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Abstract
In this paper, we study the necessary and sufficient optimality conditions for
problems of the fractional calculus of variations with a Lagrange function depending
on a Caputo-Fabrizio fractional derivative. The new kernel of Caputo-Fabrizio
fractional derivative has no singularity, which is critical to interpreting the memory
aftermath of the system. This property was not precisely illustrated in the previous
definitions. Two special cases of fractional variational problems are considered to
demonstrate the application of the optimality conditions.
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1 Introduction
Since the introduction of fractional calculus of variations by Riewe [], fractional calculus
has played an important role in dealing with many natural dynamical processes. Riewe
showed that the traditional Lagrangian and Hamiltonian mechanics cannot be used with
nonconservative forces such as friction. However, fractional calculus may be better to de-
scribe the behavior of the natural processes because of its memory property. So, consid-
erable progress has been made to determine necessary and sufficient conditions that any
extremal for the variational functional with fractional calculus must satisfy in recent years.
Agrawal [–] studied the fractional Euler-Lagrange equations for general fractional vari-
ational problems (FVP) involving Riemann-Liouville, Caputo and Riesz fractional deriva-
tives. Almeida investigated optimality conditions for fractional variational problems with
a Lagrangian depending on the Riesz-Caputo derivative [] and the Caputo-Katugampola
derivative []. In [], Almeida exhibited the conditions of optimality for functionals de-
pending on Caputo fractional integrals and derivatives, on indefinite integrals and on the
presence of time delay. Xu and Agrawal [] deduced the Euler-Lagrange equation of the
fractional variational problem involving a modified Hilfer fractional derivative. Farhadinia
[], Fard [] and Soolaki [] established the necessary optimality conditions for fuzzy
fractional variational problems by using the generalized Hukuhara differentiability con-
cept.

The most popular fractional calculi are Riemann-Liouville (RL) and Caputo type. But it
is well known that the two derivatives have some drawbacks. For example, the RL deriva-
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tive of a constant is not zero and it demands initial conditions of non-integer order which
are not physically determined, and the Caputo derivative requires higher conditions of
regularity for differentiability, which is specified only for differentiable functions.

In , Caputo and Fabrizio [] proposed a new fractional derivative with non-
singular kernel which conveniently portrays the performance of material heterogeneities
and the structures with different scales. The main difference between the Caputo deriva-
tive and the Caputo-Fabrizio (CF) fractional derivative is that the new kernel has no singu-
larity. Losada and Nieto studied some properties of the new fractional derivative [], and
several researchers tried to utilize it for solving fractional differential equations (see []
and the references therein). Kumar et al. [] studied a time-fractional modified Kawahara
equation with a CF fractional derivative. In [], Singh et al. analyzed the El Nino-Southern
Oscillation model in the global climate with the CF fractional derivative and obtained the
solution by using the iterative method. By using the CF fractional derivative, Hristov [–
] expressed the Cattaneo constitutive equation with Jeffrey’s fading memory naturally
resulting in a heat conduction equation with a relaxation term, and this approach allowed
to see the physical background of the CF time fractional derivative and demonstrate how
other constitutive equations could be modified with non-singular fading memories.

Fractional derivatives of variable order were also used to set up the mathematical models
for engineering practice, especially in the fields of heat [] and fluid flows [, ]. Zaky
and Machado [] derived the generalized necessary conditions for the fractional optimal
control problems and proposed an efficient numerical scheme. Bhrawy and Zaky studied
the accurate numerical schemes for the problems of variable-order fractional Schrodinger
equations []. In [], the Nabla Euler-Lagrange equations of the discrete fractional vari-
ational problems were given. Garra et al. [] proposed the necessary conditions for the
fractional Herglotz variational problems with generalized Caputo derivatives. Tavares et
al. [] studied the necessary conditions for the constrained FVP of variable order. How-
ever, it is difficult to solve the fractional differential equations. Some novel numerical tech-
niques [–] were proposed to solve the class of problems. In [–], Kumar et al. in-
troduced a new numerical algorithm, which was named q-homotopy analysis transform
algorithm, to obtain the approximate solutions for the fractional model of regularized
long-wave equation, the nonlinear fractional dynamical model and the time-fractional
Rosenau-Hyman equation.

However, some issues were pointed out against both derivatives, including the one in
Caputo sense and the one in Riemann-Liouville sense. As Sheikh [] pointed out, the
CF fractional derivative as the kernel in integral was non-singular but was still nonlocal.
Some researchers also concluded that the operator was not a derivative with fractional or-
der but a filter with fractional parameter. The fractional parameter can then be viewed as
a filter regulator. To overcome the above drawbacks, Yang et al. [] proposed a new frac-
tional derivative involving the normalized sinc function without singular kernel. Atangana
and Baleanu introduced a new operator with fractional order based upon the generalized
Mittag-Leffler function []. Their operators have all the benefits of that of the CF deriva-
tive in addition to the kernel being nonlocal and non-singular. The non-locality of the
kernel gives better description of the memory within the structure with different scale.

The main aim of this paper is to present the optimality conditions for fractional varia-
tional problems involving the CF fractional derivative. This paper is structured as follows.
In Section , the basic definitions and notations are introduced, including the CF frac-
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tional derivatives. In Sections  and , the optimality conditions for fractional variational
problems are derived. In Section , the optimality condition for the fractional Herglotz
problem is proposed. Finally, an example and conclusion are proposed in Sections  and
, respectively.

2 Preliminaries
In this section, we recall some basic concepts with regard to the Caputo fractional deriva-
tive [] and the CF fractional derivative []. Given a function x(t) : [a, b] → R, the Ca-
puto fractional derivative of x of order α ∈ (, ) is defined as

CDα
a+x(t) =


�( – α)

d
dt

∫ t

a


(t – τ )α

[
x(τ ) – x(a)

]
dτ .

If x is of class C, then

CDα
a+x(t) =


�( – α)

∫ t

a


(t – τ )α

x′(τ ) dτ .

The new CF fractional derivative [, ] can be obtained by changing the kernel (t –τ )–α

into the function exp(–α(t – τ )/( – α)) and /�( – α) into M(α)/( – α). That is,

CF Dα
a+x(t) =

M(α)
 – α

∫ t

a
exp

(
–

α(t – τ )
 – α

)
x′(τ ) dτ , ()

where M(α) is a normalization function such that M() = M() = . It is clear that if x is
a constant function, then CF Dαx(t) =  as in the usual Caputo derivative, but contrary to
the usual Caputo derivative, the kernel does not have singularity for t = τ .

Definition  ([]) Let x ∈ H(a, b), b > a, α ∈ (, ), then the CF fractional derivative
is described as (), where M(α) stands for a normalization function such that M() =
M() = . If the function does not belong to x ∈ H(a, b), the derivative can be recon-
structed as

CF Dα
a+x(t) =

αM(α)
 – α

∫ t

a
exp

(
–

α(t – τ )
 – α

)(
x(t) – x(τ )

)
dτ .

Remark  The kernel function of the CF fractional derivative is an exponential function.
As we introduced in Section , there are several non-singular kernel functions such as
the normalized sinc function [], the generalized Mittag-Leffler function [], Meijer G-
function [] and Fox H-function [], which can be used to define the fractional deriva-
tive and integral. So there is a problem, and what kind of kernel function is better? Some
researchers [, , –] compared the actual effects of CF derivatives with Atangana-
Baleanu derivatives in the following practical problems.

() For the generalized Casson fluid model with heat generation and chemical reaction,
Sheikh [, ] pointed out that, for a unit time, the velocities obtained via
Atangana-Baleanu and CF derivatives are identical. Velocities for the time less than
 show little variation and for time bigger than  this variation increases. In [], the
Atangana-Baleanu and the CF derivatives were used to extend the model of
reaction-diffusion known as Allen-Cahn model, and the modified models were both
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solved numerically and numerical simulations presented for different values of
alpha.

() Koca [] pointed out that the CF derivative is a filter not a fractional derivative
based upon the fact that the kernel used is local and may not be able to portray
more accurately the complex system via which the flow of heat is taking place.

In summary, the existing studies for some practical problems have not consistently
shown that the Atangana-Baleanu or the CF derivative is more effective. For fractional
variational problems, which class of the fractional derivative is more effective? Further
research is needed on the basis of practical fractional variational problems.

We denote an auxiliary fractional integral and a differential as

Iα
b–x(t) :=

M( – α)
α

∫ b

t
x(τ ) exp

(
–

( – α)(τ – t)
α

)
dτ ,

which is not the CF fractional integral as in [], and

CF Dα
b–x(t) :=

M(α)
 – α

d
dt

∫ b

t
x(τ ) exp

(
–

α(τ – t)
 – α

)
dτ .

Proposition  Let x be a continuous function and y be of class C. Then

∫ b

a
x(t)CF Dα

a+y(t) dt =
[
y(t)I–α

b– x(t)
]t=b

t=a –
∫ b

a
y(t)CF Dα

b–x(t) dt.

Proof From the definition of CF fractional derivative, we have

∫ b

a
x(t)CF Dα

a+y(t) dt =
M(α)
 – α

∫ b

a

∫ t

a
x(t) exp

(
–

α(t – τ )
 – α

)
y′(τ ) dτ dt.

By Dirichlet’s formula and integrating by parts, we get

M(α)
 – α

∫ b

a

∫ t

a
x(t) exp

(
–

α(t – τ )
 – α

)
y′(τ ) dτ dt

=
M(α)
 – α

∫ b

a

∫ b

t
x(τ ) exp

(
–

α(τ – t)
 – α

)
y′(t) dτ dt

=
[

y(t) · M(α)
 – α

∫ b

t
x(τ ) exp

(
–

α(τ – t)
 – α

)
dτ

]t=b

t=a

–
∫ b

a
y(t) · M(α)

 – α

d
dt

∫ b

t
x(τ ) exp

(
–

α(τ – t)
 – α

)
dτ dt

=
[
y(t)I–α

b– x(t)
]t=b

t=a –
∫ b

a
y(t)CF Dα

b–x(t) dt. �

3 Optimality conditions for FVP
In this section, we consider the following problem with a CF fractional derivative. Given
x ∈ C[a, b],

min J(x) =
∫ b

a
L
(
t, x(t), CF Dα

a+x(t)
)

dt, ()
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with x(a) = xa and x(b) = xb, where xa, xb ∈ R. The assumptions are as follows:
. L : [a, b] × R → R is continuously differentiable with respect to the second and third

arguments;
. Given any x, the map t �→ CF Dα

b–(∂L(t, x(t), CF Dα
a+x(t))) is continuous.

Hereafter, we denote ∂if (x, . . . , xn) := ∂f
∂xi

(x, . . . , xn) for a function f : S ⊆ Rn → R. We
propose the Euler-Lagrange equation of (). At the solutions of (), the first variation of
the functional must be vanished.

Theorem  Let x be a solution of (). Then x is a solution of the fractional Euler-Lagrange
equation for all t ∈ [a, b]

∂L
(
t, x(t), CF Dα

a+x(t)
)

– CF Dα
b–

(
∂L

(
t, x(t), CF Dα

a+x(t)
))

= . ()

Proof Consider x +εh to be a variation of x, and h : [a, b] → R is a function of class C[a, b]
such that the boundary conditions of h(a) = h(b) =  hold. Let j(ε) = J(x + εh), since x is a
solution of (), then j′() = .

Computing j′(ε)|ε= and using Proposition , we have

∫ b

a
∂L

(
t, x(t), CF Dα

a+x(t)
)
h(t) dt +

∫ b

a
∂L

(
t, x(t), CF Dα

a+x(t)
)CF Dα

a+h(t) dt

=
∫ b

a

[
∂L

(
t, x(t), CF Dα

a+x(t)
)

– CF Dα
b–

(
∂L

(
t, x(t), CF Dα

a+x(t)
))]

h(t) dt

+
[
h(t)I–α

b–
(
∂L

(
t, x(t), CF Dα

a+x(t)
))]t=b

t=a

= .

From the boundary conditions of h(a) = h(b) =  and h is arbitrary elsewhere, we get

∂L
(
t, x(t), CF Dα

a+x(t)
)

– CF Dα
b–

(
∂L

(
t, x(t), CF Dα

a+x(t)
))

= , ∀t ∈ [a, b]. �

Definition  A function x that is a solution of () is called an extremal for J .

Remark  The Euler-Lagrange equation () is easily extended to the case of several vari-
ations.

Definition  We say that L(t, x, y) is convex in K ⊆ R if ∂L and ∂L exist and are contin-
uous, and the condition

L(t, x + x, y + y) – L(t, x, y) ≥ ∂L(t, x, y)x + ∂L(t, x, y)y

holds for every (t, x, y), (t, x + x, y + y) ∈ K .

Theorem  If the function L as in () is convex in [a, b]×R, then each solution of the frac-
tional Euler-Lagrange equation () minimizes J , when restricted to the boundary conditions
of x(a) = xa and x(b) = xb.
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Proof Let x be a solution of () and x + εh be a variation of x with |ε| 	 , and h ∈ C[a, b]
with h(a) = h(b) = . Using Proposition , we get

J(x + εh) – J(x)

=
∫ b

a

[
L
(
t, x(t) + εh(t), CF Dα

a+x(t) + εCF Dα
a+h(t)

)
– L

(
t, x(t), CF Dα

a+x(t)
)]

dt

≥
∫ b

a

[
∂L

(
t, x(t), CF Dα

a+x(t)
)
εh(t) + ∂L

(
t, x(t), CF Dα

a+x(t)
)
εCF Dα

a+h(t)
]

dt

=
∫ b

a
∂L

(
t, x(t), CF Dα

a+x(t)
)
εh(t) dt + ε

[
h(t)I–α

b– ∂L
(
t, x(t), CF Dα

a+x(t)
)]t=b

t=a

–
∫ b

a
εh(t)CF Dα

b–∂L
(
t, x(t), CF Dα

a+x(t)
)

dt

=
∫ b

a

[
∂L

(
t, x(t), CF Dα

a+x(t)
)

– CF Dα
b–∂L

(
t, x(t), CF Dα

a+x(t)
)]

εh(t) dt.

Since x is a solution of (), then

∂L
(
t, x(t), CF Dα

a+x(t)
)

– CF Dα
b–∂L

(
t, x(t), CF Dα

a+x(t)
)

= .

Thus, J(x + εh) ≥ J(x), x is a local minimizer of J . �

Next, we consider a more general class of fractional variational problems for A ∈ (a, b)
and the functional

min J(x) =
∫ b

A
L
(
t, x(t), CF Dα

a+x(t)
)

dt, ()

with x(t) ∈ C[a, b] and x(a) = xa, x(b) = xb, where xa, xb ∈ R. The assumptions are as pre-
vious ones for L(t, x(t), CF Dα

a+x(t)).

Theorem  If x is a solution of (), then x satisfies

CF Dα
A–

(
∂L

(
t, x(t), CF Dα

a+x(t)
))

– CF Dα
b–

(
∂L

(
t, x(t), CF Dα

a+x(t)
))

= 

on [a, A],

∂L
(
t, x(t), CF Dα

a+x(t)
)

– CF Dα
b–

(
∂L

(
t, x(t), CF Dα

a+x(t)
))

= 

on [A, b] and

I–α
A–

(
∂L

(
t, x(t), CF Dα

a+x(t)
))

– I–α
b–

(
∂L

(
t, x(t), CF Dα

a+x(t)
))

= 

at t = a.

Proof Let x be a solution of () and x + εh be a variation of x with |ε| 	 , and h ∈ C[a, b]
with h(A) = h(b) = . Let j(ε) = J(x + εh), since x is a solution of (), then j′() = .



Zhang et al. Advances in Difference Equations  (2017) 2017:357 Page 7 of 14

Computing j′(ε)|ε= and using Proposition , we have

∫ b

A
∂L

(
t, x(t), CF Dα

a+x(t)
)
h(t) dt +

∫ b

A
∂L

(
t, x(t), CF Dα

a+x(t)
)CF Dα

a+h(t) dt

=
∫ b

a

[
∂L

(
t, x(t), CF Dα

a+x(t)
)
h(t) + ∂L

(
t, x(t), CF Dα

a+x(t)
)CF Dα

a+h(t)
]

dt

–
∫ A

a

[
∂L

(
t, x(t), CF Dα

a+x(t)
)
h(t) + ∂L

(
t, x(t), CF Dα

a+x(t)
)CF Dα

a+h(t)
]

dt

=
∫ b

A
∂L

(
t, x(t), CF Dα

a+x(t)
)
h(t) dt +

∫ b

a
∂L

(
t, x(t), CF Dα

a+x(t)
)CF Dα

a+h(t) dt

–
∫ A

a
∂L

(
t, x(t), CF Dα

a+x(t)
)CF Dα

a+h(t) dt

=
∫ b

A
∂L

(
t, x(t), CF Dα

a+x(t)
)
h(t) dt +

[
h(t)I–α

b–
(
∂L

(
t, x(t), CF Dα

a+x(t)
))]t=b

t=a

–
∫ b

a
h(t)CF Dα

b–
(
∂L

(
t, x(t), CF Dα

a+x(t)
))

dt

–
[
h(t)I–α

A–
(
∂L

(
t, x(t), CF Dα

a+x(t)
))]t=A

t=a

+
∫ A

a
h(t)CF Dα

A–
(
∂L

(
t, x(t), CF Dα

a+x(t)
))

dt

= .

From h(A) = h(b) = , the above equation deduces the following:

∫ A

a
h(t)

[CF Dα
A–

(
∂L

(
t, x(t), CF Dα

a+x(t)
))

– CF Dα
b–

(
∂L

(
t, x(t), CF Dα

a+x(t)
))]

dt

+
∫ b

A
h(t)

[
∂L

(
t, x(t), CF Dα

a+x(t)
)

– CF Dα
b–

(
∂L

(
t, x(t), CF Dα

a+x(t)
))]

dt

+ h(a)
[
I–α

A–
(
∂L

(
t, x(t), CF Dα

a+x(t)
))

– I–α
b–

(
∂L

(
t, x(t), CF Dα

a+x(t)
))]|t=a

= .

Since h is arbitrary elsewhere, we get the three necessary conditions. �

4 The fractional variational problem with holonomic constraint
Let (x(t), x(t)) ∈ C[a, b] × C[a, b] and x

a, x
a, x

b, x
b ∈ R be fixed such that (x(a), x(a)) =

(x
a, x

a) and (x(b), x(b)) = (x
b, x

b). Consider the following problem:

min J(x, x) =
∫ b

a
L
(
t, x(t), x(t), CF Dα

a+x(t), CF Dα
a+x(t)

)
dt ()

such that g
(
t, x(t), x(t)

)
= . ()

Assume that the following conditions hold:
. L : [a, b] × R → R is continuously differentiable with respect to its ith arguments for

i = , , , ;
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. Given any x = (x, x), the map t �→ CF Dα
b–(∂iL(t, x(t), x(t), CF Dα

a+x(t), CF Dα
a+x(t)))

is continuous for i = , ;
. The admissible function g : [a, b] × R is continuously differentiable with respect to

its ith arguments for i = , .
Next, we denote that

x =
(
x(t), x(t)

)
and CF Dα

a+x =
(CF Dα

a+x(t), CF Dα
a+x(t)

)
.

Theorem  Let the function x be a solution of ()-(). If ∂g(t, x) 
=  for all t ∈ [a, b], then
there is a continuous function λ(t) : [a, b] → R such that x is a solution of the fractional
differential equation

∂L
(
t, x, CF Dα

a+x
)

– CF Dα
b–

(
∂L

(
t, x, CF Dα

a+x
))

+ λ(t)∂g(t, x) =  ()

and

∂L
(
t, x, CF Dα

a+x
)

– CF Dα
b–

(
∂L

(
t, x, CF Dα

a+x
))

+ λ(t)∂g(t, x) =  ()

on [a, b].

Proof Let x be a solution of ()-() and x + εh be a variation of x with |ε| 	 , and
h = (h(t), h(t)) ∈ C[a, b] × C[a, b] with h(a) = h(b) = (, ). From the assumption of
∂g(t, x) 
=  for all t ∈ [a, b] and the implicit function theorem, there exists a unique func-
tion h(ε, h) such that (x + εh, x + εh) satisfies (). So, we have the following equation
satisfied for all t ∈ [a, b]:

g
(
t, x(t) + εh(t), x(t) + εh(t)

)
= . ()

Then

∂g(t, x(t) + εh(t), x(t) + εh(t))
∂ε

∣∣∣∣
ε=

= ,

that is,

∂g(t, x)h(t) + ∂g(t, x)h(t) = . ()

Since ∂g(t, x) 
=  for all t ∈ [a, b], we denote

λ(t) = –
∂L(t, x, CF Dα

a+x) – CF Dα
b–(∂L(t, x, CF Dα

a+x))
∂g(t, x)

. ()

From () and (), we get

λ(t)∂g(t, x)h(t) =
[
∂L

(
t, x, CF Dα

a+x
)

()

– CF Dα
b–

(
∂L

(
t, x, CF Dα

a+x
))]

h(t). ()
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Let j(ε) = J(x + εh), since x is a solution of (), the first variation of J must vanish, then
j′() = . Computing j′(ε)|ε=, we have

∫ b

a

[
∂L

(
t, x, CF Dα

a+x
)
h(t) + ∂L

(
t, x, CF Dα

a+x
)
h(t)

+ ∂L
(
t, x, CF Dα

a+x
)CF Dα

a+h(t)

+ ∂L
(
t, x, CF Dα

a+x
)CF Dα

a+h(t)
]

dt = .

Using Proposition  and h(a) = h(b) = (, ), we obtain

∫ b

a

{[
∂L

(
t, x, CF Dα

a+x
)

– CF Dα
b–

(
∂L

(
t, x, CF Dα

a+x
))]

h(t)

+
[
∂L

(
t, x, CF Dα

a+x
)

– CF Dα
b–

(
∂L

(
t, x, CF Dα

a+x
))]

h(t)
}

dt = .

Inserting ()-() into the above equation, we obtain

∫ b

a

[
∂L

(
t, x, CF Dα

a+x
)

– CF Dα
b–

(
∂L

(
t, x, CF Dα

a+x
))

+ λ(t)∂g(t, x)
]
h(t) dt = .

Since h is arbitrary elsewhere, we get the necessary condition as follows:

∂L
(
t, x, CF Dα

a+x
)

– CF Dα
b–

(
∂L

(
t, x, CF Dα

a+x
))

+ λ(t)∂g(t, x) = .

From (), we have another necessary condition

∂L
(
t, x, CF Dα

a+x
)

– CF Dα
b–

(
∂L

(
t, x, CF Dα

a+x
))

+ λ(t)∂g(t, x) = . �

Theorem  Let the function L(t, x, CF Dα
a+x) as in () be convex in [a, b] × R, g : [a, b] ×

R → R is continuously differentiable with respect to its ith arguments for i = , . For the
continuous function λ(t) : [a, b] → R be given in () and ∂g(t, x) 
=  for all t ∈ [a, b], if x
is a solution of () subject to (), then x is also a solution of ()-().

Proof Since x is a solution of () subject to () and g : [a, b]×R → R is continuously differ-
entiable with respect to its ith arguments for i = , , then x satisfies (). From ∂g(t, x) 
= 
for all t ∈ [a, b], we get

h(t) =
–∂g(t, x)h(t)

∂g(t, x)
. ()

On the other hand, if x + εh is a variation of x, we have

J(x + εh) – J(x) =
∫ b

a

[
L
(
t, x + εh, CF Dα

a+(x + εh)
)

– L
(
t, x, CF Dα

a+x
)]

dt

≥
∫ b

a

[
∂L

(
t, x, CF Dα

a+x
)
εh(t) + ∂L

(
t, x, CF Dα

a+x
)
εh(t)

+ ∂L
(
t, x, CF Dα

a+x
)
εCF Dα

a+h(t) + ∂L
(
t, x, CF Dα

a+x
)
εCF Dα

a+h(t)
]

dt.
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Integrating by parts for the right-hand side of the above inequation, using Proposition 
and h(a) = h(b) = (, ), we obtain

J(x + εh) – J(x) ≥
∫ b

a

{[
∂L

(
t, x, CF Dα

a+x
)

– CF Dα
b–

(
∂L

(
t, x, CF Dα

a+x
))]

εh(t)

+
[
∂L

(
t, x, CF Dα

a+x
)

– CF Dα
b–

(
∂L

(
t, x, CF Dα

a+x
))]

εh(t)
}

dt.

Using () and since x is a solution of (), we get

J(x + εh) – J(x) ≥
∫ b

a

[
∂L

(
t, x, CF Dα

a+x
)

– CF Dα
b–

(
∂L

(
t, x, CF Dα

a+x
))

+ λ(t)∂g(t, x)
]
εh(t) dt = .

Thus, J(x + εh) ≥ J(x), x is a solution of J . �

5 The fractional Herglotz problem
The fractional Herglotz problem is to determine a curve x ∈ C[a, b] subject to x(a) = xa

and x(b) = xb such that z is the solution of the following system:

z′(t) = L
(
t, x(t), CF Dα

a+x(t), z(t)
)
, t ∈ [a, b] ()

z(a) = za, ()

and z(t)|t=b is a minimum. This problem was studied in [] based on the Caputo-
Katugampola fractional derivative. However, contrary to the Caputo-Fabrizio derivative
in this paper, the Caputo-Katugampola fractional derivative has singularity for t = τ .
For any function x(t), the map t �→ CF Dα

a+x(t) is continuously differentiable and the map
t �→ CF Dα

b–(λ(t)∂L(t, x(t), CF Dα
a+x(t), z(t))) is continuous with

λ(t) = exp

(
–

∫ t

a
∂L

(
τ , x(τ ), CF Dα

a+x(τ ), z(τ )
)

dτ

)
. ()

It can be known that the solution z depends on t and x. If we consider the function
of h(t) ∈ C[a, b] with h(a) = h(b) =  and any sufficiently small real number ε, then x +
εh ∈ C[a, b] lies in the neighborhood Nε(x). We substitute x by x + εh, the solution z also
depends on ε, and it is also differentiable with respect to ε.

Theorem  Let the function x be such that z(b) as in ()-() attains a minimum. Then
x is a solution of the fractional differential equation

λ(t)∂L
(
t, x(t), CF Dα

a+x(t), z(t)
)

– CF Dα
b–

(
λ(t)∂L

(
t, x(t), CF Dα

a+x(t), z(t)
))

= .

Proof Let the function of h(t) ∈ C[a, b] with h(a) = h(b) =  and any sufficiently small real
number ε. Using x + εh is a variation of x and the solution z is given by

φ(t) =
d

dε
z(t, x + εh)

∣∣∣∣
ε=

. ()
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From () and (), we get

φ′(t) =
d
dt

d
dε

z(t, x + εh)
∣∣∣∣
ε=

()

and

d
dt

z
(
t, x(t) + εh(t)

)
= L

[
t, x(t) + εh(t), CF Dα

a+x(t) + εCF Dα
a+h(t), z

(
t, x(t) + εh(t)

)]
.

Thus, we have

φ′(t) =
d

dε
L
[
t, x(t) + εh(t), CF Dα

a+x(t) + εCF Dα
a+h(t), z

(
t, x(t) + εh(t)

)]|ε=

= ∂L
(
t, x(t), CF Dα

a+x(t), z(t)
)
h(t) + ∂L

(
t, x(t), CF Dα

a+x(t), z(t)
)CF Dα

a+h(t)

+ ∂L
(
t, x(t), CF Dα

a+x(t), z(t)
)
φ(t).

We denote that

a(t) = ∂L
(
t, x(t), CF Dα

a+x(t), z(t)
)
,

and

b(t) = ∂L
(
t, x(t), CF Dα

a+x(t), z(t)
)
h(t) + ∂L

(
t, x(t), CF Dα

a+x(t), z(t)
)CF Dα

a+h(t).

Then the above differential equation can be deduced as

φ′(t) = a(t)φ(t) + b(t),

which is

[
φ′(t) – a(t)φ(t)

]
λ(t) = b(t)λ(t),

then

∫ t

a
d
(
φ(τ )λ(τ )

)
=

∫ t

a
b(τ )λ(τ ) dτ

⇒ φ(t)λ(t) – φ(a) =
∫ t

a
λ(τ )

[
∂L

(
τ , x(τ ), CF Dα

a+x(τ ), z(τ )
)
h(τ )

+ ∂L
(
τ , x(τ ), CF Dα

a+x(τ ), z(τ )
)CF Dα

a+h(τ )
]

dτ

=
∫ t

a
λ(τ )∂L

(
τ , x(τ ), CF Dα

a+x(τ ), z(τ )
)
h(τ ) dτ

+
{

h(τ )I–α
b–

[
λ(τ )∂L

(
τ , x(τ ), CF Dα

a+x(τ ), z(τ )
)]}|τ=t

τ=a

–
∫ t

a
h(τ )CF Dα

b–
[
λ(τ )∂L

(
τ , x(τ ), CF Dα

a+x(τ ), z(τ )
)]

dτ .
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Replacing t by b in the above equation, since z(a) is fixed and z(b) is the minimum, we
have φ(a) = φ(b) = . By h(a) = h(b) =  and the arbitrariness of h in (a, b), we get

λ(t)∂L
(
t, x(t), CF Dα

a+x(t), z(t)
)

– CF Dα
b–

(
λ(t)∂L

(
t, x(t), CF Dα

a+x(t), z(t)
))

= 

for all t ∈ [a, b]. �

6 Example
Example Let us consider the following unconstrained fractional variational problem for
 < α < :

min J(x) =
∫ 



(CF Dα
+x(t) + f (t)

) dt

such that x() = , x() = ,

where f (t) = M(α)
α

[e– αt
–α – ] and M(α) =  + sin(απ ).

For this problem, according to the Euler-Lagrange equation as in (), we get

CF Dα
–

[CF Dα
+x(t) + f (t)

]
= .

By direct substitution, it can be shown that x(t) = t is the unique solution to this problem.
In fact, for the case of x(t) = t, we have

CF Dα
+x(t) =

M(α)
 – α

∫ t


x′(τ ) exp

(
–

α(t – τ )
 – α

)
dτ

=
M(α)
 – α

·  – α

α

∫ t


d
[

exp

(
–

α(t – τ )
 – α

)]

=
M(α)

α
exp

(
–

α(t – τ )
 – α

)∣∣∣∣
τ=t

τ=

=
M(α)

α

[
 – e– αt

–α
]
.

It can be observed that as α → , the fractional variational problem becomes

min J(x) =
∫ 



(
x′(t) + f (t)

) dt

such that x() = , x() = ,

where f (t) = – since M() = . x(t) = t is obviously the unique solution to this problem.

7 Conclusions
In this paper, we have discussed the necessary and sufficient optimality conditions for
problems of the fractional calculus of variations with a Lagrange function depending on
a Caputo-Fabrizio fractional derivative. The advantage of the new fractional derivative
has no singularity, which was not precisely illustrated in the previous definitions. Two
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classes of FVP are considered to demonstrate the application of the optimality conditions.
However, the Euler-Lagrange equations for FVP are in general difficult to solve. As the
future works, we should develop numerical methods to solve this problem.

Acknowledgements
The author would like to express his gratitude to the anonymous reviewers for their very valuable remarks and
comments. This work is supported by the National Natural Science Foundation of China (Grant No. 11701446, 11601420,
11401469, 60974082) and the Science Plan Foundation of the Education Bureau of Shaanxi Province (No. 2013JK 1130).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors jointly worked on the results and they read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 9 April 2017 Accepted: 2 October 2017

References
1. Riewe, F: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890-1899 (1996)
2. Agrawal, OP: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272,

368-379 (2002)
3. Agrawal, OP: Fractional variational calculus and the transversality conditions. J. Phys. A 39, 10375-10384 (2006)
4. Agrawal, OP: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A 40, 6287-6303 (2007)
5. Almeida, R: Fractional variational problems with the Riesz-Caputo derivative. Appl. Math. Lett. 25, 142-148 (2012)
6. Almeida, R: Variational problems involving a Caputo-type fractional derivative. J. Optim. Theory Appl. 174(1), 276-294

(2017) doi:10.1007/s10957-016-0883-4
7. Almeida, R: Fractional variational problems depending on indefinite integrals and with delay. Bull. Malays. Math. Soc.

39, 1515-1528 (2016)
8. Xu, Y, Agrawal, OP: New fractional operators and application to fractional variational problem. Comput. Math. Appl.

(2016). doi:10.1016/j.camwa.2016.04.008
9. Farhadinia, B: Necessary optimality conditions for fuzzy variational problems. Inf. Sci. 181(7), 1348-1357 (2011)
10. Fard, OS, Salehi, M: A survey on fuzzy fractional variational problems. J. Comput. Appl. Math. 271, 71-82 (2014)
11. Soolaki, J, Fard, OS, Borzabadi, AH: Generalized Euler-Lagrange equations for fuzzy variational problems. SeMA J. 73,

131-148 (2016)
12. Caputo, M, Fabrizio, M: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1,

73-85 (2015)
13. Losada, J, Nieto, JJ: Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1, 87-92

(2015)
14. Baleanu, D, Mousalou, A, Rezapour, S: A new method for investigating approximate solutions of some fractional

integro-differential equations involving the Caputo-Fabrizio derivative. Adv. Differ. Equ. 2017, 51 (2017).
doi:10.1186/s13662-017-1088-3

15. Kumar, D, Singh, J, Baleanu, D: Modified Kawahara equation within a fractional derivative with non-singular kernel.
Therm. Sci. (2017). doi:10.2298/TSCI160826008K

16. Singh, J, Kumar, D, Nieto, JJ: Analysis of an El Nino-Southern Oscillation model with a new fractional derivative. Chaos
Solitons Fractals 99, 109-115 (2017)

17. Hristov, J: Transient heat diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with
Jeffrey’s kernel to the Caputo-Fabrizio time-fractional derivative. Therm. Sci. 20(2), 757-762 (2016)

18. Hristov, J: Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of
Caputo-Fabrizio space-fractional derivative with Jeffrey’s kernel and analytical solutions. Therm. Sci. 21, 827-839
(2017)

19. Hristov, J: Frontiers in Fractional Calculus: Chapter 10, pp. 235-295. Bentham Science Publishers, Sharjah (2017)
20. Yang, XJ: Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat

transfer problems. Therm. Sci. 21, 1161-1171 (2017)
21. Yang, XJ, Machado, JAT: A new fractional operator of variable order: application in the description of anomalous

diffusion. Phys. A, Stat. Mech. Appl. 481, 276-283 (2017)
22. Sheikh, NA, Ali, F, Saqib, M, et al.: Comparison and analysis of the Atangana-Baleanu and Caputo-Fabrizio fractional

derivatives for generalized Casson fluid model with heat generation and chemical reaction. Results Phys. 7, 789-800
(2017)

23. Zaky, MA, Machado, JAT: On the formulation and numerical simulation of distributed-order fractional optimal control
problems. Commun. Nonlinear Sci. Numer. Simul. 52, 177-189 (2017)

24. Bhrawy, AH, Zaky, MA: Highly accurate numerical schemes for multi-dimensional space variable-order fractional
Schrodinger equations. Comput. Math. Appl. 73(6), 1100-1117 (2017)

25. Abdeljawad, T: Nabla Euler-Lagrange equations in discrete fractional variational calculus within Riemann and Caputo.
International Journal of Mathematics and Computation (2017) arXiv:1703.06751 [math.CA]

26. Garra, R, Taverna, GS, Torres, DFM: Fractional herglotz variational principles with generalized Caputo derivatives.
Chaos Solitons Fractals (2017). doi:10.1016/j.chaos.2017.04.035

http://dx.doi.org/10.1007/s10957-016-0883-4
http://dx.doi.org/10.1016/j.camwa.2016.04.008
http://dx.doi.org/10.1186/s13662-017-1088-3
http://dx.doi.org/10.2298/TSCI160826008K
http://arxiv.org/abs/arXiv:1703.06751
http://dx.doi.org/10.1016/j.chaos.2017.04.035


Zhang et al. Advances in Difference Equations  (2017) 2017:357 Page 14 of 14

27. Tavares, D, Almeida, R, Torres, DFM: Constrained fractional variational problems of variable order. IEEE/CAA J. Autom.
Sin. 4(1), 80-88 (2017)

28. Abdelkawy, MA, Zaky, MA, Bhrawy, AH, et al.: Numerical simulation of time variable fractional order mobile-immobile
advection-dispersion model. Rom. Rep. Phys. 67(3), 1-19 (2015)

29. Kumar, D, Singh, J, Baleanu, D: A new analysis for fractional model of regularized long-wave equation arising in ion
acoustic plasma waves. Math. Methods Appl. Sci. (2017). doi:10.1002/mma.4414

30. Singh, J, Kumar, D, Qurashi, MA, et al.: A novel numerical approach for a nonlinear fractional dynamical model of
interpersonal and romantic relationships. Entropy 19(7), 375 (2017). doi:10.3390/e19070375

31. Singh, J, Kumar, D, Swroop, R, et al.: An efficient computational approach for time-fractional Rosenau-Hyman
equation. Neural Comput. Appl. (2017). doi:10.1007/s00521-017-2909-8

32. Lazo, MJ, Torres, DFM: Variational calculus with conformable fractional derivatives. IEEE/CAA J. Autom. Sin. 99, 1-13
(2016)

33. Jahanshahi, S, Torres, DFM: A simple accurate method for solving fractional variational and optimal control problems.
J. Optim. Theory Appl. 174(1), 156-175 (2017)

34. Yang, XJ, Gao, F, Machado, JA, et al.: A new fractional derivative involving the normalized sinc function without
singular kernel. (2017) arXiv:1701.05590

35. Atangana, A, Baleanu, D: New fractional derivatives with nonlocal and non-singular kernel: theory and application to
heat transfer model. Therm. Sci. 20(2), 763-769 (2016)

36. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier,
Amsterdam (2006)

37. Pishkoo, A, Darus, M: Fractional differintegral transformations of univalent Meijer’s G-functions. J. Inequal. Appl.
2012(1), 1 (2012)

38. Kiryakova, V: The special functions of fractional calculus as generalized fractional calculus operators of some basic
functions. Comput. Math. Appl. 59(3), 1128-1141 (2010)

39. Algahtani, OJJ: Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn
model. Chaos Solitons Fractals 89, 552-559 (2016)

40. Sheikh, NA, Ali, F, Saqib, M, et al.: A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives
to the convective flow of a generalized Casson fluid. Eur. Phys. J. Plus 132(1), 54-68 (2017)

41. Koca, I, Atangana, A: Solutions of Cattaneo-Hristov model of elastic heat diffusion with Caputo-Fabrizio and
Atangana-Baleanu fractional derivatives. Therm. Sci. 20(6), 2137-2147 (2016)

http://dx.doi.org/10.1002/mma.4414
http://dx.doi.org/10.3390/e19070375
http://dx.doi.org/10.1007/s00521-017-2909-8
http://arxiv.org/abs/arXiv:1701.05590

	Optimality conditions for fractional variational problems with Caputo-Fabrizio fractional derivatives
	Abstract
	Keywords

	Introduction
	Preliminaries
	Optimality conditions for FVP
	The fractional variational problem with holonomic constraint
	The fractional Herglotz problem
	Example
	Conclusions
	Acknowledgements
	Competing interests
	Authors' contributions
	Publisher's Note
	References


