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Abstract
In this paper, we propose an efficient alternating direction implicit (ADI) Galerkin
method for solving the time-fractional partial differential equation with damping,
where the fractional derivative is in the sense of Caputo with order in (1, 2). The
presented numerical scheme is based on the L2-1σ method in time and the Galerkin
finite element method in space. The unconditional stability and convergence of the
numerical scheme are both carefully proved. Numerical results are displayed for
supporting the theoretical analysis.
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1 Introduction
In this paper, we study the following time-fractional partial differential equation with
damping in two space dimensions:

⎧
⎪⎨

⎪⎩

CDα
,tu + λ∂u

∂t = �u + f (x, y, t), (x, y, t) ∈ � × (, T], T > ,
u|∂� = , (x, y, t) ∈ ∂� × (, T],
u|t= = u(x, y), ∂u

∂t |t= = ϕ(x, y), (x, y) ∈ �,
()

where  < α < , λ > , � is a Laplacian which characterizes the standard diffusion in space,
� = (a, b) × (c, d), f is the source term, and CDα

,t is the Caputo derivative operator which
is defined by

CDα
,tg(t) = RLD–(–α)

,t
(
g ′′(t)

)
=


	( – α)

∫ t


(t – s)–αg ′′(s) ds,  < α < ,

and RLD–β
,t is the fractional integral operator defined by

RLD–β
,t g(t) =


	(β)

∫ t


(t – s)β–g(s) ds for β > .
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We remark that there are also other different definitions for fractional derivative (see, for
examples, [, ]), here we only focus on the Caputo derivative.

Fractional partial differential equations arise in a wide variety of physical situations
which are often used to demonstrate the anomalous diffusion behaviors, for instance, dif-
fusion of plasma, transport of fluid in porous media, diffusion at liquid surfaces, Lévy
flights in the two-dimensional rotating flow, etc. [, ]. Due to the nonlocal properties
of a fractional differential operator, fractional partial differential equations have already
been proved to be highly effective in depicting those anomalous diffusion scenarios. Equa-
tion () can be characterized as a wave equation with a damping effect due to the nonzero
term λ∂u

∂t . It can be regarded as the fractional analogue of the classical telegraph equation
(if α = , then it is just the classical telegraph equation). Choosing suitable λ, for example,
λ = , model () becomes a special case of the fractional Cattaneo-type equation []. When
λ = , it reduces to the single-term counterpart, i.e., the standard time-fractional partial
differential equation

CDα
,tu = �u + f in � × (, T]. ()

It is known that, according to the order of the time-fractional derivative, the anomalous
diffusions are divided into sub-diffusion (α ∈ (, )) and super-diffusion or diffusion-wave
(α ∈ (, )) []. These anomalous diffusions are in the sense of time. Normal diffusion as
used in space and anomalous diffusion as utilized in time may make confusion. So, we
would rather call () time-fractional partial differential equation (or time-fractional hy-
perbolic equation) than time-fractional diffusion-wave equation.

Several approaches are available for solving time-fractional partial differential equations
in one or more than one space dimension, see [–] for finite difference methods, [–]
for finite element methods, and [, ] for spectral methods. Moreover, one can refer to
the book [] or the review paper [] for more details. Due to the nonzero λ in the damp-
ing term, the numerical approaches for () are different from those for (). In [], Chen
et al. derived the analytical solution for equation () in one space dimension by using the
method of separation of variables, then constructed an implicit difference approximation,
where the stability and convergence were proved by the energy method. Very recently, Ren
and Gao presented a compact ADI scheme for the two-dimensional fractional Cattaneo
equation [], i.e., letting λ =  in (). Zhao and Sun also considered a fractional version
of the Cattaneo equation with variable coefficient []. They proposed the corresponding
compact Crank-Nicolson scheme and compact Crank-Nicolson ADI scheme for the one
and two space dimensions, respectively.

Although time-fractional partial differential equations involving the Caputo derivative
operator describe the history-dependent behavior well, they also cause large computa-
tional cost due to the fact that all the previous numerical data need to be stored in order
to obtain the current numerical solution. So, seeking proper numerical schemes for solv-
ing (), such as these with high accuracy and less storage, becomes important. Thus, the
most obvious thing is to propose an efficient high order ADI method for model (). In
this paper, we aim to construct an ADI Galerkin scheme for solving (). By using the L-
σ method for the Caputo derivative and the ADI finite element method for the spatial
derivative, we obtain an efficient ADI Galerkin scheme for solving (). We also carefully
display the corresponding theoretical analyses, such as stability and error estimate, for the
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derived scheme. It is worthy to mention that the proposed method is derived on the di-
rect discretization for the Caputo derivative at the non-grid point in time which is different
from those existing numerical methods, such as [].

Throughout this paper, we assume that f , u and ϕ are suitably smooth functions, and
the solution of problem () is unique and sufficiently regular. A brief outline of this paper
is given as follows. In Section , we introduce the preliminaries. In Section , an ADI
Galerkin scheme for solving time-fractional hyperbolic equation with damping is derived.
The corresponding unconditional stability and convergence analysis are given in Section .
In Section , numerical results are presented to support the theoretical analysis. Section 
concludes the paper and presents future work.

2 Preliminaries
In the following, we always assume that C denotes a generic positive constant which is
independent of the mesh spacing.

Let τ = T/N , where N is a positive integer. Denote tn = nτ ,  ≤ n ≤ N , and tn+ 


=
(tn+ + tn)/,  ≤ n ≤ N – . The time domain [, T] is covered by �τ = {tn |  ≤ n ≤ N}.
Given the mesh function v = {vn |  ≤ n ≤ N} on �τ , denote

δtvn+ 
 =


τ

(
vn+ – vn), vn+ 

 =


(
vn+ + vn).

We firstly give the discrete scheme of the Caputo derivative. Differing from the classical
discrete scheme for Caputo derivative at t = tn, the L-σ scheme approximates the Caputo
derivative at t = tn+σ , and it will be used in this paper. That is, for g(t) ∈ C[, T], the L-σ

scheme is described as follows []:

CDβ
,tg(t)|t=n+σ =


μ̂

n∑

k=

c(n+)
n–k

[
g(tk+) – g(tk)

]
+ Rn+σ

 , ()

where β ∈ (, ), the truncation error

∣
∣Rn+σ


∣
∣ ≤ Cτ –β max

≤t≤T

∣
∣g ′′′(t)

∣
∣, ()

the coefficients μ̂ = 	( – β)τβ , σ =  – β/, and for n = , c()
 = a, for n ≥ ,

c(n+)
k =

⎧
⎪⎨

⎪⎩

â + b̂, k = ,
âk + b̂k+ – b̂k , k = , , . . . , n – ,
ân – b̂n, k = n.

()

Here, â = σ –β , âk = (k + σ )–β – (k –  + σ )–β , k ≥  and b̂k = 
–β

[(k + σ )–β –
(k –  + σ )–β] – 

 [(k + σ )–β + (k –  + σ )–β], k ≥ .
We also have the following approximations to dg(tn+σ )/dt and g(tn+σ ), respectively:

dg(tn+σ )
dt

= δ̂tg(tn) + Rn+σ
 , n ≥ ,

g(tn+σ ) = gn+σ + Rn+σ
 , n ≥ ,

()
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where δ̂tg(tn) = 
τ

[(σ + )g(tn+) – σ g(tn) + (σ – )g(tn–)], and gn+σ = σ g(tn+) +
( – σ )g(tn). The truncation errors have the following estimate:

∣
∣Rn+σ


∣
∣ ≤ Cτ  max

≤t≤T

∣
∣g ′′′(t)

∣
∣,

∣
∣Rn+σ


∣
∣ ≤ Cτ  max

≤t≤T

∣
∣g ′′(t)

∣
∣. ()

For the spatial direction, we recall some notations and properties from the finite element
methods. We limit our interest to the two space dimensions.

For a nonnegative integer m, denote Hm(�) as the Sobolev space W m,(�). Denote
H

(�) as the closure of C∞
 (�) with respect to the norm ‖ · ‖H . An equivalent norm on

H
(�) is

‖v‖H


= ‖∇v‖ =
(∥

∥
∥
∥

∂v
∂x

∥
∥
∥
∥



+
∥
∥
∥
∥
∂v
∂y

∥
∥
∥
∥

)/

,

where ‖ · ‖ denotes the L norm.
Denote

Z =
{

u
∣
∣
∣ u,

∂u
∂x

,
∂u
∂y

,
∂u
∂x ∂y

∈ L(�)
}

.

For h >  and r ≥ , Xr
h ⊂ H

(�) is a finite-dimensional subspace consisting of all piecewise
polynomials of degree at most r. And Xr

h satisfies the following assumptions []:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Xr
h ⊂ Z ∩ H

,
‖ ∂χ

∂x ∂y‖ ≤ Ch–‖χ‖ for χ ∈ Xr
h,

infχ∈Xr
h
[
∑

m= hm ∑
i,j=,
i+j=m

‖ ∂m(u–χ )
∂xi ∂yj ‖] ≤ Chs‖u‖Hs

for u ∈ Hs(�) ∩ Z ∩ H
(�),  ≤ s ≤ r + , s ∈ Z+.

3 Derivation of the ADI Galerkin scheme
Note that CDα

,tu = CDβ
,t(∂u/∂t), β = α–, so we rewrite equation () as a first-order system

by setting φ = ∂u/∂t. That is,

{

CDβ
,tφ + λφ = �u + f (x, y, t), (x, y, t) ∈ � × (, T], T > ,

∂u
∂t = φ.

()

Now considering () on the time level tn+σ for n ≥  (t/ when n =  for the second equa-
tion of ()) and using the approximations () and (), we get

⎧
⎪⎨

⎪⎩


μ̂

∑n
k= c(n+)

n–k (φk+ – φk) + λφn+σ = �un+σ + f n+σ + O(τ ),
δtu/ = φ/ + O(τ ),
δ̂tun = φn+σ + O(τ ).

()

Note that u = u + τ (φ + φ)/ and

un+ =
τ

σ + 
[
σφn+ + ( – σ )φn] +


σ + 

[
σun – (σ – )un–]
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for the second and third equations in (). Substituting them into the first equation in ()
for the two cases n =  and n ≥ , one has

φ – σ
τ


μ̂

c()
 + λμ̂σ

�φ

=


c()
 + λμ̂σ

[
(
c()

 – λμ̂( – σ )
)
φ + σ μ̂

τ


�φ + μ̂�u + μ̂f σ

]

()

and

φn+ –
τ

σ + 
σ μ̂

c(n+)
 + λμ̂σ

�φn+

=


c(n+)
 + λμ̂σ

[

–
n–∑

k=

c(n+)
n–k

(
φk+ – φk)

+
(
c(n+)

 – λμ̂( – σ )
)
φn + σ ( – σ )μ̂

τ

σ + 
�φn

+
(

σ μ̂

σ + 
+ ( – σ )μ̂

)

�un –
σ (σ – )μ̂

σ + 
�un– + μ̂f n+σ

]

, n ≥ . ()

It follows from () and () that the Galerkin approximation {φn
h}N

n= ⊂ Xr
h for solving

() is defined by

(
φ

h,χ
)

+ σ
τ


μ̂

c()
 + λμ̂σ

(∇φ
h,∇χ

)

=


c()
 + λμ̂σ

[
(
c()

 – λμ̂( – σ )
)(

φ
h ,χ

)

– σ μ̂
τ


(∇φ

h ,∇χ
)

– μ̂
(∇u

h,∇χ
)

+ μ̂
(
f σ ,χ

)
]

, ∀χ ∈ Xr
h, n = , ()

and

(
φn+

h ,χ
)

+
τ

σ + 
σ μ̂

c(n+)
 + λμ̂σ

(∇φn+
h ,∇χ

)

=


c(n+)
 + λμ̂σ

[

–
n–∑

k=

c(n+)
n–k

((
φk+

h – φk),χ
)

+
(
c(n+)

 – λμ̂( – σ )
)(

φn
h ,χ

)
– σ ( – σ )μ̂

τ

σ + 
(∇φn

h ,∇χ
)

–
(

σ μ̂

σ + 
+ ( – σ )μ̂

)
(∇un

h,∇χ
)

+
σ (σ – )μ̂

σ + 
(∇un–

h ,∇χ
)

+ μ̂
(
f n+σ ,χ

)
]

, ∀χ ∈ Xr
h, n ≥ . ()

Here, the initial values u
h and ϕh are given by

(
u

h – u,χ
)

= , (ϕh – ϕ,χ ) = , χ ∈ Xr
h,
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respectively. From () and () we can obtain the approximation to u, namely, u
h = u +

τ (φ
h + φ

h )/ for n =  and

un+
h =

τ

σ + 
[
σφn+

h + ( – σ )φn
h
]

+


σ + 
[
σun

h – (σ – )un–
h

]
for n ≥ .

Adding the two small terms


(

σ
τ


μ̂

c()
 + λμ̂σ

)(
∂

∂x ∂y
φ/

h ,
∂

∂x ∂y
χ

)

,

σ 
(

τ

σ + 
μ̂

c(n+)
 + λμ̂σ

)(
∂

∂x ∂y
φn+σ

h ,
∂

∂x ∂y
χ

)

on the left-hand sides of () and (), respectively, the ADI Galerkin scheme for () in the
inner form is given below.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(φ
h,χ ) + σ τ


μ̂

c()
 +λμ̂σ

(∇φ
h,∇χ ) + (σ τ


μ̂

c()
 +λμ̂σ

)( ∂

∂x ∂yφ
/
h , ∂

∂x ∂yχ )

= 
c()

 +λμ̂σ
[(c()

 – λμ̂( – σ ))(φ
h ,χ )

– σ μ̂ τ
 (∇φ

h ,∇χ ) – μ̂(∇u
h,∇χ ) + μ̂(f σ ,χ )], ∀χ ∈ Xr

h, n = ,

(φn+
h ,χ ) + τ

σ+
σμ̂

c(n+)
 +λμ̂σ

(∇φn+
h ,∇χ ) + σ ( τ

σ+
μ̂

c(n+)
 +λμ̂σ

)( ∂φn+σ
h

∂x ∂y , ∂χ

∂x ∂y )

= 
c(n+)

 +λμ̂σ
[–

∑n–
k= c(n+)

n–k ((φk+
h – φk),χ ) + (c(n+)

 – λμ̂( – σ ))(φn
h ,χ )

– σ ( – σ )μ̂ τ
σ+ (∇φn

h ,∇χ ) – ( σμ̂

σ+ + ( – σ )μ̂)(∇un
h,∇χ )

+ σ (σ–)μ̂
σ+ (∇un–

h ,∇χ ) + μ̂(f n+σ ,χ )], ∀χ ∈ Xr
h, n ≥ ,

()

from which we can obtain the approximation to u: u
h = u + τ (φ

h + φ
h )/ for n =  and

un+
h =

τ

σ + 
[
σφn+

h + ( – σ )φn
h
]

+


σ + 
[
σun

h – (σ – )un–
h

]

for n ≥ .
Next, we further discuss numerical scheme (). In order to efficiently solve the nu-

merical scheme (), we rewrite it into a more familiar matrix form. Assume that Xr
h =

Xr
h,x ⊗Xr

h,y, where Xr
h,x and Xr

h,y are finite-dimensional subspaces of H
([a, b]) and H

([c, d]),
respectively. Let {ϕiθj}Nx ,Ny

i=,j= be the tensor product basis of Xr
h, where {ϕi}Nx

i= and {θj}Ny
j= are

bases of Xr
h,x and Xr

h,y, respectively. Let

un
h(x, y) =

Nx∑

i=

Ny∑

j=

α
(n)
ij ϕi(x)θj(y), φn

h (x, y) =
Nx∑

i=

Ny∑

j=

β
(n)
ij ϕi(x)θj(y),

then α
()
ij = α

()
ij + τ (β ()

ij + β
()
ij )/ for n =  and

α
(n+)
ij =

τ

σ + 
[
σβ

(n+)
ij + ( – σ )β (n)

ij
]

+


σ + 
[
σα

(n)
ij – (σ – )α(n–)

ij
]
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for n ≥ . Set matrices Mx, My, Sx, Sy ∈ R
Nx×Ny satisfying

(Mx)i,j = (ϕi,ϕj), (My)i,j = (θi, θj),

(Sx)i,j =
(

∂ϕi

∂x
,
∂ϕj

∂x

)

, (Sy)i,j =
(

∂θi

∂x
,
∂θj

∂x

)

.

Inserting un
h and φn

h into () and choosing χ = ϕkθm, k = , , . . . , Nx, m = , , . . . , Ny, we
obtain the matrix form of the ADI Galerkin scheme () as follows.

⎧
⎨

⎩

[Mx + σ τ


μ̂

c()
 +λμ̂σ

Sx]�[My + σ τ


μ̂

c()
 +λμ̂σ

Sy]T = 
c()

 +λμ̂σ
F, n = ,

[Mx + τ
σ+

σμ̂

c(n+)
 +λμ̂σ

Sx]�n+[My + τ
σ+

σμ̂

c(n+)
 +λμ̂σ

Sy]T = 
c(n+)

 +λμ̂σ
Fn, n ≥ ,

()

in which �n, Un, F, Fn ∈R
Nx×Ny satisfying (�n)i,j = βn

ij , (Un)i,j = αn
ij and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F
ij = (c()

 – λμ̂( – σ ))(φ
h ,ϕiθj) – σ μ̂ τ

 (∇φ
h ,∇ϕiθj) – μ̂(∇u

h,∇ϕiθj) + μ̂(f σ ,ϕiθj)
– (σ τ


μ̂

c()
 +λμ̂σ

)(Sx�
ST

y )ij,

Fn+
ij = –

∑n–
k= c(n+)

n–k (Mx�
k+MT

y – Mx�
kMT

y )ij + (c(n+)
 – λμ̂( – σ ))(Mx�

nMT
y )ij

+ σ (σ–)μ̂
σ+ (SxUn–MT

y + MxUn–ST
y )ij + μ̂(f n+σ ,ϕiθj)

– σ ( – σ )μ̂ τ
σ+ (Sx�

nMT
y + Mx�

nST
y )ij

– ( σμ̂

σ+ + ( – σ )μ̂)(SxUnMT
y + MxUnST

y )ij

– σ ( – σ )( σμ̂

c(n+)
 +λμ̂σ

)(Sx�
nST

y )ij.

Then the numerical solution �n in () can be solved by two steps. For example, for n = ,
we first solve

[

Mx + σ
τ


μ̂

c()
 + λμ̂σ

Sx

]

�̃ =


c()
 + λμ̂σ

F, ()

then we solve
[

My + σ
τ


μ̂

c()
 + λμ̂σ

Sy

]

� =
(
�̃)T . ()

4 Stability and convergence
Let X be a Banach space with the norm ‖ · ‖X . When v(x, t) is defined on the entire time
interval [, T], we define

C
(
[, T]; L(�)

)
:=

{
v | ∥∥v(·, t)

∥
∥ ∈ C

(
[, T]

)}
,

L(X) :=
{

v
∣
∣
∣ ‖v‖L(X) :=

(∫ T



∥
∥v(·, t)

∥
∥

X dt
) 


< ∞

}

,

L∞(X) :=
{

v
∣
∣ ‖v‖L∞(X) := sup

≤t≤T

∥
∥v(·, t)

∥
∥

X < ∞
}

.

Let u∗ = �
,
h u : [, T] → Xr

h be the H
(�) projection of the solution u of (), that is,

(∇(u – u∗),∇χ
)

= , χ ∈ Xr
h. ()
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In the following, we study the stability for the ADI Galerkin scheme (). To this end, we
need to introduce some properties of the projection u∗ and the coefficients c(n+)

k defined
by ().

Lemma . ([]) If ∂ku/∂tk ∈ Lp(Hr+) for k = , ,  and p = ,∞, then there exists a
constant C, independent of h, such that

∥
∥
∥
∥
∂k(u – u∗)

∂tk

∥
∥
∥
∥

Lp(Hj)
≤ Chs–j

∥
∥
∥
∥
∂ku
∂tk

∥
∥
∥
∥

Lp(Hs)
, ()

where j = , ,  ≤ s ≤ r + , and u∗ is defined in ().

Lemma . The following estimates hold:
(a) c(n+)

 > c(n+)
 > c(n+)

 > · · · > c(n+)
n > –β

 (n + σ )–β ;
(b)

∑n–
k=(c(k+)

k– – c(k+)
k ) ≤ –β

–β
(n –  + σ )–β ;

(c)
∑n–

k= c(k+)
k ≤ (n –  + σ )–β .

Proof From the expansion of the coefficients c(k+)
k , we can obtain the above estimates.

One can also refer to [] for (a) and [] for (b) and (c). All this ends the proof. �

We also need the following estimates.

Lemma . ([]) For any function un
h ∈ Xr

h, n = , , . . . , N , the following inequalities hold:

(
δ̂t∇un

h,∇un+σ
h

) ≥ 
τ

(
En+ – En), n ≥ ,

(

μ̂

n∑

k=

c(n+)
k

(
uk+

h – uk
h
)
, un+σ

h

)

≥ 
μ̂

n∑

k=

c(n+)
k

(∥
∥uk+

h
∥
∥ –

∥
∥uk

h
∥
∥).

Here, En+ = (σ + )‖∇un+
h ‖ – (σ – )‖∇un

h‖ + (σ  + σ – )‖∇un+
h – ∇un

h‖ with En+ ≥

σ
‖∇un+

h ‖.

We are now in the position to present the stability of ADI Galerkin scheme ().

Theorem . Suppose that un
h is the solution of ADI Galerkin scheme () and f ∈

C([, T]; L(�)). Then it holds that

∥
∥um

h
∥
∥

H

≤ C

[
∥
∥∇u

h
∥
∥ +

∥
∥φ

h
∥
∥ +

τ

λ

m–∑

n=

∥
∥f n+σ

∥
∥ + τ

m–∑

n=

∥
∥∇ρn+σ

h
∥
∥ + τ

∥
∥∇ρ/

h
∥
∥

]

,

where ρ/
h and ρn+σ

h are the perturbations of δtu/
h = φ/

h + ρ/
h and δ̂tun

h = φn+σ
h + ρn+σ

h ,
respectively.
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Proof For n ≥ , let χ = φn+σ
h , or equivalently, χ = δ̂tun

h – ρn+σ
h in equation (), some cal-

culations give


μ̂

n∑

k=

c(n+)
n–k

((
φk+

h – φk
h
)
,φn+σ

h
)

+ λ
∥
∥φn+σ

h
∥
∥

+ σ  μ̂

c(n+)
 + λμ̂σ

(
τ

σ + 

)∥∥
∥
∥

∂

∂x ∂y
φn+σ

h

∥
∥
∥
∥



+
(∇un+σ

h , δ̂t∇un
h – ∇ρn+σ

h
)

=
(
f n+σ ,φn+σ

h
)
. ()

It follows from Lemma . that () yields


μ̂

n∑

k=

c(n+)
n–k

(∥
∥φk+

h
∥
∥ –

∥
∥φk

h
∥
∥) + λ

∥
∥φn+σ

h
∥
∥

+ σ  μ̂

c(n+)
 + λμ̂σ

(
τ

σ + 

)∥∥
∥
∥

∂

∂x ∂y
φn+σ

h

∥
∥
∥
∥



+


τ

(
En+ – En)

≤ (
f n+σ ,φn+σ

h
)

+
(∇un+σ

h ,∇ρn+σ
h

)
. ()

Multiplying τ on both sides of (), then using the Cauchy-Schwarz inequality for the
last two terms on the right-hand side of () and removing the nonnegative third term on
the left-hand side of (), we get

τ

μ̂

n∑

k=

c(n+)
n–k

(∥
∥φk+

h
∥
∥ –

∥
∥φk

h
∥
∥) + λτ

∥
∥φn+σ

h
∥
∥ +

(
En+ – En)

≤ τ
∥
∥f n+σ

∥
∥
∥
∥φn+σ

h
∥
∥ + τ

∥
∥∇un+σ

h
∥
∥
∥
∥∇ρn+σ

h
∥
∥. ()

Summing up n from n =  to n = m –  for (), we have

τ

μ̂

m–∑

n=

n∑

k=

c(n+)
n–k

(∥
∥φk+

h
∥
∥ –

∥
∥φk

h
∥
∥) + λτ

m–∑

n=

∥
∥φn+σ

h
∥
∥ +

(
Em – E)

≤ τ

m–∑

n=

∥
∥f n+σ

∥
∥
∥
∥φn+σ

h
∥
∥ + τ

m–∑

n=

∥
∥∇un+σ

h
∥
∥
∥
∥∇ρn+σ

h
∥
∥

≤ τ

m–∑

n=

[

ε
∥
∥f n+σ

∥
∥ +


ε

∥
∥φn+σ

h
∥
∥

]

+ τ

m–∑

n=

[



∥
∥∇un+σ

h
∥
∥ +

∥
∥∇ρn+σ

h
∥
∥

]

≤ τ

ε

m–∑

n=

∥
∥φn+σ

h
∥
∥ + τ

m–∑

n=

∥
∥∇un+σ

h
∥
∥ + τε

m–∑

n=

∥
∥f n+σ

∥
∥ + τ

m–∑

n=

∥
∥∇ρn+σ

h
∥
∥. ()

Here, ε is an arbitrary positive constant which will be given later on.
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Note that

τ

μ̂

m–∑

n=

n∑

k=

c(n+)
n–k

(∥
∥φk+

h
∥
∥ –

∥
∥φk

h
∥
∥)

=
τ

μ̂

m–∑

n=

[

c(n+)


∥
∥φn+

h
∥
∥ – c(n+)

n
∥
∥φ

h
∥
∥ +

n∑

k=

(
c(n+)

n+–k – c(n+)
n–k

)∥
∥φk

h
∥
∥

]

≥ –


	( – β)
T –β

∥
∥φ

h
∥
∥ –

 – β

	( – β)
T –β

∥
∥φ

h
∥
∥ +

τ

μ̂

m∑

k=

c(m)
m–k

∥
∥φk

h
∥
∥

≥ –


	( – β)
T –β

∥
∥φ

h
∥
∥ –

 – β

	( – β)
T –β

∥
∥φ

h
∥
∥ +

τ

Tβ	( – β)

m∑

k=

∥
∥φk

h
∥
∥,

where we have used Lemma ..
So

τ

Tβ	( – β)

m∑

k=

∥
∥φk

h
∥
∥ + λτ

m–∑

n=

∥
∥φn+σ

h
∥
∥ +

(
Em – E)

≤ 
	( – β)

T –β
∥
∥φ

h
∥
∥ +

(
 – β

	( – β)
T –β +

τ

Tβ	( – β)

)
∥
∥φ

h
∥
∥

+
τ

ε

m–∑

n=

∥
∥φn+σ

h
∥
∥ + τ

m–∑

n=

∥
∥∇un+σ

h
∥
∥ + τε

m–∑

n=

∥
∥f n+σ

∥
∥ + τ

m–∑

n=

∥
∥∇ρn+σ

h
∥
∥. ()

Letting ε = /(λ) in () and using the estimates for Em, we obtain

τ

m∑

k=

∥
∥φk

h
∥
∥ +

∥
∥∇um

h
∥
∥

≤ C

[
∥
∥∇u

h
∥
∥ +

∥
∥φ

h
∥
∥ +

∥
∥∇u

h
∥
∥ +

∥
∥φ

h
∥
∥

+ τ

m–∑

n=

∥
∥∇un

h
∥
∥ +

τ

λ

m–∑

n=

∥
∥f n+σ

∥
∥ + τ

m–∑

n=

∥
∥∇ρn+σ

h
∥
∥

]

. ()

Next we estimate the two terms ‖∇u
h‖ and ‖φ

h‖ on the right-hand side of (), this
is the case n =  in (). Letting χ = φ/

h , or equivalently, χ = δtu/
h – ρ/

h for the case in
(), we have


μ̂

c()


((
φ

h – φ
h
)
,φ/

h
)

+ λ
(
φσ

h ,φ/
h

)
+ 

μ̂

c()
 + λμ̂σ

(
στ



)∥∥
∥
∥

∂

∂x ∂y
φ/

h

∥
∥
∥
∥



+
(∇uσ

h , δt∇u/
h – ∇ρ/

h
)

=
(
f σ ,φ/

h
)
. ()

Multiplying τ on both sides of () and removing the nonnegative term ‖∂φ/
h /∂x ∂y‖,

we get

τ

μ̂
c()


(∥
∥φ

h
∥
∥ –

∥
∥φ

h
∥
∥)+ τλ

(
φσ

h ,φ/
h

)
+ τ

(∇uσ
h , δt∇u/

h –∇ρ/
h

) ≤ τ
(
f σ ,φ/

h
)
. ()
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Since

τλ
(
φσ

h ,φ/
h

)
= τλ

(
σ
∥
∥φ

h
∥
∥ + ( – σ )

∥
∥φ

h
∥
∥ +

∥
∥φ

h
∥
∥
∥
∥φ

h
∥
∥
) ≥ τλσ

∥
∥φ

h
∥
∥

and

τ
(∇uσ

h , δt∇u/
h

)
= 

(
σ
∥
∥∇u

h
∥
∥ – ( – σ )

∥
∥∇u

h
∥
∥ + ( – σ )

∥
∥∇u

h
∥
∥
∥
∥∇u

h
∥
∥
)

≥ ∥
∥∇u

h
∥
∥ –

∥
∥∇u

h
∥
∥,

where  – σ <  is used. So, by the Cauchy-Schwarz inequality, equation () has the
following estimate:

τ

μ̂
c()


(∥
∥φ

h
∥
∥ –

∥
∥φ

h
∥
∥) + τλσ

∥
∥φ

h
∥
∥ +

∥
∥∇u

h
∥
∥ –

∥
∥∇u

h
∥
∥

≤ τ
∥
∥f σ

∥
∥
∥
∥φ/

h
∥
∥ + τ

∥
∥∇uσ

h
∥
∥
∥
∥∇ρσ

h
∥
∥

≤ τε
(∥
∥φ

h
∥
∥ +

∥
∥φ

h
∥
∥) +

τ

ε

∥
∥f σ

∥
∥ + τ

(∥
∥∇u

h
∥
∥ +

∥
∥∇u

h
∥
∥) +

τ


∥
∥∇ρ/

h
∥
∥. ()

Letting ε = λσ / in () and using the equalities c()
 τ /μ̂ = t–β

σ /	( – β) and στ = tσ , we
obtain

∥
∥φ

h
∥
∥ +

∥
∥∇u

h
∥
∥ ≤ C

[
∥
∥φ

h
∥
∥ +

∥
∥∇u

h
∥
∥ + τ

∥
∥∇u

h
∥
∥ +

τ

λ

∥
∥f σ

∥
∥ + τ

∥
∥∇ρ/

h
∥
∥

]

. ()

Combining () with () gives

τ

m∑

k=

∥
∥φk

h
∥
∥ +

∥
∥∇um

h
∥
∥ ≤ C

[
∥
∥∇u

h
∥
∥ +

∥
∥φ

h
∥
∥ + τ

m–∑

n=

∥
∥∇un

h
∥
∥

+
τ

λ

m–∑

n=

∥
∥f n+σ

∥
∥ + τ

m–∑

n=

∥
∥∇ρn+σ

h
∥
∥ + τ

∥
∥∇ρ/

h
∥
∥

]

. ()

From the Gronwall inequality, we readily obtain

∥
∥um

h
∥
∥

H

≤ C

[
∥
∥∇u

h
∥
∥ +

∥
∥φ

h
∥
∥ +

τ

λ

m–∑

n=

∥
∥f n+σ

∥
∥ + τ

m–∑

n=

∥
∥∇ρn+σ

h
∥
∥ + τ

∥
∥∇ρ/

h
∥
∥

]

. ()

All this completes the proof. �

Next we consider the convergence of ADI Galerkin scheme ().

Theorem . Let {un
h}N

n= and u∗ denote the solutions of () and (), respectively. As-
sume that the solution u in () satisfies u ∈ L∞(Hr), ∂u

∂t ∈ L∞(Hr+), ∂u
∂t ∈ L∞(L), CDα

,tu ∈
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L∞(Hr), ∂u
∂x ∂y ∂t ∈ L∞(L), where r ≥ . Then, for sufficiently small τ ,

max
≤n≤N

∥
∥un – un

h
∥
∥

H

≤ C

[

hr
(

‖u‖L∞(Hr) +
∥
∥
∥
∥
∂u
∂t

∥
∥
∥
∥

L(Hr+)
+


λ

∥
∥CDα

,tu
∥
∥

L∞(Hr )

)

+ τ 
(∥

∥
∥
∥
∂u
∂t

∥
∥
∥
∥

L∞(L)
+


λ

∥
∥
∥
∥
∂u
∂t

∥
∥
∥
∥

L∞(L)

)

+ τ
+α



(∥
∥
∥
∥

∂u
∂x ∂y ∂t

∥
∥
∥
∥

L∞(L)
+ hr–

∥
∥
∥
∥
∂u
∂t

∥
∥
∥
∥

L∞(Hr+)

)]

,

provided that the initial values u
h and ϕh satisfy that ‖ϕh – �

,
h ϕ‖ and ‖∇(u

h – �
,
h u)‖

are O(hr).

Proof Considering the weak form of () on the time level tn+σ for n ≥  and t/ for n = ,
we can derive that


μ̂

n∑

k=

cn+
n–k

(
φk+ – φk ,χ

)
+ λ

(
φ(x, y, tn+σ ),χ

)
+

(∇u(x, y, tn+σ ),∇χ
)

+ σ  μ̂

c(n+)
 + λμ̂σ

(
τ

σ + 

)(
∂

∂x ∂y
φn+σ ,

∂

∂x ∂y
χ

)

=
(
Rn+σ

 + Rn+σ
 + f (x, y, tn+σ ),χ

)

+ σ  μ̂

c(n+)
 + λμ̂σ

(
τ

σ + 

)(
∂

∂x ∂y
φn+σ ,

∂

∂x ∂y
χ

)

()

with δtu/ = φ/ + δtu/ – ∂u(x,y,t/)
∂t for n =  and δ̂tun = φn+σ + δ̂tun – ∂u(x,y,tn+σ )

∂t for n ≥ .
Here, Rn+σ

 and Rn+σ
 are the forms as denoted in () and (), respectively, with ∂u/∂t

instead of g ′′′(t).
Denote e = u∗ – uh, η = u – u∗, ê = ∂u∗

∂t – φh, and η̂ = φ – ∂u∗
∂t . Here, u∗ is defined in ().

Combining () with (), we get the following error equation:


μ̂

n∑

k=

c(n+)
n–k

(
êk+ – êk ,χ

)
+ λ

(
ên+σ ,χ

)
+

(∇en+σ ,∇χ
)

+ σ  μ̂

c(n+)
 + λμ̂σ

(
τ

σ + 

)(
∂

∂x ∂y
ên+σ ,

∂

∂x ∂y
χ

)

=
(
σ n+σ ,χ

)
+ σ  μ̂

c(n+)
 + λμ̂σ

(
τ

σ + 

)(

κn+σ ,
∂

∂x ∂y
χ

)

, ()

with δte/ = ê/ + ρ/ for n =  and δ̂ten = ên+σ + ρn+σ for n ≥ . Here,

σ n+σ = –

μ̂

n∑

k=

c(n+)
n–k

(
η̂k+ – η̂k) – λη̂n+σ + Rn+σ

 + Rn+σ
 ,

κn+σ =
∂

∂x ∂y
(
φn+σ

h – η̂n+σ
)
,

ρ/ = η̂/ + δtu/ –
∂u(x, y, t/)

∂t
– δtη

/,

ρn+σ = η̂n+σ + δ̂tun –
∂u(x, y, tn+σ )

∂t
– δ̂tη

n.
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From Theorem ., we can derive the following estimate:

∥
∥em∥

∥
H


≤ C

[
∥
∥∇e∥∥ +

∥
∥ê∥∥ +

τ

λ

m–∑

n=

∥
∥σ n+σ

∥
∥ + τ

m–∑

n=

∥
∥∇ρn+σ

h
∥
∥ + τ

∥
∥∇ρ/

h
∥
∥

+ σ  μ̂

c(n+)
 + λμ̂σ

(
τ

σ + 

)

τ

m–∑

n=

∥
∥κn+σ

∥
∥

]

. ()

Using the triangle inequality and (), we have

∥
∥um – um

h
∥
∥

H

≤ C

[
∥
∥ηm∥

∥
H


+

∥
∥∇e∥∥ +

∥
∥ê∥∥ +

τ

λ

m–∑

n=

∥
∥σ n+σ

∥
∥ + τ

m–∑

n=

∥
∥∇ρn+σ

h
∥
∥

+ τ
∥
∥∇ρ/

h
∥
∥ + σ  μ̂

c(n+)
 + λμ̂σ

(
τ

σ + 

)

τ

m–∑

n=

∥
∥κn+σ

∥
∥

]

. ()

So it remains to estimate the terms on the right-hand side of (). Firstly, by Lemma .,
we obtain

∥
∥ηn∥∥

H

≤ ‖η‖

L∞(H) ≤ Chr‖u‖
L∞(Hr+). ()

Since

τ

λ

m–∑

n=

∥
∥
∥
∥
∥

–

μ

n∑

k=

c(n+)
n–k

(
η̂k+ – η̂k)

∥
∥
∥
∥
∥



≤ C

λ

∥
∥CDα

,tη
∥
∥

L∞(L) ≤ C

λ

hr∥∥CDα
,tu

∥
∥

L∞(Hr ),

one has

τ

λ

m–∑

n=

∥
∥σ n+σ

∥
∥ =

τ

λ

m–∑

n=

[∥
∥
∥
∥
∥

–

μ

n∑

k=

c(n+)
n–k

(
η̂k+ – η̂k)

∥
∥
∥
∥
∥



+ λ∥∥η̂n+σ
∥
∥ +

∥
∥Rn+σ

 + Rn+σ


∥
∥

]

≤ C
[


λ

hr∥∥CDα
,tu

∥
∥

L∞(Hr )

+ λhr
∥
∥
∥
∥
∂u
∂t

∥
∥
∥
∥



L(Hr )
+


λ

τ 
∥
∥
∥
∥
∂u
∂t

∥
∥
∥
∥



L∞(L)

]

. ()

For the fifth term on the right-hand side of (), we have

τ

m–∑

n=

∥
∥∇ρn+σ

h
∥
∥ ≤ τ

m–∑

n=

∥
∥∇η̂n+σ

∥
∥ + τ

m–∑

n=

∥
∥
∥
∥
∥
δ̂tun –

∂u(x, y, tn+σ )
∂t

∥
∥
∥
∥
∥



+ τ

m–∑

n=

∥
∥δ̂t∇ηn∥∥

≤ C
[

hr
∥
∥
∥
∥
∂u
∂t

∥
∥
∥
∥



L(Hr+)
+ τ 

∥
∥
∥
∥
∂u
∂t

∥
∥
∥
∥



L∞(L)

]

, ()
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where we have used the following inequality:

∥
∥δ̂tη

n∥∥ ≤ C
[∥
∥
∥
∥
ηn+ – ηn

τ

∥
∥
∥
∥



+
∥
∥
∥
∥
ηn – ηn–

τ

∥
∥
∥
∥



+
∥
∥
∥
∥
ηn+ – ηn–

τ

∥
∥
∥
∥

]

.

Similarly, we can obtain

∥
∥∇ρ/

h
∥
∥ ≤ τ

∥
∥∇η̂/∥∥ + τ

∥
∥
∥
∥δtu/ –

∂u(x, y, t/)
∂t

∥
∥
∥
∥



+ τ
∥
∥δt∇η/∥∥

≤ C
[

hr
∥
∥
∥
∥
∂u
∂t

∥
∥
∥
∥



L(Hr+)
+ τ 

∥
∥
∥
∥
∂u
∂t

∥
∥
∥
∥



L∞(L)

]

. ()

For the last term on the right-hand side of equation (), we have the estimate below (cf.
[, p.]).

σ  μ̂

c(n+)
 + λμ̂σ

(
τ

σ + 

)

τ

m–∑

n=

∥
∥κn+σ

∥
∥

≤ Cτ +ατ

m–∑

n=

[∥
∥
∥
∥
∂φn+σ

h
∂x ∂y

∥
∥
∥
∥



+
∥
∥
∥
∥
∂η̂n+σ

∂x ∂y

∥
∥
∥
∥

]

≤ Cτ +ατ

m–∑

n=

[∥
∥
∥
∥

∂u
∂x ∂y ∂t

∥
∥
∥
∥



L∞(L)
+

∥
∥
∥
∥

∂η̂

∂x ∂y

∥
∥
∥
∥



L∞(L)

]

≤ Cτ +α

[∥
∥
∥
∥

∂u
∂x ∂y ∂t

∥
∥
∥
∥



L∞(L)
+ hr–

∥
∥
∥
∥
∂u
∂t

∥
∥
∥
∥



L∞(Hr+)

]

. ()

So, combining the above estimate ()-() for (), we obtain

max
≤n≤N

∥
∥un – un

h
∥
∥

H

≤ C

[

hr
(

‖u‖L∞(Hr) +
∥
∥
∥
∥
∂u
∂t

∥
∥
∥
∥

L(Hr+)
+


λ

∥
∥CDα

,tu
∥
∥

L∞(Hr )

)

+ τ 
(∥

∥
∥
∥
∂u
∂t

∥
∥
∥
∥

L∞(L)
+


λ

∥
∥
∥
∥
∂u
∂t

∥
∥
∥
∥

L∞(L)

)

+ τ
+α



(∥
∥
∥
∥

∂u
∂x ∂y ∂t

∥
∥
∥
∥

L∞(L)
+ hr–

∥
∥
∥
∥
∂u
∂t

∥
∥
∥
∥

L∞(Hr+)

)]

, ()

provided that u
h and ϕh are chosen such that ‖ϕh – �

,
h ϕ‖ and ‖∇e‖ are O(hr). This

completes the proof. �

Remark . It seems that the temporal convergent order would be destroyed due to the
presence of the term O(τ (+α)/) in Theorem .. However, in the practical computation,
the convergence order in time always be two for (). The disagreement probably means
that the theoretical analyses may be improved. In fact, the term O(τ (+α)/) comes from
the error estimate of the accumulation for adding small term at a given time level. One
possible way to improve the result is by introducing a much smaller disturbance term to
construct the ADI Galerkin scheme; however, it seems that the resulting scheme does not
improve the numerical results in practical computation but only causes more complicated
computation.
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5 Numerical examples
Here we present numerical examples to verify the theoretical analysis of ADI Galerkin
scheme ().

Example . Consider the following two-dimensional time-fractional partial differential
equation with damping:

{

CDα
,tu + ∂u

∂t = �u + f (x, y, t), (x, y, t) ∈ (,π ) × (,π ) × (, ],
u|∂� = , u(x, y, ) = sin(x) sin(y), ∂u

∂t |t= = sin(x) sin(y).
()

The right-hand side function f is chosen such that the exact solution to () is

u(x, y, t) =
(
t + t + 

)
sin(x) sin(y).

We use the cubic element in this example. We first test the global maximum H
-error

max≤n≤N ‖un – un
h‖H


with respect to time by fixing the spatial step h = π/. The nu-

merical results are presented in Table . From Table , we observe that the temporal con-
vergence orders are two, which is in good agreement with the theoretical analysis.

Letting τ = /,, the numerical results for () are then demonstrated in Table .
Recall that the number r in Theorem . is referred to as the degree of polynomial in
the family {Xr

h}, and the piecewise cubic functions in a plane domain correspond to r = 
[]. So we expect that the convergence order in space for the ADI Galerkin scheme ()
is third-order accurate according to Theorem .. From Table , we indeed observe the
desired result and verify the theoretical analysis given in Theorem ..

Next, we compare the Galerkin ADI scheme () with the ADI finite difference scheme
(denoted by LADIFD), where the Caputo derivative in time is discretized by the L
method [].

Table 1 The global maximum H1
0-errors max0≤n≤N ‖un – un

h‖H1
0

for equation (42) with
h = π /256

α N
8 16 32 64 128

1.35 5.071E-02 1.391E-02 3.650E-03 9.374E-04 2.381E-04
- 1.8661 1.9303 1.9612 1.9771

1.55 3.522E-02 9.681E-03 2.550E-03 6.578E-04 1.677E-04
- 1.8631 1.9245 1.9549 1.9715

1.75 1.992E-02 5.513E-03 1.466E-03 3.825E-04 9.864E-05
- 1.8535 1.9105 1.9388 1.9551

Table 2 The global maximum H1
0-errors max0≤n≤N ‖un – un

h‖H1
0

for equation (42) with
τ = 1/4,096

α h
π /4 π /8 π /16

1.35 9.485E-04 1.181E-04 1.550E-05
- 3.0056 2.9301

1.55 9.443E-04 1.180E-04 1.511E-05
- 3.0010 2.9650

1.75 9.450E-04 1.178E-04 1.485E-05
- 3.0041 2.9875
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Table 3 Comparison of the L∞ errors max0≤n≤N ‖un
h – un‖∞ with h = π /200

α 1/τ Error [24] Cvge Error (14) Cvge

1.3 10 1.897E-02 - 2.029E-02 -
20 5.674E-03 1.7413 5.487E-03 1.8868
40 1.702E-03 1.7372 1.427E-03 1.9434
80 5.133E-04 1.7293 3.626E-04 1.9763
160 1.566E-04 1.7131 8.981E-05 2.0133

1.5 10 3.911E-02 - 1.659E-02 -
20 1.356E-02 1.5286 4.509E-03 1.8792
40 4.720E-03 1.5221 1.179E-03 1.9358
80 1.650E-03 1.5164 3.010E-04 1.9692
160 5.792E-04 1.5102 7.496E-05 2.0055

1.7 10 7.908E-02 - 1.202E-02 -
20 3.162E-02 1.3225 3.283E-03 1.8718
40 1.274E-02 1.3120 8.648E-04 1.9245
80 5.148E-03 1.3068 2.229E-04 1.9561
160 2.085E-03 1.3037 5.604E-05 1.9918

Example . In [], the coefficient λ in () is λ =  and the exact solution is

u(x, y, t) = sin(x) sin(y)t+α , (x, y, t) ∈ (,π ) × (,π ) × (, ].

The accuracy of the LADIFD scheme is O(τ –α + h). In this example, we use the lin-
ear element and define the L∞ error on the grid points {xi, yj} at t = tn by ‖un – un

h‖∞ =
max≤i,j≤Nx |u(xi, yj, tn) – un

h(xi, yj)|. The numerical results are demonstrated in Table .
Obviously, the Galerkin ADI scheme () shows better performances than the LADIFD
scheme, especially when α increases. It is verified again that the accuracy of ADI Galerkin
scheme () in time is of order two.

6 Conclusion
In this paper, by using the L-σ method for the Caputo derivative and the ADI finite
element method for the spatial derivative, we obtain the efficient ADI Galerkin scheme
() for solving (). The corresponding theoretical analyses, such as stability and error
estimate, are also presented. We remark that the proposed method is derived on the direct
discretization for the Caputo derivative at the non-grid point in time. Thus this leads to
the significant difference with those existing numerical methods, such as [].

Obviously, the present method can be extended to three-dimensional problems. The
corresponding theoretical analyses are similar to that of the two-dimensional case. In the
future work, we would combine the L-σ method with non-uniform meshes technique
[] to deal with the nonsmooth solution issue.
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