]
u

∥
∥

Bσ
p,q,N

dθ

+
∫ t

t

∥
∥S()

α (t – s)f
(
u(s), v(s)

)∥
∥

Bσ
p,q,N

ds

+
∫ t



∥
∥
[
S()

α (t – s) – S()
α (t – s)

]
f
(
u(s), v(s)

)∥
∥

Bσ
p,q,N

ds

≤ M

∫ ∞


ζα(θ )

∥
∥
(
G

[(
tα
 – tα


)
θ
]

– I
)
u

∥
∥

Bσ
p,q,N

dθ

+ αME
(
θ – σ


)
∫ t

t

(t – s)α–– σα


∥
∥f

(
u(s), v(s)

)∥
∥

Lp ds

+ α

∫ t



∫ ∞


θζα(θ )

∥
∥
[
(t – s)α–G

(
(t – s)αθ

)

– (t – s)α–G
(
(t – s)αθ

)]
f
(
u(s), v(s)

)∥
∥

Bσ
p,q,N

dθ ds.

Since the operator (t – s)α–G((t – s)αθ ) is continuous with respect to the parameter t > s
in the sense of the norm L(Bσ

p,q,N ), we can conclude

∥
∥P(u, v)(t) – P(u, v)(t)

∥
∥

Bσ
p,q,N

→  as t → t+
 .

In the same way, we can show that if  < t < t < τ , then

∥
∥Pi(u, v)(t) – Pi(u, v)(t)

∥
∥

Bσ
p,q,N

→  as t → t+
 , i = , .

Thus, for  ≤ σ < , Pi(u, v) : (, τ ] → Bσ
p,q,N is a continuous map for i = , .

Next, we will show P = (P, P) : B → B. In fact, it follows from estimates (.) and (.)
that

∥
∥P(u, v)(t) – u

∥
∥

Bσ
p,q,N

≤ ∥
∥T ()

α u – u
∥
∥

Bσ
p,q,N

+
∥
∥
∥
∥

∫ t


S()

α (t – s)f
(
u(s), v(s)

)
ds

∥
∥
∥
∥

Bσ
p,q,N

≤ R


,

and from (.) and (.) we have the following estimate:

∥
∥P(u, v)(t) – v

∥
∥

Bσ
p,q,N

≤ ∥
∥T ()

α u – u
∥
∥

Bσ
p,q,N

+
∥
∥
∥
∥

∫ t


S()

α (t – s)f
(
u(s), v(s)

)
ds

∥
∥
∥
∥

Bσ
p,q,N

≤ R


.

Now, we will prove that the maps Pi : B → B, i = , , are contractive ones inB. In fact, for
(u, v)T , (u, v)T ∈ Bσ

p,q,N with the same initial value (u, v)T . According to Lemma .,
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we take τ such that Mτ
α(– σ

 )
 < 

 . Let τ = min{τ, τ} and then we have

∥
∥P(u, v)(t) – P(u, v)(t)

∥
∥

Bσ
p,q,N

+
∥
∥P(u, v)(t) – P(u, v)(t)

∥
∥

Bσ
p,q,N

≤
∥
∥
∥
∥

∫ t


S()

α (t – s)
(
u – u + u

 v – u
v

)
∥
∥
∥
∥

Bσ
p,q,N

+
∥
∥
∥
∥

∫ t


S()

α (t – s)
(
u

v – u
 v

)
∥
∥
∥
∥

Bσ
p,q,N

≤ α


sup

t∈[,τ ]

(∥
∥u(t) – u(t)

∥
∥

Bσ
p,q,N

+
∥
∥v(t) – v(t)

∥
∥

Bσ
p,q,N

)
.

Then, by the Banach fixed point theorem, there exists a unique fixed point (u, v) ∈ B, that
is, the unique local mild solution of (.a)-(.c) in B. By virtue of the positive property
of the operators T (i)

α and S(i)
α for i = , , this result is obtained. �

According to Theorem ., there exists small enough τ >  such that problem (.a)-
(.d) has a unique local mild solution defined in B(τ , R, u, v). This solution is bounded,
i.e., ‖u‖C([,τ ]:Bσ

p,q,N ),‖v‖C([,τ ]:Bσ
p,q,N ) ≤R = max{R +‖u‖Bσ

p,q,N
, R +‖v‖Bσ

p,q,N
}. The mild so-

lution of (.a)-(.d) at t = τ exists, which is denoted by (u(τ ), v(τ ))T . We take (u(τ ), v(τ ))T

as another initial value of (.a)-(.d). Repeating the above discussion and by Theo-
rem ., we know that under the conditions in Theorem . the problem of (.a)-(.d)
with the initial value (u(), v())T = (u(τ ), v(τ ))T has a unique mild solution (denoted by
(u(t), v(t))) defined on the interval [τ , τ], and this solution is bounded, that is, there
exist two positive constants R, R such that ‖u‖C([τ ,τ]:Bσ

p,q,N ),‖v‖C([τ ,τ]:Bσ
p,q,N ) ≤ R =

max{R +‖u(τ )‖Bσ
p,q,N

, R +‖v(τ )‖Bσ
p,q,N

}. Repeating this process over and over, a mild solu-
tion of (.a)-(.d) is ultimately established on a maximum interval (, Tmax). So, we have
the following result.

Theorem . Let  < p < ∞, N
p ≤ σ < , σ �=  + 

p and  ≤ q ≤ p. Then, given
(u, v)T ∈ Bσ

p,q,N ×Bσ
p,q,N , problem (.a)-(.d) has a unique mild positive solution (u, v)T :

[, Tmax) → Bσ
p,q,N × Bσ

p,q,N .

4 Stability and Hopf bifurcation
In this section, we study the stability and Hopf bifurcation of a spatially homogeneous
equilibrium point for (.a)-(.d). System (.a)-(.d) has a unique homogeneous steady
state E = (u∗, v∗)

u∗ = a + b, v∗ =
b

(a + b) ,

which satisfies

f
(
u∗, v∗) = , f

(
u∗, v∗) = .

Linearizing model (.a)-(.d) at E yields

∂αw
∂tα

= D�w + J(E)w,
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where

w = (u, v)T , D =

(
d 
 d

)

, J(E) =

[
b

a+b –  (a + b)

– b
a+b –(a + b)

]

.

Let {μk ,ϕk}∞k= be an eigenpair of the operator –� on � with the Neumann boundary
condition, where  = μ < μ < · · · . E(μk) is the eigenspace corresponding to μk in C(�),
and ϕkj, j = , , . . . , dim E(μk), is an orthonormal basis of E(μk). Let

X =
{

(u, v)T ∈ [
C(�) ∩ C(�)

]∣∣∂u
∂n

=
∂v
∂n

= 
}

(.)

and Xkj = {cϕkj|c ∈R
}. Consider the following decomposition:

X =
∞⊕

k=

Xk , (.)

where Xk =
⊕dim E(μk )

j= Xkj and Xkj is the eigenspace corresponding to μk .
For each k ≥ , Xk is invariant under the operator L = D� + J(E), and λ is an eigenvalue

of L on Xk if and only if it is an eigenvalue of the matrix –μkD + J(E). Denote

A(μk) = –μkD + J(E). (.)

The characteristic equation of A(μk) is

λ – tr A(μk)λ + det A(μk) = , (.)

where

tr A(μk) = –(d + d)μk +
b – a
a + b

– (a + b), (.a)

det A(μk) = ddμ

k +

(a + b)d + (a – b)d

a + b
μk + (a + b). (.b)

If the following inequalities hold,

⎧
⎨

⎩

(a + b) + a – b > ,

d(a + b) + d(a – b) > ,

i.e.,

(a + b) > max

{

b – a,
d(b – a)

d

}

, (.)

then the roots of (.) are negative for k ∈ N, so the homogeneous steady state E is sta-
ble. Recently, some literature works [, , ] have shown that time fractional-order
derivatives can induce stability of a steady state for a fractional-order system although
the corresponding characteristic roots at this steady state have positive real parts. To find
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another parameter region of the stability for (.a)-(.d), one can check the parameters
satisfying the following inequalities:

⎧
⎨

⎩

(a + b) + a – b < ,

d(a + b) + d(a – b) > ,

i.e.,

d(b – a)
d

< (a + b) < b – a. (.)

Under conditions (.), the characteristic roots of (.) for k =  obviously are complex
with a positive real part. For this case, the corresponding first-order derivative system of
(.a)-(.d) is unstable at E. However, E might be stable for the fractional-order system
(.a)-(.d). Denote the characteristic roots of (.) by

λm(μk) = Pm(μk) + Qm(μk)i, for m = , ,

where Pm and Qm belong to R and i = –. Let

μ∗ = –
(a + b) + a – b
(a + b)(d + d)

,

and there exists a positive constant K such that μK ≤ μ∗ and μK+ > μ∗. According to
Lemma ., E is stable if and only if the tangent of the characteristic roots

tan[∣∣arg
(
λm(μk)

)∣
∣
]

=
(

Qm(μk)
Pm(μk)

)

=
 det A(μk)
[tr A(μk)] –  > tan

(
απ



)

, (.)

for k = , . . . , K . Under condition (.), formula (.a) ((.b)) decreases (increases) with
respect to μk for k = , . . . , K . Thus, in order to check the stability of E, we only need to
verify the condition

tan[∣∣arg
(
λm(μ)

)∣
∣
]

> tan
(

απ



)

.

For the case of k = , after calculating (.), we obtain

tan[∣∣arg
(
λm(μ)

)∣
∣
]

=
 det A(μ)
[tr A(μ)] –  =

(a + b)

((a + b) + a – b) –  > tan
(

απ



)

, (.)

i.e.,

(a + b)

((a + b) + a – b) > tan
(

απ



)

+ . (.)

From the above discussion, we can get the following result about the stability for system
(.a)-(.d).
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Theorem . For system (.a)-(.d), the spatially homogeneous equilibrium point E is
stable if any of the following two conditions is satisfied:

(i) (a + b) > max{b – a, d(b–a)
d

},

(ii) d(b–a)
d

< (a + b) < b – a and (a+b)

((a+b)+a–b) > tan( απ
 ) + .

For the corresponding first-order system of (.a)-(.d), E is stable if and only if con-
dition (i) in Theorem . holds. However, for the fractional-order system (.a)-(.d),
E is still stable under conditions (ii) in Theorem ., except for condition (i), because
the fractional-order derivative can induce the stability. In addition, condition (ii) in The-
orem . seems very complicated, but its parameter set is not empty. For example, take
d = . and d = ., and we plot Figure  to illustrate the parameter region of sta-
bility for (.a)-(.d). In this figure, the parameters in region IV satisfy conditions (ii)
in Theorem .. E is stable for system (.a)-(.d) with the parameters in regions
IV, V and VI. For other parameters (such as regions I, II and III), E is unstable and
around it spatially homogeneous periodic orbits arise, that is, a Hopf bifurcation hap-
pens.

To show the stability and spatially homogeneous periodic orbits of (.a)-(.d), we will
perform numerical simulations for system (.a)-(.d) in a one-dimensional space with
parameters satisfying stable conditions. To this end, we discretize the space and the time
of the problem because the dynamical behavior of system (.a)-(.d) cannot be investi-
gated by using analytical methods or normal forms. We will transform it from an infinite-
dimensional (continuous) to a finite-dimensional (discrete) form. System (.a)-(.d) is
solved in a discrete domain with M lattice sites. The step length between the lattice points
is defined by the lattice constant �h = .. In this discrete system, the Laplacian opera-
tor describing diffusion is calculated by using a three central difference scheme. The time
evolution is also discrete, that is, the time goes by steps of �t = ., and is solved by an
Adams-type predictor-corrector method for a fractional-order equation. For simplicity, in
this section, we take the spatial region � = (, ). In Figure , we choose the parameters
a = . and b = . located in region I in Figure , and plot the spatially homogeneous
periodic orbits. Besides, we also plot the spatially homogeneous periodic orbits of the cor-
responding time first-order model of (.a)-(.d) with the same parameters, see Figure .
However, these two figures indicate that there exists some difference in the spatially homo-
geneous periodic orbits coming from system (.a)-(.d) and its corresponding first-order
system, respectively. Compared with the first-order system, the amplitude of the periodic
orbit of the fractional-order system (.a)-(.d) is smaller. This shows that the amplitude
of the periodic orbit of system (.a)-(.d) is affected by the fractional-order derivative.

Figure 1 The parameter region of stability and instability for
(1.3a)-(1.3d) with α = 0.8. The curves C1, C2, C3 and C4 divide the
plane of the parameters a, b into six regions (respectively denoted
by I, II, III, IV, V and VI), where the curves C1 and C4 come from the

equation 4(a+b)4

((a+b)3+a–b)2
= tan2( 2π5 ) + 1, C2 from (a + b)3 = 0.5(b – a)

and C3 from (a + b)3 = b – a. Wherein, d1 = 0.02 and d2 = 0.01.



Yin and Wen Advances in Difference Equations  (2017) 2017:369 Page 13 of 20

Figure 2 The spatially homogeneous periodic
orbit of (1.3a)-(1.3d) with the parameters
a = 0.08 and b = 0.3 in region I. Other parameters
are as in Figure 1.

Figure 3 The spatially homogeneous periodic
orbit of the corresponding time first-order
model of (1.3a)-(1.3d). The other parameters are
taken as in Figure 2.

Figure 4 The amplitude of the spatially homogeneous periodic
orbit vs the fractional-order derivative for system (1.3a)-(1.3d). Other
parameters are as in Figure 2.

Figure 5 The spatially homogeneous periodic
orbit of (1.3a)-(1.3d) with the parameters
a = 0.042 and b = 0.626 in region II. Other
parameters are as in Figure 1.

Figure 6 The spatially homogeneous periodic
orbit of (1.3a)-(1.3d) with the first-order
derivative and the parameters a = 0.042 and
b = 0.626 in region II. Other parameters are as in
Figure 1.

To discover the relationship between the amplitude and the fractional-order derivative,
we plot Figure . In this figure, the amplitudes of the periodic orbits of u and v increase
with the fractional order α. We take a = . and b = . in region II in Figure  and
respectively plot the spatially homogeneous periodic orbits of system (.a)-(.d) and
its corresponding first-order system, see Figures  and . The amplitude of the spatially
homogeneous periodic orbits of system (.a)-(.d) are still smaller in comparison with



Yin and Wen Advances in Difference Equations  (2017) 2017:369 Page 14 of 20

Figure 7 The spatially homogeneous periodic
orbit of (1.3a)-(1.3d) with the parameters
a = 0.12 and b = 0.26 in region III. Other
parameters are as in Figure 1.

Figure 8 The spatially homogeneous periodic
orbit of (1.3a)-(1.3d) with the first-order
derivative and the parameters a = 0.12 and
b = 0.26 in region III. Other parameters are as in
Figure 1.

Figure 9 The stability of the spatially
homogeneous steady state for (1.3a)-(1.3d) with
the first-order derivative and the parameters
a = 0.14 and b = 0.54 in region IV. Other
parameters are as in Figure 1.

Figure 10 The spatially homogeneous periodic
orbit of (1.3a)-(1.3d) with the first-order
derivative and the parameters a = 0.14 and
b = 0.54 in region IV. Other parameters are as in
Figure 1.

the corresponding first-order system. The similar results appear when the parameters are
chosen in region III in Figure , see Figures  and .

Next, we will focus on some difference of the stability between the fractional-order sys-
tem (.a)-(.d) and its corresponding first-order system. First, in region IV in Figure 
we choose parameters randomly, for example, a = . and b = .. For these given pa-
rameters, the spatially homogeneous steady state is E = (., .). System (.a)-(.d)
presents the stability of E, see Figure , but its corresponding first-order system presents
the spatially homogeneous periodic orbits, see Figure . This phenomenon implies that
the time fractional-order derivative can induce the stability of system (.a)-(.d) or that
the fractional order can expand the parameter region of stability compared with its cor-
responding first-order system. When the parameters a and b are chosen from region V or
VI in Figure , the spatially homogeneous steady state E is stable for system (.a)-(.d)
and its corresponding first-order system, see Figures  and . Here, we only illustrate
for the parameters in region V and do not show any figure with the parameters chosen in
region VI because of the similar results as shown in Figures  and .
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Figure 11 The stability of the spatially
homogeneous steady state for (1.3a)-(1.3d). The
parameters a = 0.26 and b = 0.6 in region V. Other
parameters are as in Figure 1.

Figure 12 The stability of the spatially
homogeneous steady state for (1.3a)-(1.3d) with
the first-order derivative and the parameters
a = 0.26 and b = 0.6 in region V. Other parameters
are as in Figure 1.

5 Turing pattern
In the above section, we have obtained the stability and Hopf bifurcation of system (.a)-
(.d). However, these results focus on the spatial homogeneity of the dynamical behav-
iors of system (.a)-(.d). The spatial heterogeneity (i.e., Turing pattern) is interesting
and significant for a reaction-diffusion system, which breaks the homogeneous states be-
cause the Turing bifurcation occurs. In this section, we continue to investigate the Turing
instability of system (.a)-(.d). In particular, we will find difference of spatial patterns
between system (.a)-(.d) and its corresponding first-order system. Turing patterns re-
quire two conditions. First, a nontrivial homogeneous steady state exists and is stable for
spatially homogeneous perturbations. This condition is obtained in Theorem .. Second,
the stable steady state is unstable to at least one type of spatially heterogeneous pertur-
bations. The second condition defines the condition for Turing instability, which ensures
that local perturbations on the stable homogeneous steady state gradually expand globally.

Now, adding the heterogeneous disturbance term into the steady state E yields

(u, v)T =
(
u∗, v∗)T + ε(uk , vk)T eλt+ikr̄ + c.c + O

(
ε), (.)

where r̄ is the disturbance growth rate of t moment, i is the imaginary unit, k represents
wave number, r̄ = (X, Y ) is a two-dimensional factor in the complex conjugate plane. After
inserting the above equation into system (.a)-(.d) and keeping the first degree term of
ε, we obtain the characteristic equation as follows:

λ – B(k)λ + det D(k) = , (.)

where

B(k) = –(d + d)k +
b – a
a + b

– (a + b), (.a)

D(k) = ddk +
(a + b)d + (a – b)d

a + b
k + (a + b). (.b)

In order to produce the Turing pattern, the nontrivial homogeneous steady state E must
be stable under spatially homogeneous perturbations. Note the condition of stability for
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a fractional-order system (.a)-(.d). We can find the following conditions of stability
under spatially homogeneous perturbations:

(a + b) + a – b >  (.a)

or
⎧
⎨

⎩

(a + b) + a – b < ,
(a+b)

((a+b)+a–b) > tan( απ
 ) + .

(.b)

Further, according to the second condition of forming Turing pattern, the spatially homo-
geneous steady state E destabilizes under some spatially heterogeneous perturbations.
Thus, for some wave number k, equation (.b) must be less than zero. Consequently, we
have

⎧
⎨

⎩

(a + b)d < d(b – a),

((a + b)d + (a – b)d) > dd(a + b).
(.)

Here, according to inequalities (.a), (.b), we plot a parameter a – b diagram to show
the stability and instability of E under spatially homogeneous perturbations, see Fig-
ure (A). In this figure, if the parameters are chosen in regions II, III or IV, then E is
stable under spatially homogeneous perturbations for the fractional-order system (.a)-
(.d). However, for the corresponding first-order system of (.a)-(.d), the steady state
E becomes unstable due to the parameters in region II. Besides, by inequalities (.a),
(.b) and (.) we present Figure (B), which is also a parameter a – b diagram in which
Turing bifurcations can occur. In this figure, take d = ., d = . and α = ., and the
parameter a – b diagram is divided into three segments: the homogeneous steady state
region consisting of regions  and , pure Turing instability consisting of regions ,  and
 and Hopf-Turing instability consisting of only one region .

Next, we will perform numerical simulations of system (.a)-(.d) in a two-dimensional
space with parameters satisfying Turing conditions to obtain Turing patterns. To this
end, we should discretize the space and the time of the problem because the dynami-
cal behavior of system (.a)-(.d) cannot be investigated by using analytical methods
or normal forms. We will transform it from an infinite-dimensional (continuous) to a

Figure 13 The parameter a – b diagram of
stability and bifurcation. (A) Parameter region of
stability and instability for E0 under spatially
homogeneous perturbations. The curves C1, C2
and C3 divide the parameter a – b plane into four
regions (respectively denoted by I, II, III and IV),
where the curves C1 and C3 come from the

equation 4(a+b)4

((a+b)3+a–b)2
= tan2( 2π5 ) + 1 and C2 from

(a + b)3 = b – a. (B) Parameter a – b diagram
showing three parameter regions, homogeneous steady state region (consisting of regions 3 and 4), pure
Turing instability (consisting of regions 2, 5 and 6) and Hopf-Turing instability (only one region 1). The curves
C4 and C5 come from the equation ((a + b)3d1 + (a – b)d2)2 = 4d1d2(a + b)4 , the curve C6 from
d1(a + b)3 = d2(b – a). Set α = 0.8, d1 = 0.01 and d2 = 0.25.



Yin and Wen Advances in Difference Equations  (2017) 2017:369 Page 17 of 20

finite-dimensional (discrete) form. System (.a)-(.d) is solved in a discrete domain with
M×N lattice sites. The spacing between the lattice points is defined by the lattice constant
�h = .. In this discrete system, the Laplacian operator describing diffusion is calcu-
lated by using a five central difference scheme. The time evolution is also discrete, that is,
the time goes by steps of �t = ., and is solved by an Adams-type predictor-corrector
method for fractional-order equation. In order to avoid numerical artefacts, we checked
the sensitivity of the results to the choice of the time and space steps, and their values
have been chosen sufficiently small. Both numerical schemes are standard, hence we do
not describe them here.

Set the parameters as follows: a = ., b = ., d = ., d = . and α = .. Then
these parameters are located in region  of a – b diagram (B), and we have the positive
equilibrium (u∗, v∗) = (., .). The initial density distributions are random spatial dis-
tribution of the species near E, which is more general from biological point of view. We
plot the evolution of the spatial patterns of prey and predator at  and , iterations,
see Figure . This figure shows that the spatially homogeneous steady state E is stable.

Take the above parameters, but let a = . and b = ., whose position is located in
region  in Figure (B). System (.a)-(.d) produces spatial patterns, see Figure . In
Figure , (A) and (B) respectively show initial states of prey and predator. (C) and (D) show
the pure Turing patterns of prey and predator, respectively. Meanwhile, we also simulate
the corresponding first-order system of (.a)-(.d) with the same parameters, and the
same patterns form as in Figure , which here is not displayed.

For the parameter chosen in region  of the parameter a – b diagram (B), spatial pat-
terns of (.a)-(.d) and its corresponding first-order system, however, are completely
different, see Figure  with a = . and b = .. We find that prey’s and predator’s patterns
of system (.a)-(.d) are spots, and that strip patterns appear for the corresponding first-
order system of (.a)-(.d). The reason is that for the same parameters a and b, system
(.a)-(.d) produces pure Turing patterns, but its corresponding first-order system does
Turing-Hopf patterns. Finally, we numerically simulate system (.a)-(.d) and its corre-
sponding first-order system with the parameters a = . and b = . chosen in region  in
the parameter a – b diagram B, and find that these two systems form the same patterns,
see Figure . The reason is that these two kinds of systems have the same reaction field.

Figure 14 Snapshots of contour pictures of the
time evolution of the prey and predator in a 2D
spatial domain with a = 0.4, b = 0.5, d1 = 0.01,
d2 = 0.25 and α = 0.8. Wherein prey (A) and
predator (B) for 0 iteration, and prey (C) and
predator (D) for 10,000 iterations.
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Figure 15 Snapshots of contour pictures of the
time evolution of the prey and predator in a 2D
spatial domain with a = 0.2, b = 0.8, d1 = 0.01,
d2 = 0.25 and α = 0.8. Wherein prey (A) and
predator (B) for 0 iteration, and prey (C) and
predator (D) for 10,000 iterations.

Figure 16 Spatial patterns of prey and predator.
(A) and (B) are prey’s and predator’s patterns of
system (1.3a)-(1.3d), but (C) and (D) are their
patterns of the corresponding first-order system of
(1.3a)-(1.3d). Wherein a = 0.1 and b = 0.7.

Figure 17 Spatial patterns of prey and predator,
(A) and (B) are prey’s and predator’s patterns
coming from the system (1.3a)-(1.3d). Wherein
a = 0.05 and b = 0.5.

6 Conclusion and discussion
In this paper, for system (.a)-(.d), which is a fractional-order partial differential equa-
tion model, we have discussed the existence and uniqueness of the positive solution in a
Besov space. Besides, we have obtained stability, Hopf bifurcation, Turing bifurcation and
spatial patterns of this model. From theoretical analysis and numerical simulations, we
find some difference between system (.a)-(.d) and its corresponding first-order sys-
tem on the stability, Hopf bifurcation and spatial patterns. In detail, the fractional-order
derivative enlarges the parameter region of the stability in comparison with its corre-
sponding first-order system. Besides, these two systems with the same parameters can
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form different spatial patterns (see Figure ). These results, as far as our knowledge goes,
are completely new. So far, there are few literature works to study fractional-order par-
tial differential equations. This kind of equations are still open, such as Hopf bifurcation
direction, normal form and their application, which are worth being investigated in the
future.
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