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Abstract
In this work, we introduce some new results on the Lyapunov inequality, uniqueness
and multiplicity results of nontrivial solutions of the nonlinear fractional
Sturm-Liouville problems

{
Dq
0+ (p(t)u

′(t)) +�(t)f (u(t)) = 0, 1 < q ≤ 2, t ∈ (0, 1),

αu(0) – βp(0)u′(0) = 0, γ u(1) + δp(1)u′(1) = 0,

where α, β , γ , δ are constants satisfying 0 �= |βγ + αγ
∫ 1
0

1
p(τ ) dτ + αδ| < +∞, p(·) is

positive and continuous on [0, 1]. In addition, some existence results are given for the
problem

{
Dq
0+ (p(t)u

′(t)) +�(t)f (u(t),λ) = 0, 1 < q ≤ 2, t ∈ (0, 1),

αu(0) – βp(0)u′(0) = 0, γ u(1) + δp(1)u′(1) = 0,

where λ ≥ 0 is a parameter. The proof is based on the fixed point theorems and the
Leray-Schauder nonlinear alternative for single-valued maps.

MSC: Primary 26A33; 34A08

Keywords: fractional differential equations; Sturm-Liouville problems; Lyapunov
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1 Introduction
On the one hand, since a Lyapunov-type inequality has found many applications in the
study of various properties of solutions of differential equations, such as oscillation the-
ory, disconjugacy and eigenvalues problems, there have been many extensions and gener-
alizations as well as improvements in this field, e.g., to nonlinear second order equations,
to delay differential equations, to higher order differential equations, to difference equa-
tions and to differential and difference systems. We refer the readers to [–] (integer or-
der). Fractional differential equations have gained considerable popularity and importance
due to their numerous applications in many fields of science and engineering including
physics, population dynamics, chemical technology, biotechnology, aerodynamics, elec-
trodynamics of complex medium, polymer rheology, control of dynamical systems. With
the rapid development of the theory of fractional differential equation, there are many
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papers which are concerned with the Lyapunov type inequality for a certain fractional
order differential equations, see [–] and the references therein. Recently, Ghanbari and
Gholami [] introduced the Lyapunov type inequality for a certain fractional order Sturm-
Liouville problem in sense of Riemann-Liouville

⎧⎨
⎩Dα

a+ (p(t)u′(t)) + q(t)u(t) = ,  < α ≤ , t ∈ (a, b), b �= ,

u(a) = u′(a) = , u(b) = 

like this

∫ b

a

∫ b

a

∣∣∣∣ q(s)
p(ω)

∣∣∣∣ds dω >

(α)

(b – a)α– .

On the other hand, many authors have studied the existence, uniqueness and multiplic-
ity of solutions for nonlinear boundary value problems involving fractional differential
equations, see [–]. But Lan and Lin [] pointed out that the continuity assumptions
on nonlinearities used previously are not sufficient and obtained some new results on the
existence of multiple positive solutions of systems of nonlinear Caputo fractional differ-
ential equations with some of general separated boundary conditions

⎧⎨
⎩–cDqzi(t) = fi(t, z(t)), t ∈ (, ),

αzi() – βz′
i() = , γ zi() + δz′

i() = ,

where z(t) = (z(t), . . . , zn(t)), fi : [, ] × R
n
+ → R+ is continuous on [, ] × R

n
+, cDq is the

Caputo differential operator of order q ∈ (, ). The α, β , γ , δ are positive real numbers.
The relations between the linear Caputo fractional differential equations and the corre-
sponding linear Hammerstein integral equations are studied, which shows that suitable
Lipschitz type conditions are needed when one studies the nonlinear Caputo fractional
differential equations.

Motivated by these excellent works, in this paper we focus on the representation of
the Lyapunov type inequality and the existence of solutions for a certain fractional order
Sturm-Liouville problem

⎧⎨
⎩Dq

+ (p(t)u′(t)) + �(t)f (u(t)) = ,  < q ≤ , t ∈ (, ),

αu() – βp()u′() = , γ u() + δp()u′() = ,
(.)

where α, β , γ , δ are constants satisfying  �= |βγ + αγ
∫ 




p(τ ) dτ + αδ| < +∞, p(·) is a pos-
itive continuous function on [, ], �(t) : [, ] → R is a nontrivial Lebesgue integrable
function, f : R → R is continuous. In addition, some existence results are given for the
problem

⎧⎨
⎩Dq

+ (p(t)u′(t)) + �(t)f (u(t),λ) = ,  < q ≤ , t ∈ (, ),

αu() – βp()u′() = , γ u() + δp()u′() = ,
(.)

where λ ≥  is a parameter, f : R×R+ → R is continuous. For the Sturm-Liouville prob-
lems, there are many literature works on the studies of the existence and behavior of so-
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lutions to nonlinear Sturm-Liouville equations, for example, [, ] (integer order) and
[, ] (fractional order).

The discussion of this manuscript is based on the fixed point theorems and the Leray-
Schauder nonlinear alternative for single-valued maps. For convenience, we list the crucial
lemmas as follows.

Lemma . ([]) Let ν be a positive measure and � be a measurable set with ν(�) = .
Let I be an interval and suppose that u is a real function in L(dν) with u(t) ∈ I for all t ∈ �.
If f is convex on I , then

f
(∫

�

u(t) dν(t)
)

≥
∫

�

f ◦)u(t) dν(t). (.)

If f is concave on I , then inequality (.) holds with ‘≥’ substituted by ‘≤’.

Lemma . ([]) Let E be a Banach space, E be a closed, convex subset of E, � be an open
subset of E, and  ∈ �. Suppose that T : � → E is completely continuous. Then either

(i) T has a fixed point in �, or
(ii) there are u ∈ ∂� (the boundary of � in E) and λ ∈ (, ) with u = λTu.

Lemma . ([]) Let E be a Banach space and K ⊂ E be a cone in E. Assume that �, �

are open subsets of E with  ∈ �, � ⊂ �, and let T : K ∩ (� \ �) → K be a completely
continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂� and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂�; or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂� and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂�.

Then T has a fixed point in K ∩ (� \ �).

Lemma . ([]) Let E be a Banach space and K ⊂ E be a cone in E. Assume that �,
� are open subsets of E with � ∩ K �= ∅, � ∩ K ⊂ � ∩ K . Let T : � ∩ K → K be a
completely continuous operator such that:

(A) ‖ Tu ‖≤‖ u ‖, ∀u ∈ ∂(� ∩ K), and
(B) there exists e ∈ K \ {} such that

u �= Tu + μe, for u ∈ ∂(� ∩ K) and μ > .

Then T has a fixed point in � ∩ K \ � ∩ K . The same conclusion remains valid if (A)
holds on ∂(� ∩ K) and (B) holds on ∂(� ∩ K).

2 Preliminaries
Definition . ([]) For a function u given on the interval [a,b], the Riemann-Liouville
derivative of fractional order q is defined as

Dq
a+ u(t) =



(n – q)

dn

dtn

∫ t

a
(t – s)n–q–u(s) ds,

where n = [q] + .
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Definition . ([]) The Riemann-Liouville fractional integral of order q for a function
u is defined as

Iq
a+ u(t) =



(q)

∫ t

a
(t – s)q–u(s) ds, q > 

provided that such integral exists.

Lemma . ([]) Let q > . Then

Iq
a+ Dq

a+ u(t) = u(t) +
n∑

k=

cktq–k , n = [q] + .

Lemma . Let h(t) ∈ AC[, ]. Then the fractional Sturm-Liouville problem

⎧⎨
⎩Dq

+ (p(t)u′(t)) + h(t) = ,  < q ≤ , t ∈ (, ),

αu() – βp()u′() = , γ u() + δp()u′() = 

has a unique solution u(t) in the form

u(t) =
∫ 


G(t, s)h(s) ds,

where

G(t, s) =


ρ
(q)

⎧⎨
⎩[β + α

∫ t


dτ
p(τ ) ][δ( – s)q– + γ

∫ 
t

(τ–s)q– dτ

p(τ ) ] – H(t, s),  ≤ s ≤ t ≤ ;

[β + α
∫ t


dτ

p(τ ) ][δ( – s)q– + γ
∫ 

s
(τ–s)q– dτ

p(τ ) ],  ≤ t ≤ s ≤ ;

ρ = βγ + αγ

∫ 




p(τ )

dτ + αδ, H(t, s) = α

[
δ + γ

∫ 

t

dτ

p(τ )

]∫ t

s

(τ – s)q–

p(τ )
dτ .

Proof From Definitions ., . and Lemma ., it follows that

u′(t) =
c

p(t)
–



(q)p(t)

∫ t


(t – s)q–h(s) ds,

u(t) = c +
∫ t



c

p(τ )
dτ –

∫ t



∫ τ



(τ – s)q–q(s)

(q)p(τ )

ds dτ .

Furthermore, we have

u() = c, u′() =
c

p()
,

u() = c +
∫ 



c

p(τ )
dτ –

∫ 



∫ τ



(τ – s)q–q(s)

(q)p(τ )

ds dτ ,

u′() =
c

p()
–



(q)p()

∫ 


( – s)q–q(s) ds.
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Combining the boundary conditions, we directly get

c =
αγ

∫ 


∫ τ


(τ–s)q–h(s)


(q)p(τ ) ds dω + αδ
∫ 


(–s)q–h(s)


(q) ds
ρ

,

c =
βγ

∫ 


∫ τ


(τ–s)q–h(s)


(q)p(τ ) ds dτ + βδ
∫ 


(–s)q–h(s)


(q) ds
ρ

.

Finally, substituting c and c, we obtain

u(t) =
βγ

∫ 


∫ τ


(τ–s)q–h(s)


(q)p(τ ) ds dτ + βδ
∫ 


(–s)q–h(s)


(q) ds
ρ

+
∫ t




p(ω)

dτ
αγ

∫ 


∫ ω


(ω–s)q–h(s)


(q)p(τ ) ds dω + αδ
∫ 


(–s)q–h(s)


(q) ds
ρ

–
∫ t



∫ τ



(τ – s)q–h(s)

(q)p(τ )

ds dτ

=
βγ

∫ 
 [

∫ 
s

(τ–s)q–


(q)p(τ ) dτ ]h(s) ds + βδ
∫ 


(–s)q–


(q) h(s) ds
ρ

+
∫ t




p(τ )

dτ
αγ

∫ 
 [

∫ 
s

(τ–s)q–


(q)p(τ ) dτ ]h(s) ds + αδ
∫ 


(–s)q–


(q) h(s) ds
ρ

–
∫ t



[∫ t

s

(τ – s)q–


(q)p(τ )
dτ

]
h(s) ds

=
∫ 


G(t, s)h(s) ds.

For  ≤ t ≤ s ≤ ,

u(t) =
βγ

∫ 
t [

∫ 
s

(τ–s)q–


(q)p(τ ) dτ ]h(s) ds + βδ
∫ 

t
(–s)q–


(q) h(s) ds
ρ

+
∫ t




p(τ )

dτ
αγ

∫ 
t [

∫ 
s

(τ–s)q–


(q)p(τ ) dτ ]h(s) ds + αδ
∫ 

t
(–s)q–


(q) h(s) ds
ρ

=
∫ 

t


ρ

[
β + α

∫ t



dτ

p(τ )

][
δ( – s)q– + γ

∫ 

s

(τ – s)q– dτ

p(τ )

]
h(s) ds.

For  ≤ s ≤ t ≤ ,

u(t) =
βγ

∫ t
 [

∫ 
s

(τ–s)q–


(q)p(τ ) dτ ]h(s) ds + βδ
∫ t


(–s)q–


(q) h(s) ds
ρ

+
∫ t




p(τ )

dτ
ac

∫ t
 [

∫ 
s

(τ–s)q–


(q)p(τ ) dτ ]h(s) ds + αδ
∫ t


(–s)q–


(q) h(s) ds
ρ

–
∫ t



[∫ t

s

(τ – s)q–


(q)p(τ )
dτ

]
h(s) ds
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=

ρ

∫ t



[
β + α

∫ t



dτ

p(τ )

][
δ( – s)q– + γ

∫ 

t

(τ – s)q– dτ

p(τ )

]

– α

[
δ + γ

∫ 

t

dτ

p(τ )

]∫ t

s

(τ – s)q–

p(τ )
dτh(s) ds. �

Lemma . Assume that α,β ,γ , δ > , and p(·) : [, ] → (, +∞). The Green function
G(t, s) satisfies the following properties:

(i) G(t, s) ≥  for  ≤ t, s ≤ ;
(ii) For  ≤ t, s ≤ , there exists C(t) >  such that G(t, s) satisfies the inequalities

C(t)G(s, s) ≤ G(t, s)

and

min
t∈[θ ,–θ ]

C(t) <  for θ ∈
(

,



)
.

(iii) The maximum value estimate of G(t, s)

G = max
≤t,s≤

G(t, s)

= max
{

max
s∈[,]

G(s, s), max
s∈[,]

G
(
t(s), s

)}
,

where

t(s) = s +
[

αδ( – s)q– + αγ
∫ 

s
(τ–s)q–

p(τ ) dτ

ρ

] 
q–

.

Proof (i) On the one hand, since α,β ,γ , δ > , and βγ + αγ
∫ 




p(τ ) dτ + αδ > , it is clear
that G(t, s) ≥  for  ≤ t ≤ s ≤ . On the other hand, for  ≤ s ≤ t ≤ , we can verify the
following inequalities:

αδ

∫ t



( – s)q–

p(τ )
dτ – αδ

∫ t

s

(τ – s)q–

p(τ )
dτ ≥ ,

αγ
∫ t


dτ

p(τ )
∫ 

t
(τ–s)q– dτ

p(τ )

αγ
∫ 

t
dτ

p(τ )
∫ t

s
(τ–s)q–

p(τ ) dτ
≥

∫ t


dτ
p(τ )

∫ 
t

(t–s)q– dτ

p(τ )∫ 
t

dτ
p(τ )

∫ t
s

(t–s)q–

p(τ ) dτ
≥ .

Then we get G(t, s) ≥  for  ≤ s ≤ t ≤ .
(ii) For  ≤ t ≤ s ≤ ,

∂G(t, s)
∂t

=
α

ρ
(q)p(t)

[
δ( – s)q– + γ

∫ 

s

(τ – s)q– dτ

p(τ )

]
≥ . (.)

Then it is easy to obtain

G(t, s) ≤ G(s, s) for  ≤ t ≤ s ≤ .
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For  ≤ s ≤ t ≤ ,

∂G(t, s)
∂t

=

�

{
–βγ

(t – s)q–

p(t)
+

αδ( – s)q–

p(t)
+ αγ


p(t)

∫ 

t

(τ – s)q–

p(τ )
dτ

–αγ

∫ t



dτ

p(τ )
(t – s)q–

p(t)
– αδ

(t – s)q–

p(t)
+ αγ


p(t)

∫ t

s

(τ – s)q–

p(τ )
dτ

– αγ

∫ 

t

dτ

p(τ )
(t – s)q–

p(t)

}

=


ρ
(q)p(t)

[
–ρ(t – s)q– + αδ( – s)q– + αγ

∫ 

s

(τ – s)q–

p(τ )
dτ

]
. (.)

Let

F(t) = –ρ(t – s)q– + αδ( – s)q– + αγ

∫ 

s

(τ – s)q–

p(τ )
dτ .

It is clear that F ′(t) = –ρ(q–)(t –s)q– < , which implies that F(·) is decreasing on t ∈ (s, ].
Since F(s) >  and F() < , there exists unique t(s) ∈ (s, ) such that F(t) = , namely,

t(s) = s +
[

αδ( – s)q– + αγ
∫ 

s
(τ–s)q–

p(τ ) dτ

ρ

] 
q–

.

From the above discussion, we get the conclusions

∂G(t, s)
∂t

≥ , for t ∈ [s, t], and G(s, s) ≤ G(t, s) ≤ G(t, s),

∂G(t, s)
∂t

≤ , for t ∈ [t, ], and G(, s) ≤ G(t, s) ≤ G(t, s).

Furthermore, we obtain the estimate

G(t, s) ≤ G
(
t(s), s

)
, for  ≤ s ≤ t ≤ .

For  ≤ t ≤ s ≤ ,

G(t, s)
G(s, s)

=
β + α

∫ t


dτ
p(τ )

β + α
∫ s


dτ

p(τ )
≥ β + α

∫ t


dτ
p(τ )

β + α
∫ 


dτ

p(τ )

= C(t).

For  ≤ s ≤ t ≤ ,

G(t, s)
G(s, s)

=
[β + α

∫ t


dτ
p(τ ) ][δ( – s)q– + γ

∫ 
t

(τ–s)q– dτ

p(τ ) ] – H(t, s)

[β + α
∫ s


dτ

p(τ ) ][δ( – s)q– + γ
∫ 

s
(τ–s)q– dτ

p(τ ) ]

≥ [β + α
∫ t


dτ

p(τ ) ][δ( – s)q– + γ
∫ 

t
(τ–s)q– dτ

p(τ ) ] – H(t, s)

[β + α
∫ t


dτ

p(τ ) ][δ + γ
∫ 


dτ

p(τ ) ]
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=
[β + α

∫ t


dτ
p(τ ) ][δ( – s)q– + γ

∫ 
t

(t–s)q– dτ

p(τ ) ] – α[δ + γ
∫ 

t
dτ

p(τ ) ]
∫ t

s
(t–s)q–

p(τ ) dτ

[β + α
∫ t


dτ

p(τ ) ][δ + γ
∫ 


dτ

p(τ ) ]

≥ βδ( – t)q– + βγ
∫ 

t
(t–s)q– dτ

p(τ ) + αδ( – s)q– ∫ t


dτ
p(τ ) + αγ

∫ t


dτ
p(τ )

∫ 
t

(t–s)q– dτ

p(τ )

[β + α
∫ t


dτ

p(τ ) ][δ + γ
∫ 


dτ

p(τ ) ]

–
αδ( – s)q– ∫ t

s
dτ

p(τ ) + αγ
∫ 

t
dτ

p(τ )
∫ t

s
(t–s)q–

p(τ ) dτ

[β + α
∫ t


dτ

p(τ ) ][δ + γ
∫ 


dτ

p(τ ) ]

=
βδ( – t)q– + γ (t – s)q–[β

∫ 
t

dτ
p(τ ) + α

∫ t


dτ
p(τ )

∫ 
t

dτ
p(τ ) – α

∫ 
t

dτ
p(τ )

∫ t
s

dτ
p(τ ) ]

[β + α
∫ t


dτ

p(τ ) ][δ + γ
∫ 


dτ

p(τ ) ]

+
αδ( – s)q–[

∫ t


dτ
p(τ ) –

∫ t
s

dτ
p(τ ) ]

[β + α
∫ t


dτ

p(τ ) ][δ + γ
∫ 


dτ

p(τ ) ]

≥ βδ( – t)q– + γ (t – s)q–[β
∫ 

t
dτ

p(τ ) + α
∫ t


dτ

p(τ )
∫ 

t
dτ

p(τ ) – α
∫ 

t
dτ

p(τ )
∫ t


dτ

p(τ ) ]

[β + α
∫ t


dτ

p(τ ) ][δ + γ
∫ 


dτ

p(τ ) ]

+
αδ( – s)q– ∫ s


dτ

p(τ )

[β + α
∫ t


dτ

p(τ ) ][δ + γ
∫ 


dτ

p(τ ) ]

≥ βδ( – t)q–

[β + α
∫ t


dτ

p(τ ) ][δ + γ
∫ 


dτ

p(τ ) ]
= C(t).

Choosing C(t) = min{C(t), C(t)}, we get C(t)G(s, s) ≤ G(t, s). �

3 Existence results I
Theorem . (Lyapunov type inequality) Assume that α,β ,γ , δ > , p(·) : [, ] → (, +∞),
and let �(t) : [, ] → R be a nontrivial Lebesgue integrable function. Then, for any non-
trivial solution of the fractional Sturm-Liouville problem

⎧⎨
⎩Dq

+ (p(t)u′(t)) + �(t)u(t) = ,  < q ≤ , t ∈ (, ),

αu() – βp()u′() = , γ u() + δp()u′() = ,

the following so-called Lyapunov type inequality will be satisfied:

∫ 



∣∣�(s)
∣∣ds >


G

,

where G is defined in (iii) of Lemma ..

Proof From Lemma . and the triangular inequality, we get

∣∣u(t)
∣∣ =

∣∣∣∣
∫ 


G(t, s)�(s)u(s) ds

∣∣∣∣ ≤
∫ 


G(t, s)

∣∣�(s)u(s)
∣∣ds.
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Let E denote the Banach space C[, ] with the norm defined by ‖u‖ = maxt∈[,] |u(t)|.
Via some simple computations, we can obtain

∥∥u(t)
∥∥ ≤ max

t∈[,]

∫ 


G(t, s)

∣∣�(s)u(s)
∣∣ds

≤ ∥∥u(t)
∥∥ max

t∈[,]

∫ 


G(t, s)

∣∣�(s)
∣∣ds

≤ ∥∥u(t)
∥∥∫ 



[
max
t∈[,]

G(t, s)
]∣∣�(s)

∣∣ds,

namely,

∫ 



∣∣�(s)
∣∣ds >


G

. �

Theorem . (Generalized Lyapunov type inequality) Assume that α,β ,γ , δ > , p(·) :
[, ] → (, +∞), and let �(t) : [, ] → R be a nontrivial Lebesgue integrable function,
f (u) is a positive function on R. Then, for any nontrivial solution of the fractional Sturm-
Liouville problem (.), the following so-called Lyapunov type inequality will be satisfied:

∫ 



∣∣�(s)
∣∣ds >

u∗

G maxu∈[u∗ ,u∗] f (u)
,

where

u∗ = min
t∈[,]

u(t), u∗ = max
t∈[,]

u(t).

Proof From the similar proof of Theorem ., we get

∣∣u(t)
∣∣ ≤

∫ 


G(t, s)

∣∣�(s)
∣∣f (u(s)

)
ds.

Since f is continuous and concave, then using Jensen”s inequality (.), we obtain

∥∥u(t)
∥∥ ≤ max

t∈[,]

∫ 


G(t, s)

∣∣�(s)
∣∣f (u(s)

)
ds

≤
∫ 



[
max
t∈[,]

G(t, s)
]∣∣�(s)

∣∣f (u(s)
)

ds

≤ G
∣∣�(t)

∣∣
L

∫ 



|�(s)|
|�(t)|L

f
(
u(s)

)
ds

≤ G max
u∈[u∗ ,u∗]

f (u)
∣∣�(t)

∣∣
L ,

namely,

∫ 



∣∣�(s)
∣∣ds >

u∗

G maxu∈[u∗ ,u∗] f (u)
. �
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For convenience, we give some notations:

� = max
t∈[,]

[∫ t


G

(
t(s), s

)
�(s) ds +

∫ 

t
G(s, s)�(s) ds

]
;

ς = min
t∈[θ ,–θ ]

C(t) ·
∫ 


G(s, s)�(s) ds.

Theorem . Let �(t) : [, ] → R+ be a nontrivial Lebesgue integrable function and f :
R →R be a continuous function satisfying the Lipschitz condition

∣∣f (x) – f (y)
∣∣ ≤ L|x – y|, ∀x, y ∈ R, L > .

Then problem (.) has a unique solution if L� < .

Proof By Lemma ., the solution of problem (.) is equivalent to a fixed point of the
operator T : E → E defined by T(u(t)) =

∫ 
 G(t, s)�(s)f (u(s)) ds.

Let supt∈[,] |f ()| = ν . Now we show that T : Br ⊂ Br , where Br = {u ∈ C[, ] : ‖u‖ < r}
with r > ν�

–L�
. For u ∈ Br , one has |f (u)| = |f (u) – f () + f ()| ≤ L|u| + ν ≤ Lr + ν . Further-

more, we have

∥∥T(u)(t)
∥∥ =

∥∥∥∥
∫ 


G(t, s)�(s)f

(
u(s)

)
ds

∥∥∥∥
=

∫ t


G(t, s)�(s)f

(
u(s)

)
ds +

∫ 

t
G(t, s)�(s)f

(
u(s)

)
ds

≤
∥∥∥∥
∫ t


G

(
t(s), s

)
�(s)f

(
u(s)

)
ds +

∫ 

t
G(s, s)�(s)f

(
u(s)

)
ds

∥∥∥∥
≤ (Lr + ν) max

t∈[,]

[∫ t


G

(
t(s), s

)
�(s) ds +

∫ 

t
G(s, s)�(s) ds

]

= (Lr + ν)� ≤ r,

which yields T : Br ⊂ Br .
For any x, y ∈ E, we have

∥∥T(x) – T(y)
∥∥ =

∥∥∥∥
∫ 


G(t, s)�(s)f

(
x(s)

)
ds –

∫ 


G(t, s)�(s)f

(
y(s)

)
ds

∥∥∥∥
≤ sup

t∈[,]

{∫ t


G

(
t(s), s

)
�(s)

∣∣f (x(s)
)

– f
(
y(s)

)∣∣ds

+
∫ 

t
G(s, s)�(s)

∣∣f (x(s)
)

– f
(
y(s)

)∣∣ds
}

≤ L max
t∈[,]

[∫ t


G

(
t(s), s

)
�(s) ds +

∫ 

t
G(s, s)�(s) ds

]
‖x – y‖

= L�‖x – y‖.

Since L� < , from the Banach’s contraction mapping principle it follows that there ex-
ists a unique fixed point for the operator T which corresponds to the unique solution for
problem (.). This completes the proof. �
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Theorem . Let �(t) : [, ] → R+ be a nontrivial Lebesgue integrable function and f :
R →R be a continuous function satisfying the following:

(F) There exists a positive constant K such that |f (u)| ≤ K for u ∈R.
Then problem (.) has at least one solution.

Proof First, since the function p : [, ] → (, +∞) is continuous, we get p∗ =
mint∈[,] p(t) > . Further, from (.) and (.), we get the following estimates respectively:

for  ≤ t ≤ s ≤ ,

 <
∂G(t, s)

∂t
=

α

ρ
(q)p(t)

[
δ( – s)q– + γ

∫ 

s

(τ – s)q– dτ

p(τ )

]

≤ α

ρ
(q)p∗

[
δ + γ

∫ 



dτ

p(τ )

]
;

for  ≤ s ≤ t ≤ ,

∣∣∣∣∂G(t, s)
∂t

∣∣∣∣ =
∣∣∣∣ 
ρ
(q)p(t)

[
–ρ(t – s)q– + αδ( – s)q– + αγ

∫ 

s

(τ – s)q–

p(τ )
dτ

]∣∣∣∣
≤ 

ρ
(q)p∗

[
ρ + αδ + αγ

∫ 



dτ

p(τ )

]
;

which implies that | ∂G(t,s)
∂t | is bounded for  ≤ s, t ≤ , namely, there exists S >  such

that | ∂G(t,s)
∂t | ≤ S. Combining with |f (t, u)| ≤ K for t ∈ [, ], t ∈ R, we obtain

∣∣(Tu)′(t)
∣∣ =

∣∣∣∣
∫ 



∂G(t, s)
∂t

�(s)f
(
u(s)

)
ds

∣∣∣∣ ≤ SK
∥∥�(t)

∥∥
L .

Hence, for any t, t ∈ [, ], we have

∣∣(Tu)(t) – (Tu)(t)
∣∣ =

∣∣∣∣
∫ t

t

(Tu)′(t) dt
∣∣∣∣ ≤ SK

∥∥�(t)
∥∥

L |t – t|.

This means that T is equicontinuous on [,]. Thus, by the Arzelà-Ascoli theorem, the
operator T is completely continuous.

Finally, let Br = {u ∈ E : ‖u‖ < r} with r = K� + . If u is a solution for the given problem,
then, for λ ∈ (, ), we obtain

‖u‖ = λ
∥∥Tu(t)

∥∥ = λ

∥∥∥∥
∫ 


G(t, s)�(s)f

(
u(s)

)
ds

∥∥∥∥
= λ

∥∥∥∥
∫ t


G(t, s)�(s)f

(
u(s)

)
ds +

∫ 

t
G(t, s)�(s)f

(
u(s)

)
ds

∥∥∥∥
< max

t∈[,]

∫ t


G

(
t(s), s

)
�(s)

∣∣f (u(s)
)∣∣ds +

∫ 

t
G(s, s)

∣∣�(s)f
(
u(s)

)∣∣ds

≤ K max
t∈[,]

[∫ t


G

(
t(s), s

)
�(s) ds +

∫ 

t
G(s, s)�(s) ds

]
≤ K� ,
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which yields a contradiction. Therefore, by Lemma ., the operator T has a fixed point
in E. �

Theorem . Let �(t) : [, ] → R+ be a nontrivial Lebesgue integrable function and f :
R+ → R+ be a continuous function satisfying (F). In addition, the following assumption
holds:

(F) There exists a positive constant r such that

f (u) ≥ ς–r for u ∈ [, r].

Then problem (.) has at least one solution.

Proof Define a cone P of the Banach space E as P = {u ∈ E : u ≥ }. From the proof of
Theorem ., we know that T : P → P is completely continuous. Set Pri = {u ∈ P : ‖u‖ < ri}.

For u ∈ ∂Pr , one has  ≤ u ≤ r. For t ∈ [θ ,  – θ ], we have

T
(
u(t)

)
=

∫ 


G(t, s)�(s)f

(
u(s)

)
ds

≥
∫ 


C(t)G(s, s)�(s)f

(
u(s)

)
ds

≥ min
t∈[θ ,–θ ]

C(t) ·
∫ 


G(s, s)�(s)f

(
u(s)

)
ds

≥ min
t∈[θ ,–θ ]

C(t) ·
∫ 


G(s, s)�(s) ds · r

> r = ‖u‖.

Choosing r > K� . Then, for u ∈ ∂Pr , we have

∥∥T
(
u(t)

)∥∥ =
∥∥∥∥
∫ 


G(t, s)�(s)f

(
u(s)

)
ds

∥∥∥∥
=

∥∥∥∥
∫ t


G(t, s)�(s)f

(
u(s)

)
ds +

∫ 

t
G(t, s)�(s)f

(
u(s)

)
ds

∥∥∥∥
≤ max

t∈[,]

[∫ t


G

(
t(s), s

)
�(s) ds +

∫ 

t
G(s, s)�(s) ds

]
K

< r = ‖u‖.

Then, by Lemma ., problem (.) has at least one positive solution u(t) belonging to E
such that r ≤ ‖u‖ ≤ r. �

Theorem . Let �(t) : [, ] → R+ be a nontrivial Lebesgue integrable function, f : R →
R be a continuous function and satisfy the following assumptions:

(F) There exists a nondecreasing function ϕ : R+ →R+ such that

∣∣f (u)
∣∣ ≤ ϕ

(‖u‖), ∀u ∈R;

(F) There exists a constant R >  such that R
�ϕ(R) > .

Then problem (.) has at least one solution.
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Proof From the proof of Theorem ., we know that T is completely continuous. Now we
show that (ii) of Lemma . does not hold. If u is a solution of (.), then, for λ ∈ (, ), we
obtain

‖u‖ = λ
∥∥T

(
u(t)

)∥∥ = λ

∥∥∥∥
∫ 


G(t, s)�(s)f

(
u(s)

)
ds

∥∥∥∥
= λ

∥∥∥∥
∫ t


G(t, s)�(s)f

(
u(s)

)
ds +

∫ 

t
G(t, s)�(s)f

(
u(s)

)
ds

∥∥∥∥
< max

t∈[,]

[∫ t


G

(
t(s), s

)
�(s)

∣∣f (u(s)
)∣∣ds +

∫ 

t
G(s, s)�(s)

∣∣f (u(s)
)∣∣ds

]

≤ max
t∈[,]

[∫ t


G

(
t(s), s

)
�(s) ds +

∫ 

t
G(s, s)�(s) ds

]
ϕ
(‖u‖)

≤ �ϕ
(‖u‖).

Let BR = {u ∈ E : ‖u‖ < R}. From the above inequality and (F), it yields a contradiction.
Therefore, by Lemma ., the operator T has a fixed point in BR. �

Theorem . Let �(t) : [, ] → R+ be a nontrivial Lebesgue integrable function and f :
[, ] × R+ → R+ be a continuous function. Suppose that (F) and (F) hold. In addition,
the following assumption holds:

(F) There exists a positive constant r with r < R and a function ψ : R+ →R+ satisfying

f (u) ≥ ψ
(‖u‖), for u ∈ [,ςr],

ψ(ςr) ≥ r.

If ς < , then (.) has at least one positive solution u(t).

Proof Let Br = {u ∈ E : ‖u‖ < r}.
Part (I). For any u ∈ ∂(BR ∩ P), from (F) and (F) it follows that

∥∥T
(
u(t)

)∥∥ =
∥∥∥∥
∫ 


G(t, s)�(s)f

(
u(s)

)
ds

∥∥∥∥
=

∥∥∥∥
∫ t


G(t, s)�(s)f

(
u(s)

)
ds +

∫ 

t
G(t, s)�(s)f

(
u(s)

)
ds

∥∥∥∥
< max

t∈[,]

∫ t


G

(
t(s), s

)
�(s)f

(
u(s)

)
ds +

∫ 

t
G(s, s)�(s)f

(
u(s)

)
ds

≤ max
t∈[,]

[∫ t


G

(
t(s), s

)
�(s) ds +

∫ 

t
G

(
s, s�(s)

)
ds

]
ϕ
(‖u‖)

= �‖ϕ(R)

≤ R = ‖u‖,

which implies that (A) of Lemma . holds.
Now we prove that u �= T(u) + μ for u ∈ ∂(Bςr ∩ P) and μ > . On the contrary, if there

exists u ∈ ∂(Bςr ∩ P) and μ >  such that u = T(u) + μ, then, for t ∈ [θ ,  – θ ], one has
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mint∈[θ ,–θ ] C(t) > . Furthermore, from (F) it follows that

u(t) = T
(
u(t)

)
+ μ

=
∫ 


G(t, s)�(s)f

(
u(s)

)
ds + μ

≥
∫ 


C(t)G(s, s)�(s)f

(
u(s)

)
ds + μ

≥ min
t∈[θ ,–θ ]

C(t)
∫ 


G(s, s)�(s)f

(
u(s)

)
ds + μ

≥ min
t∈[θ ,–θ ]

C(t)
∫ 


G(s, s)�(s)ψ(ςr) ds + μ

= ςr + μ.

Furthermore, we get

ςr > min
t∈[θ ,–θ ]

u(t) ≥ ςr + μ > ςr,

which yields a contradiction. So (B) of Lemma . holds.
Therefore, Lemma . guarantees that T has at least one fixed point. �

Theorem . Let �(t) : [, ] → R+ be a nontrivial Lebesgue integrable function and f :
R+ → R+ be a continuous function satisfying (F). In addition, the following assumptions
hold:

(F) limu→+
f (u)

u = ;
(F) There exists R >  such that minu∈[ϑR,R] f (u) > σR, where

 < ϑ = η
[

min
t∈[θ ,–θ ]

C(t)
]

< ,

 < η =
[

max
≤s≤

G(t(s), s)
G(s, s)

]–

≤ ,

σ =
[

min
t∈[θ ,–θ ]

C(t)
∫ –θ

θ

G(s, s)�(s) ds
]–

.

Then problem (.) has at least two solutions.

Proof From Lemma ., we can derive the following inequalities:

∥∥T
(
u(t)

)∥∥ =
∥∥∥∥
∫ 


G(t, s)�(s)f

(
u(s)

)
ds

∥∥∥∥
=

∥∥∥∥
∫ t


G(t, s)�(s)f

(
u(s)

)
ds +

∫ 

t
G(t, s)�(s)f

(
u(s)

)
ds

∥∥∥∥
≤ max

t∈[,]

[∫ t


G

(
t(s), s

)
�(s)f

(
u(s)

)
ds +

∫ 

t
G(s, s)�(s)f

(
u(s)

)
ds

]
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= max
t∈[,]

[∫ t



G(t(s), s)
G(s, s)

G(s, s)�(s)f
(
u(s)

)
ds +

∫ 

t
G(s, s)�(s)f

(
u(s)

)
ds

]

≤ max
≤s≤

G(t(s), s)
G(s, s)

[∫ 


G(s, s)�(s)f

(
u(s)

)
ds

]

and

T
(
u(t)

)
=

∫ 


G(t, s)�(s)f

(
u(s)

)
ds

≥
∫ 


C(t)G(s, s)�(s)f

(
u(s)

)
ds.

Combining the two inequalities, we have

T
(
u(t)

) ≥ C(t)η
∥∥T

(
u(t)

)∥∥.

Define a subcone P̂ of the Banach space E as P̂ = {u ∈ E : u ≥ C(t)η‖u(t)‖}. From the stan-
dard process, we know that T : P̂ → P̂ is completely continuous. Set P̂r = {u ∈ P̂ : ‖u‖ < r}.

Since limu→+
f (u)

u = , there exist ε >  and r >  such that f (u) < εu, for  ≤ u ≤ r, where
ε satisfies ε� < . For u ∈ ∂P̂r , we have

∥∥T
(
u(t)

)∥∥ =
∥∥∥∥
∫ 


G(t, s)�(s)f

(
u(s)

)
ds

∥∥∥∥
=

∥∥∥∥
∫ t


G(t, s)�(s)f

(
u(s)

)
ds +

∫ 

t
G(t, s)�(s)f

(
u(s)

)
ds

∥∥∥∥
≤ ε max

t∈[,]

[∫ t


G

(
t(s), s

)
�(s) ds +

∫ 

t
G(s, s)�(s) ds

]
‖u‖

< ‖u‖.

In a similar way, we choose R > K� . Then, for u ∈ ∂P̂R, we have

∥∥T
(
u(t)

)∥∥ =
∥∥∥∥
∫ 


G(t, s)�(s)f

(
u(s)

)
ds

∥∥∥∥
=

∥∥∥∥
∫ t


G(t, s)�(s)f

(
u(s)

)
ds +

∫ 

t
G(t, s)�(s)f

(
u(s)

)
ds

∥∥∥∥
≤ max

t∈[,]

[∫ t


G

(
t(s), s

)
�(s) ds +

∫ 

t
G(s, s)�(s) ds

]
K

< R = ‖u‖.

For any u ∈ ∂PR, choosing t∗ ∈ (θ ,  – θ ), it is easy to verify that u(t∗) ∈ [ϑR, R]. Further-
more, we have

T
(
u
(
t∗)) =

∫ 


G

(
t∗, s

)
�(s)f

(
u(s)

)
ds

≥ C
(
t∗)∫ –θ

θ

G(s, s)�(s)f
(
u(s)

)
ds
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≥ C
(
t∗)∫ –θ

θ

G(s, s)�(s) min
u∈[ϑR,R]

f
(
u(s)

)
ds

≥
[

min
t∈[θ ,–θ ]

C(t)
]∫ –θ

θ

G(s, s)�(s)σR ds

= R = ‖u‖.

Then by Lemma ., problem (.) has at least two positive solutions r ≤ ‖u(t)‖ ≤ R and
R ≤ ‖u(t)‖ ≤ R. �

Example  Let us consider the problem
⎧⎨
⎩Dq

+ (p(t)u′(t)) + �(t) arctan u = ,  < q ≤ , t ∈ (, ),

αu() – βp()u′() = , γ u() + δp()u′() = .

Since |f (u)| = | arctan u| < π , this problem has a solution by Theorem .. If �(t) satisfies

� = max
t∈[,]

[∫ t


G

(
t(s), s

)
�(s) ds +

∫ 

t
G(s, s)�(s) ds

]
< .

It is easy to get that

f ′(u) = (arctan u)′ =


 + u ≤  = L.

Therefore, this problem has a unique solution by Theorem ..

Example  Let us consider the problem
⎧⎨
⎩Dq

+ (p(t)u′(t)) + �(t)e–u = ,  < q ≤ , t ∈ (, ),

αu() – βp()u′() = , γ u() + δp()u′() = .

Since f (u) = e–u ≤ , we can choose r = � + . Then it is clear that

f (u) ≤  < � –r for u ∈ [, r],

which implies that (F) holds. Finally, for any r > , we have f (u) ≥ e–r for u ∈ [, r].
Since limr→+ e–r

ς–r = +∞, there exists r < r such that f (u) ≥ ς–r for u ∈ [, r], which
implies that (F) holds. Therefore, this problem has a unique solution by Theorem ..

Example  Let us consider the problem
⎧⎨
⎩Dq

+ (p(t)u′(t)) + �(t)e–u (arctan u + sin u + ) = ,  < q ≤ , t ∈ (, ),

αu() – βp()u′() = , γ u() + δp()u′() = .

It is clear that |f (u)| = |e–u (arctan u

 + sin u 

 + )| ≤ ‖u‖ 
 + ‖u‖ 

 +  = ϕ(‖u‖), ∀u ∈ R.
Then (F) holds. Furthermore, for sufficiently large R > , the inequality R

�ϕ(R) >  obvi-
ously holds, namely, (F) holds. Then this problem has at least one solution by Theo-
rem ..
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For u ∈ R+, since f (u) = e–u (arctan u

 + sin u 

 + ) ≥ e–u ≥ e–‖u‖ = ψ(‖u‖), we have
f (u) ≥ ψ(‖u‖) for u ∈ [,ςr], for any r > . Via some simple computations, we get
limr→+

ψ(ςr)
r = +∞. Then there exists sufficiently small r >  such that ψ(ςr) ≥ r. From

the above discussions, we have that (F) holds. Therefore, this problem has at least one
positive solution u(t) for ς <  by Theorem ..

Example  Let us consider the problem

⎧⎨
⎩Dq

+ (p(t)u′(t)) + �(t) σ

(ϑ)e–ϑ ue–u = ,  < q ≤ , t ∈ (, ),

αu() – βp()u′() = , γ u() + δp()u′() = .

Since f (u) = σ+
(ϑ)e–ϑ ue–u, via some simple computations, we can verify that (F) and (F)

hold. In addition, since f ′(u) = σ+
(ϑ)e–ϑ e–u(u – u) = σ+

(ϑ)e–ϑ e–uu( – u), it is clear that
f ′(u) >  for u ∈ (, ); f ′(u) <  for u ∈ (, +∞). Let R = , then for any u ∈ [ϑ , ], we have
minu∈[ϑ ,] f (u) = σ+

(ϑ)e–ϑ (ϑ)e–ϑ > σ . Therefore, this problem has at least two positive
solutions u(t) by Theorem ..

4 Existence results II
Theorem . Let �(t) : [, ] → R+ be a nontrivial Lebesgue integrable function and f :
R× [, +∞) →R be a continuous function satisfying the following:

(H) There exists a positive constant K such that |f (u,λ)| ≤ K for u ∈R, λ ∈R+.
Then problem (.) has at least one solution.

This result can be directly derived from the proof of Theorem ..
Now define a cone P of the Banach space E as P = {u ∈ E : u ≥ }. Let Pri = {u ∈ P :

‖u‖ < ri}. Define T by

T
(
u(t)

)
=

∫ 


G(t, s)�(s)f

(
u(s),λ

)
ds.

From the proof of Theorem ., we know that T : P → P is completely continuous.

Theorem . Let �(t) : [, ] →R+ be a nontrivial Lebesgue integrable function and f be
a nonnegative continuous function satisfying (H). If f (, ) > , then there exists λ∗ >  such
that problem (.) has at least one solution for  ≤ λ < λ∗.

Proof Since f (u,λ) is continuous and f (, ) > , for any given ε >  (sufficiently small),
there exists δ >  such that f (u,λ) > f (, ) – ε if  ≤ u < δ,  ≤ λ < δ. Choosing r <
min{δ,ς (f (, ) – ε)} and λ∗ = δ. Then, for any u ∈ ∂Pr and t ∈ [θ ,  – θ ], we have

T
(
u(t)

)
=

∫ 


G(t, s)�(s)f

(
u(s),λ

)
ds

≥
∫ 


C(t)G(s, s)�(s)f

(
u(s),λ

)
ds

≥ min
t∈[θ ,–θ ]

C(t) ·
∫ 


G(s, s)�(s)f

(
u(s),λ

)
ds
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≥ min
t∈[θ ,–θ ]

C(t) ·
∫ 


G(s, s)�(s) ds · (f (, ) – ε

)
> r = ‖u‖.

Choosing r > K� . Then, for u ∈ ∂Pr , we have

∥∥T
(
u(t)

)∥∥ =
∥∥∥∥
∫ 


G(t, s)�(s)f

(
u(s)

)
ds

∥∥∥∥
≤ max

t∈[,]

∫ t


G

(
t(s), s

)
�(s)f

(
u(s)

)
ds +

∫ 

t
G(s, s)�(s)f

(
u(s)

)
ds

≤ max
t∈[,]

[∫ t


G

(
t(s), s

)
�(s) ds +

∫ 

t
G(s, s)�(s) ds

]
K

< r = ‖u‖.

Then, by Lemma ., problem (.) has at least one positive solution u(t) belonging to E
such that r ≤ ‖u‖ ≤ r. �

Corollary . Let �(t) : [, ] → R+ be a nontrivial Lebesgue integrable function and f
be a nonnegative continuous function satisfying (H). If limu→+ f (u,λ) = f (, ) > , then
problem (.) has at least one solution for any λ ≥ .

Example  Let us consider the problem

⎧⎨
⎩Dq

+ (p(t)u′(t)) + �(t)(arctan u + e–λ) = ,  < q ≤ , t ∈ (, ),

αu() – βp()u′() = , γ u() + δp()u′() = .

It is clear that (H) holds and f (, ) > . Then there exists λ∗ >  such that this problem
has at least one solution for  ≤ λ < λ∗.

Example  Let us consider the problem

⎧⎨
⎩Dq

+ (p(t)u′(t)) + �(t)e–λu = ,  < q ≤ , t ∈ (, ),

αu() – βp()u′() = , γ u() + δp()u′() = .

It is clear that (H) holds and limu→+ f (u,λ) = f (, ) > . Then this problem has at least
one solution for any λ > .

5 Conclusion
In this manuscript, the authors prove some new existence results as well as uniqueness
and multiplicity results on fractional boundary value problems.
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