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1 Introduction
Fractional calculus is acknowledged as an important research tool that opens up many
horizons in the field of dynamical systems []. According to Professor Katsuyuki Nishi-
moto, ‘the fractional calculus is the calculus of the XXIst century’ []. This opinion is
strengthened by a huge increase of interest in this research tool, expressed by an increase
in the number of theoretical developments and basic theory on this subject; see, e.g., [–].
Recently, it has also been proved that fractional differential equations are significant and
essential tools when applied in the study of nonlocal or time-dependent processes and in
the modeling of many applications, including chaotic dynamics, material sciences, me-
chanic of fractal and complex media, quantum mechanics, physical kinetics, chemistry,
biology, economics and control theory []. For instance, a fractional generalization of the
Newtonian equation to describe the dynamics of complex phenomena, in both science and
engineering, has been proposed in []; a fractional Langevin equation, with applications
in polymer layers, has been investigated in []. One can say that real-world problems
require the definitions of fractional derivatives for initial and boundary value problems
[, ]. Fractional mathematical models describing natural phenomena, like shallow wa-
ter waves and ion acoustic waves in plasma and vibration of large membranes, as well as
personal and interpersonal realities, like smoking, romantic relationships and marriages,
can be found in [, ] and [, ], respectively. Details of the geometric and physical
interpretation of fractional differentiation can be found in [].

Thermistor is a thermo-electric device constructed from a ceramic material whose elec-
trical conductivity depends strongly on the temperature. This makes thermistor problems
highly nonlinear []. They can be used as a switching device in many electronic circuits.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-017-1418-5
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-017-1418-5&domain=pdf
mailto:sidiammi@ua.pt


Sidi Ammi et al. Advances in Difference Equations  (2017) 2017:363 Page 2 of 14

A broad application spectrum of thermistor problems in heating processes and current
flow can be found in several areas of electronics and its related industries []. Generally,
there are two kinds of thermistors: the first have an electrical conductivity that decreases
with the increasing of temperature; the second have an electrical conductivity that in-
creases with the increasing of temperature [, ]. Here we consider a prototype of elec-
trical conductivity that depends strongly in both time and temperature. Our goal consists
in proving global existence of solutions for a fractional Caputo nonlocal thermistor prob-
lem. The results are obtained via Schauder’s fixed point theorem. Precisely, we consider
the following fractional order initial value problem:

CDα
,tu(t) =

λf (t, u(t))
(
∫ t

 f (x, u(x)) dx)
, t ∈ (,∞),

u(t)|t= = u,

()

where CDα
,t is the fractional Caputo derivative operator of order α with  < α < 

 a real
parameter. The function u denotes the temperature and λ is a positive real. We shall as-
sume the following hypotheses:

(H) f : R+ ×R
+ → R

+ is a Lipschitz continuous function with Lipschitz constant Lf with
respect to the second variable such that c ≤ f (s, u) ≤ c with c and c two positive
constants;

(H) there exists a positive constant M such that f (s, u) ≤ Ms;
(H) |f (s, u) – f (s, v)| ≤ s|u – v| or, in a more general manner, there exists a constant ω ≥ 

such that |f (s, u) – f (s, v)| ≤ sω|u – v|.
In the literature, questions involving the existence and uniqueness of solution for frac-

tional differential equations (FDEs) have been intensely studied by many mathematicians
[, , , ]. However, much of published papers have been concerned with existence-
uniqueness of solutions for FDEs on a finite interval. Since continuation theorems for
FDEs are not well developed, results as regards global existence-uniqueness of the so-
lution of FDEs on the half axis [, +∞), by using directly the results from local existence,
have only recently flourished [, ].

In contrast with our previous work [–] on fractional nonlocal thermistor problems,
which was focused on local existence and numerical methods, here we are concerned with
continuation theorems and global existence for the steady state fractional Caputo nonlocal
thermistor problem. The paper is organized as follows. In Section , we collect some back-
ground material and necessary results from fractional calculus. Then we are concerned in
Section  with local existence on a finite interval for () (Theorem .). Section  is de-
voted to the (non-)continuation (Theorem .) associated with problem (), which allows
one to generalize the main result of Section . Our proofs rely on Schauder’s fixed point
theorem and some extensions of the continuation theorems for ordinary differential equa-
tions (ODEs) to the fractional order case. One of the main difficulties lies in handling the
nonlocal term λf (t,u(t))

(
∫ t

 f (x,u(x)) dx) , representing a heat source and that depends continuously on
time; another one in the fact that electrical conductivity depends on both time and tem-
perature. Based on the results of Section , in Section  we prove existence of a global
solution for (): see Theorems . and .. We end with Section  presenting conclusions.
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2 Preliminaries and basic results
In this section, we collect from the literature [, , , –] some background material
and basic results that will be used in the remainder of the paper.

Let C[a, b] be the Banach space of all real valued continuous functions on [a, b] en-
dowed with the norm ‖x‖[a,b] = maxt∈[a,b] |x(t)|. According to the Riemann-Liouville ap-
proach to fractional calculus, we introduce the fractional integral of order α, α > , as
follows.

Definition . The Riemann-Liouville integral of a function g with order α >  is defined
by

RLD–α
,t g(t) =


�(α)

∫ t


(t – s)α–g(s) ds, t > ,

where � is the Euler gamma function given by

�(α) =
∫ ∞


tα–e–t dt,

α > .

The natural next step, after the notion of fractional integral has been introduced, is to
define the fractional derivative of order α, α > .

Definition . The Riemann-Liouville derivative of the function g with order α >  is
defined by

RLDα
,tg(t) =


�(n – α)

dn

dtn

∫ t


(t – s)n–α–g(s) ds, t > ,

where n –  < α < n ∈ Z
+.

Note the remarkable fact that, in the Riemann-Liouville sense, the fractional derivative
of the constant function is not zero. We now give an alternative and more restrictive def-
inition of fractional derivative, first introduced by Caputo in the end of the s [,
] and then adopted by Caputo and Mainardi in [, ]. In Caputo sense, the fractional
derivative of a constant is zero.

Definition . The Caputo derivative of the function g(t) with order α >  is defined by

CDα
,tg(t) =


�(n – α)

∫ t


(t – s)α–g(n)(s) ds, t > ,

where n –  < α < n ∈ Z
+.

For proving our main results, we make use of the following auxiliary lemmas.

Lemma . (See []) Let M be a subset of C([, T]). Then M is precompact if and only if
the following conditions hold:
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. {u(t) : u ∈ M} is uniformly bounded,
. {u(t) : u ∈ M} is equicontinuous on [, T].

Lemma . (Schauder fixed point theorem []) Let U be a closed bounded convex subset
of a Banach space X. If T : U → U is completely continuous, then T has a fixed point in U .

Finally we recall a generalization of Gronwall’s lemma, which is essential for the proof
of our Theorem ..

Lemma . (Generalized Gronwall inequality [, ]) Let v : [, b] → [, +∞) be a real
function and w(·) be a nonnegative, locally integrable function on [, b]. Suppose that there
exist a >  and  < α <  such that

v(t) ≤ w(t) + a
∫ t



v(s)
(t – s)α

ds.

Then there exists a constant k = k(α) such that

v(t) ≤ w(t) + ka
∫ t



w(s)
(t – s)α

ds

for t ∈ [, b].

3 Local existence theorem
In this section, a local existence theorem of solutions for () is obtained by applying
Schauder’s fixed point theorem. In order to transform () into a fixed point problem, we
give in the following lemma an equivalent integral form of ().

Lemma . Suppose that (H)-(H) holds. Then the initial value problem () is equivalent
to

u(t) = u +
λ

�(α)

∫ t


(t – s)α– f (s, u(s))

(
∫ t

 f (x, u) dx)
ds. ()

Proof It is a simple exercise to see that u is a solution of the integral equation () if and
only if it is also a solution of the IVP (). �

Theorem . Suppose that conditions (H)-(H) are verified. Then () has at least one
solution u ∈ C[, h] for some T ≥ h > .

Proof Let

E =
{

u ∈ C[, T] : ‖u – u‖C[,T] = sup
≤t≤T

|u – u| ≤ b
}

,

where b is a positive constant. Further, put

Dh =
{

u : u ∈ C[, h],‖u – u‖C[,h] ≤ b
}

,
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where

h = min

{(

b
(

λM
�(α + )c



)–) 
α

, T
}

and  < α < 
 . It is clear that h ≤ T . Note also that Dh is a nonempty, bounded, closed, and

convex subset of C[, h]. In order to apply Schauder’s fixed point theorem, we define the
following operator A:

(Au)(t) = u +
λ

�(α)

∫ t


(t – s)α– f (s, u(s))

(
∫ t

 f (x, u) dx)
ds, t ∈ [, h]. ()

It is clear that all solutions of () are fixed points of (). Then, by assumptions (H) and
(H), we have for any u ∈ C[, h]

∣
∣(Au)(t) – u

∣
∣ ≤ λ

�(α)


(ct)

∫ t


(t – s)α–f

(
s, u(s)

)
ds

≤ λ

�(α)
M
c



∫ t


(t – s)α– ds

≤ λM
α�(α)


c


hα

=
λM

�(α + )

c


hα

≤ b.

It yields ADh ⊂ Dh. Our next step, in order to prove Theorem ., is to show that the
following lemma holds.

Lemma . The operator A is continuous.

Proof Let un, u ∈ Dh be such that ‖un – u‖C[,h] →  as n → +∞. One has

∣
∣Aun(t) – Au(t)

∣
∣

≤ λ

�(α)

∫ t


(t – s)α–

∣
∣
∣
∣

f (s, un(s))
(
∫ t

 f (x, un) dx)
–

f (s, u(s))
(
∫ t

 f (x, u) dx)

∣
∣
∣
∣ds

≤ λ

�(α)

∫ t


(t – s)α–

∣
∣
∣
∣


(
∫ t

 f (x, un) dx)

(
f
(
s, un(s)

)
– f

(
s, u(s)

))

+ f
(
s, u(s)

)
(


(
∫ t

 f (x, un) dx)
–


(
∫ t

 f (x, u) dx)

)∣
∣
∣
∣ds

≤ λ

�(α)

∫ t


(t – s)α– 

(
∫ t

 f (x, un) dx)

∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣ds

+
λ

�(α)

∫ t


(t – s)α–∣∣f

(
s, u(s)

)∣
∣
∣
∣
∣
∣


(
∫ t

 f (x, un) dx)
–


(
∫ t

 f (x, u) dx)

∣
∣
∣
∣

≤ I + I. ()
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We now focus on both right hand terms separately. By hypotheses (H) and (H), we have

I ≤ λ

(ct)�(α)

∫ t


(t – s)α–∣∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣∣ds

≤ λLf

c
�(α)

∫ t


(t – s)α–∣∣un(s) – u(s)

∣
∣ds

≤ λLf

c
�(α)

‖un – u‖C[,h]

∫ t


(t – s)α– ds

≤ λLf

c
�(α)

‖un – u‖C[,h]

∫ t


(t – s)α– ds.

Then

I ≤ λhαLf

c
�(α + )

‖un – u‖C[,h]. ()

Concerning the second term, we have

I ≤ λ

�(α)

∫ t



(t – s)α–|f (s, u(s))|
(
∫ t

 f (x, un) dx)(
∫ t

 f (x, u) dx)

×
∣
∣
∣
∣

(∫ t


f (x, un) dx

)

–
(∫ t


f (x, u) dx

)∣∣
∣
∣ds

≤ λc

(ct)�(α)

∫ t


(t – s)α–

∣
∣
∣
∣

(∫ t


f (x, un) dx

)

–
(∫ t


f (x, u) dx

)∣∣
∣
∣ds

≤ λc

(ct)�(α)

∫ t


(t – s)α–

×
∣
∣
∣
∣

(∫ t



(
f (x, un) – f (x, u)

)
dx

)(∫ t



(
f (x, un) + f (x, u)

)
dx

)∣
∣
∣
∣ds

≤ λc
t

(ct)�(α)

∫ t


(t – s)α–

(∫ t



∣
∣f (x, un) – f (x, u)

∣
∣dx

)

ds

≤ λc
tLf

(ct)�(α)

∫ t


(t – s)α–

(∫ t



∣
∣un(x) – u(x)

∣
∣dx

)

ds

≤ λc
tLf

(ct)�(α)
‖un – u‖C[,h]

∫ t


(t – s)α– ds

≤ λc
Lf

c
 �(α)

‖un – u‖C[,h]

∫ t


(t – s)α– ds

≤ λc
hαLf

c
 �(α + )

‖un – u‖C[,h].

It follows that

I ≤ λc
hαLf

c
 �(α + )

‖un – u‖C[,h]. ()
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Collecting inequalities () and () together, and inserting into (), we have

∣
∣Aun(t) – Au(t)

∣
∣ ≤ I + I

≤
(

λhαLf

c
�(α + )

+
λc

hαLf

c
 �(α + )

)

‖un – u‖C[,h].

Therefore,

‖Aun – Au‖C[,h] ≤
(

λhαLf

c
�(α + )

+
λc

hαLf

c
 �(α + )

)

‖un – u‖C[,h]. ()

Consequently, ‖Aun – Au‖C[,h] →  as n → +∞, which proves that A is continuous. This
ends the proof of Lemma .. �

To finish the proof of Theorem ., it remains to show the following.

Lemma . The operator ADh is continuous.

Proof Let u ∈ Dh and  ≤ t ≤ t ≤ h. Then

∣
∣(Au)(t) – (Au)(t)

∣
∣

≤ λ

�(α)

∣
∣
∣
∣

∫ t


(t – s)α– f (s, u(s))

(
∫ t

 f (x, u) dx)
ds –

∫ t


(t – s)α– f (s, u(s))

(
∫ t

 f (x, u) dx)
ds

∣
∣
∣
∣

≤ λ

�(α)

∣
∣
∣
∣

∫ t



(
(t – s)α– – (t – s)α–) f (s, u(s))

(
∫ t

 f (x, u) dx)
ds

+
∫ t


(t – s)α– f (s, u(s))

(
∫ t

 f (x, u) dx)
ds –

∫ t


(t – s)α– f (s, u(s))

(
∫ t

 f (x, u) dx)
ds

∣
∣
∣
∣

≤ λ

�(α)

∣
∣
∣
∣

∫ t



(
(t – s)α– – (t – s)α–) f (s, u(s))

(
∫ t

 f (x, u) dx)
ds

+
∫ t


(t – s)α–f

(
s, u(s)

)
(


(
∫ t

 f (x, u) dx)
–


(
∫ t

 f (x, u) dx)

)

ds

–
∫ t

t

(t – s)α– f (s, u(s))
(
∫ t

 f (x, u) dx)
ds

∣
∣
∣
∣

≤ I + I + I, ()

where we have, by direct calculation,

I ≤ λc

(ct)�(α)

∣
∣
∣
∣

∫ t



(
(t – s)α– – (t – s)α–)ds

∣
∣
∣
∣

≤ λc

(ct)�(α + )
∣
∣tα

 – tα
 + (t – t)α

∣
∣,

I ≤ λ

�(α)
ctα–


(ct)(ct)

∫ t



∣
∣
∣
∣

(∫ t


f (x, u) dx

)

–
(∫ t


f (x, u) dx

)∣∣
∣
∣ds

≤ λ

�(α)
ctα–


(ct)(ct) ()
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×
∫ t



∣
∣
∣
∣

(∫ t


f (x, u) dx +

∫ t


f (x, u) dx

)(∫ t


f (x, u) dx –

∫ t


f (x, u) dx

)∣
∣
∣
∣ds

≤ λ

�(α)
c

(t + t)tα–


(ct)(ct)

∣
∣
∣
∣

∫ t

t

f
(
s, u(s)

)
ds

∣
∣
∣
∣

≤ λ

�(α)
c

(t + t)tα–


(ct)(ct) |t – t|,

and

I ≤ λc

(ct)�(α)

∫ t

t

(t – s)α– ds ≤ λc

(ct)�(α + )
(t – t)α . ()

The right hand side of inequalities () and () do not depend on u and converge to zero
as t → t. Then {(Au)(t) : u ∈ Dh} is equicontinuous and Lemma . is proved. �

Taking into account that ADh ⊂ Dh, we infer that ADh is precompact. This implies that
A is completely continuous. As a consequence of Schauder’s fixed point theorem and
Lemma ., we conclude that problem () has a local solution. This ends the proof of The-
orem .. �

4 Continuation results
Our main contribution of this section is to prove a continuation theorem for the fractional
Caputo nonlocal thermistor problem (). First, we present the definition of noncontinu-
able solution.

Definition . (See []) Let u(t) on (,β) and ũ(t) on (, β̃) be both solutions of ().
If β < β̃ and u(t) = ũ(t) for t ∈ (,β), then we say that ũ(t) can be continued to (, β̃).
A solution u(t) is noncontinuable if it has no continuation. The existing interval of the
noncontinuable solution u(t) is called the maximum existing interval of u(t).

Theorem . Assume that conditions (H)-(H) are satisfied. Then u = u(t), t ∈ (,β),
is noncontinuable if and if only for some η ∈ (, β

 ) and any bounded closed subset S ⊂
[η, +∞) ×R there exists a t∗ ∈ [η,β) such that (t∗, u(t∗)) /∈ S.

Proof Suppose that there exists a compact subset S ⊂ [η, +∞) ×R such that

{(
t, u(t)

)
: t ∈ [η,β)

} ⊂ S.

The compactness of S implies β < +∞. The remainder of the proof is given in two lemmas.

Lemma . The limit limt→β– u(t) exists.

Proof Let t, t ∈ [η,β) such that t < t. From (), we have

I = I, + I,,

where

I, =
λ

�(α)

∫ η



(
(t – s)α– – (t – s)α–) f (s, u(s))

(
∫ t

 f (x, u) dx)
ds
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and

I, =
λ

�(α)

∫ t

η

(
(t – s)α– – (t – s)α–) f (s, u(s))

(
∫ t

 f (x, u) dx)
ds.

Under assumptions (H)-(H), there exists a positive constant M, such that

I, ≤ M,

∫ η



(
(t – s)α– – (t – s)α–)

≤ M,
∣
∣(t – η)α – (t – η)α + tα

 – tα


∣
∣.

Moreover, there exists a positive constant M, such that

I, ≤ M,

∫ t

η

(
(t – s)α– – (t – s)α–)

≤ M,
∣
∣(t – t)α + (t – η)α – (t – η)α

∣
∣

and we also have I = I, + I,, where

I, =
∫ η


(t – s)α–f

(
s, u(s)

)
(


(
∫ t

 f (x, u) dx)
–


(
∫ t

 f (x, u) dx)

)

ds

and

I, =
∫ t

η

(t – s)α–f
(
s, u(s)

)
(


(
∫ t

 f (x, u) dx)
–


(
∫ t

 f (x, u) dx)

)

ds.

In the same manner as in the proof of Lemma ., there exists positive constants M, and
M, such that

I, ≤ M,|t – t|,
I, ≤ M,|t – t|.

We have already proved in (), for some positive constant M, that

I ≤ M|t – t|α .

Therefore, we conclude that all Ii, i = , , , converge to zero when t → t. Thus, from
Cauchy’s convergence criterion, it yields limt→β– u(t) = u∗. This finishes the proof of
Lemma .. �

The second step of the proof of Theorem . consists in showing the following result.

Lemma . Function u(t) is continuable.

Proof As S is a closed subset, we can say that (β , u∗) ∈ S. Define u(β) = u∗. Hence, u(t) ∈
C[,β]. Then we define the operator K by

(Kv)(t) = u +
λ

�(α)

∫ t

β

(t – s)α– f (s, v(s))
(
∫ t

 f (x, v) dx)
ds,
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where

u = u +
λ

�(α)

∫ β


(t – s)α– f (s, v(s))

(
∫ t

 f (x, v) dx)
ds, v ∈ C

(
[β ,β + ]

)
, t ∈ [β ,β + ].

Set

Eb =
{

(t, v) : β ≤ t ≤ β + , |v| ≤ max
β≤t≤β+

∣
∣u(t)

∣
∣ + b

}

and

Eh =
{

v ∈ C[β ,β + ] : max
t∈[β ,β+h]

∣
∣v(t) – u(t)

∣
∣ ≤ b, v(β) = u(β)

}
,

where h = min{(b( λM
�(α+)c


)–) 

α , }. Analogously to the proof of Theorem ., we prove
that K is completely continuous on Eb. Indeed, let {vn} ⊆ C[β ,β + h]. Then ‖vn –
v‖[β ,β+h] →  as n → +∞ and similar arguments to the one above for (), allow us to
declare that there exists a positive constant ch depending on h such that

‖Kvn – Kv‖C[β ,β+h] ≤ ch‖vn – v‖C[β ,β+h].

Hence, ‖(Kvn)(t) – (Kv)(t)‖[β ,β+h] →  as n → +∞, which shows that the operator K is
continuous. We show that KEh is equicontinuous. For all v ∈ Eh, we have (Kv)(β) = u(β)
and, in view of the choice of h, it follows from hypotheses (H) and (H) that

∣
∣(Kv)(t) – u

∣
∣ =

∣
∣
∣
∣

λ

�(α)

∫ t

β

(t – s)α– f (s, v(s))
(
∫ t

 f (x, v) dx)
ds

∣
∣
∣
∣

≤ λM
�(α + )c


hα ≤ b.

Therefore, we get KEh ⊂ Eh. Furthermore, for any v ∈ Eh and β ≤ t ≤ t ≤ β + h, we have

(Kv)(t) – (Kv)(t) = I + I.

By a calculation analogous to the earlier one, there exists a positive constant M such that

I =
λ

�(α)

∫ β


(t – s)α– f (s, v(s))

(
∫ t

 f (x, v) dx)
ds

–
λ

�(α)

∫ β


(t – s)α– f (s, v(s))

(
∫ t

 f (x, v) dx)
ds

≤ λ

�(α)

∣
∣
∣
∣

∫ β



(
(t – s)α– – (t – s)α–) f (s, v(s))

(
∫ t

 f (x, v) dx)
ds

+
λ

�(α)

∫ β


(t – s)α–

(
f (s, v(s))

(
∫ t

 f (x, v) dx)
ds –

f (s, v(s))
(
∫ t

 f (x, v) dx)
ds

)∣
∣
∣
∣

≤ M
{∣∣(t – β)α – (t – β)α + tα

 – tα


∣
∣ + |t – t|

}
. ()
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An analogous treatment as in ()-() yields the existence of a positive constant M such
that

I =
λ

�(α)

∫ t

β

(t – s)α– f (s, v(s))
(
∫ t

 f (x, v) dx)
ds

–
λ

�(α)

∫ t

β

(t – s)α– f (s, v(s))
(
∫ t

 f (x, v) dx)
ds

≤ M
{∣∣(t – β)α – (t – β)α

∣
∣ + |t – t| + |t – t|α

}
. ()

Since the right side of inequalities () and () go to zero as t → t, we deduce that
{(Kv)(t) : v ∈ Eh} is equicontinuous. Consequently, K is completely continuous. Then
Schauder’s fixed point theorem can be applied to see that the operator K has a fixed point
ũ(t) ∈ Eh. On other words, we have

ũ(t) = u +
λ

�(α)

∫ t

β

(t – s)α– f (s, ũ(s))
(
∫ t

 f (x, ũ(x)) dx)
ds

= u +
λ

�(α)

∫ t


(t – s)α– f (s, ũ(s))

(
∫ t

 f (x, ũ(x)) dx)
ds, t ∈ [β ,β + h],

where

ũ(t) =

⎧
⎨

⎩

u(t), t ∈ (,β],

ũ(t), t ∈ [β ,β + h].

It follows that ũ(t) ∈ C[,β + h] and

ũ(t) = u +
λ

�(α)

∫ t


(t – s)α– f (s, ũ(s))

(
∫ t

 f (x, ũ(x)) dx)
ds.

Therefore, according to Lemma ., ũ(t) is a solution of () on (,β + h]. This is absurd
because u(t) is noncontinuable. This completes the proof of Lemma .. �

Theorem . follows from Lemmas . and .. �

Remark . Uniqueness of solution to problem () is easily derived from the proof of
Theorem . for a well chosen λ.

5 Global existence
Now we provide two sets of sufficient conditions for the existence of a global solution for
() (Theorems . and .). We begin with an auxiliary lemma.

Lemma . Suppose that conditions (H)-(H) hold. Let u(t) be a solution of () on (,β).
If u(t) is bounded on [τ ,β) for some τ > , then β = +∞.

Proof The result follows immediately from the results of Section . �
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Theorem . Suppose that conditions (H)-(H) hold. Then () has a solution in
C([, +∞)).

Proof The existence of a local solution u(t) of () is ensured thanks to Theorem .. We
already know, by Lemma ., that u(t) is a also a solution to the integral equation

u(t) = u +
λ

�(α)

∫ t


(t – s)α– f (s, u(s))

(
∫ t

 f (x, u(x)) dx)
ds.

Suppose that the existing interval of the noncontinuable solution u(t) is (,β), β < +∞.
Then

∣
∣u(t)

∣
∣ =

∣
∣
∣
∣u +

λ

�(α)

∫ t


(t – s)α– f (s, u(s))

(
∫ t

 f (x, u(x)) dx)
ds

∣
∣
∣
∣

≤ |u| +
λ

�(α)


(ct)

∫ t


(t – s)α–∣∣f

(
s, u(s)

)∣∣ds

≤ |u| +
λ

�(α)

c



∫ t



|u(s)|
(t – s)–α

ds.

By Lemma ., there exists a constant k(α) such that, for t ∈ (,β), we have

∣
∣u(t)

∣
∣ ≤ |u| + k|u| λ

�(α)

c



∫ t


(t – s)α– ds,

which is bounded on (,β). Thus, by Lemma ., problem () has a solution u(t) on
(, +∞). �

Next we give another sufficient condition ensuring global existence for ().

Theorem . Suppose that there exist positive constants c, c and c such that c ≤
|f (s, x)| ≤ c|x| + c. Then () has a solution in C([, +∞)).

Proof Suppose that the maximum existing interval of u(t) is (,β), β < +∞. We claim that
u(t) is bounded on [τ ,β) for any τ ∈ (,β). Indeed, we have

∣
∣u(t)

∣
∣ =

∣
∣
∣
∣u +

λ

�(α)

∫ t


(t – s)α– f (s, u(s))

(
∫ t

 f (x, u(x)) dx)
ds

∣
∣
∣
∣

≤ |u| +
λ

�(α)


(cτ )

∫ t


(t – s)α–∣∣f

(
s, u(s)

)∣∣ds

≤ |u| +
λ

�(α)
c

(cτ )

∫ t


(t – s)α– ds +

λ

�(α)
c

(cτ )

∫ t



|u(s)|
(t – s)–α

ds.

If we take

w(t) = |u| +
λ

�(α)
c

(cτ )

∫ t


(t – s)α– ds,

which is bounded, and

a =
λc

�(α)


(cβ) ,
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it follows, in accordance with Lemma ., that v(t) = |u(t)| is bounded. Thus, by Lemma .,
() has a solution u(t) on (, +∞). �

6 Conclusion
In our paper we consider a prototype of electrical conductivity that depends strongly in
both time and temperature. The model relates to modern developments of thermistors,
where fractional PDEs have a crucial role. It turns out that available computational meth-
ods are not theoretically sound in the sense they rely on results of local existence. The main
novelty of our paper is that we prove global existence for a nonlocal thermistor problem
with fractional differentiation in the Caputo sense. Moreover, we extend some results of
continuation and global existence to the fractional order initial value thermistor problem.
The proofs rely on Schauder’s fixed point theorem. We trust that our results will have a
positive impact on the application of computer mathematics to fractional thermistor de-
vices.
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