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1 Introduction
Fractional calculus is a natural extension of ordinary calculus, where integrals and deriva-
tives are defined for arbitrary real orders. Since the th century, when fractional cal-
culus was born, several different derivatives have been introduced: Riemann-Liouville,
Hadamard, Grunwald-Letnikov, and Caputo, just to mention a few [–]. The choice of
an appropriate fractional derivative depends on the considered system, and for this reason,
we find a large number of publications devoted to different fractional operators. Nowa-
days, fractional-order differential and integral operators, which are nonlocal in nature, ap-
pear in mathematical models of many real world phenomena such as anomalous diffusion,
ecological effects, blood flow issues, spreading of disease, control processes, etc. A wide
range of application of fractional calculus has motivated many researchers to develop the
theoretical aspects of this branch of modern analysis. Recently, many authors have pre-
sented new types of fractional operators, which generalize the Riemann-Liouville, Caputo
and Hadamard fractional operators. For theoretical development and application details,
we refer the reader to [–] and the references cited therein. The theory of fractional-
order differential equations involving different kinds of boundary conditions has been a
field of interest in pure and applied sciences. In addition to the classical two-point bound-
ary conditions, great attention is paid to nonlocal multipoint and integral boundary con-
ditions. Nonlocal conditions are used to describe certain features of physical, chemical
or other processes occurring in the internal positions of the given region, while integral
boundary conditions provide a plausible and practical approach to modeling the prob-
lems of blood flow. For more details and explanation, see, for instance [, ]. Some recent
results on fractional-order boundary value problems (BVPs) can be found in a series of
papers [–] and the references cited therein. Sequential fractional differential equa-
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tions have also received considerable attention, for instance see [–]. To the best of
our knowledge, the study of sequential fractional differential equations supplemented with
four point nonlocal integral fractional boundary conditions has yet to be initiated.

Motivated by the above papers we establish the existence of solutions for the following
nonlinear sequential fractional differential equation subject to nonlocal fractional integral
conditions

⎧
⎪⎪⎨

⎪⎪⎩

(cDα + kcDα–)u(t) = f (t, u(t), cDα–u(t)),  < α < ,  ≤ t ≤ T ,

αu(η) + βu(T) = γ
∫ ξ

 u(s) ds + ε,

α
cDα–u(η) + β

cDα–u(T) = γ
∫ T
ζ

u(s) ds + ε,

()

where cDα is the standard Caputo fractional derivative of order α,  ≤ η ≤ T ,  < ξ < ζ < T ,
α,α,β,β,γ,γ, ε, ε ∈R.

Notations:

R = R + R, R = R∗
 +

Tα–( – e–kT )
k	(α)

,

μ(t) =
(

ερ

qz
+

ερσ

qz
+

ε

q

)

e–kt –
(

ε

z
+

εσ

qz

)

, μ(t) =
(

γρσ

qz
+

γ

q

)

e–kt –
γσ

qz
,

μ(t) =
(

γρ

qz

)

e–kt –
(

γ

z

)

, μ(t) =
(

ασ

qz

)

–
(

αρσ

qz
+

α

q

)

e–kt ,

μ(t) =
(

βσ

qz

)

–
(

βρσ

qz
+

β

q

)

e–kt , μ(t) =
α

z
–

(
αρ

qz

)

e–kt ,

μ(t) =
β

z
–

(
βρ

qz

)

e–kt , μ(t) =
(

αkρ

qz

)

e–kt –
αk

z
,

μ(t) =
(

βkρ

qz

)

e–kt –
βk

z
,

where

q =
(
αe–kη + βe–kT – γ

(
 – e–kξ

))
, ρ = (α + β – γξ ),

σ =
(

γ

k
(
e–kζ – e–kT)

+
kα

	( – α)

∫ η


(η – s)–αe–ks ds

+
kβ

	( – α)

∫ T


(T – s)–αe–ks ds

)

,

z = γ(T – ζ ) –
σρ

q
,

with

K(t, x) =


	(α – )

∫ t

s
e–k(t–s)(s – x)α– ds,

∫ t


K(t, x)h(x) dx =

∫ t


e–k(t–s)Iα–h(s) ds,

K(t, s) =


	( – α)

∫ t

s
(t – x)–αK(x, s) dx,
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	( – α)

∫ η


(η – s)–α

∫ s


e–k(s–x)Iα–h(x) dx ds

=


	( – α)

∫ η


(η – s)–α

∫ s


K(s, x)h(x) dx ds

=


	( – α)

∫ η



(∫ η

x
(η – s)–αK(s, x) ds

)

h(x) dx =
∫ η


K(η, x)h(x) dx.

Lemma  Let h ∈ C([, T],R). The solution of the sequential FDE

⎧
⎪⎪⎨

⎪⎪⎩

(cDα + kcDα–)u(t) = h(t),  < α ≤ ,  ≤ t ≤ T ,

αu(η) + βu(T) = γ
∫ ξ

 u(s) ds + ε,

α
cDα–u(η) + β

cDα–u(T) = γ
∫ T
ζ

u(s) ds + ε,

()

has the following representation:

u(t) = μ(t) +
∫ t


K(t, x)h(s) ds + μ(t)

∫ ξ



∫ s


K(s, x)h(x) dx ds

+ μ(t)
∫ T

ζ

∫ s


K(s, x)h(x) dx ds + μ(t)

∫ η


K(η, x)h(x) dx

+ μ(t)
∫ T


K(T , x)h(x) dx + μ(t)

∫ η


h(x) dx + μ(t)

∫ T


h(x) dx

+ μ(t)
∫ η


K(η, x)h(x) dx + μ(t)

∫ T


K(T , x)h(x) dx.

The function u(t) defined above is a solution of ().

Proof Solving the sequential equation (cDα + kcDα–)u(t) = h(t), we get

u(t) = Ae–kt + A +
∫ t


e–k(t–s)Iα–h(s) ds. ()

Now, we need to find the constants A and A. Taking the fractional derivative of u(t)
we get cDα–u(t) = –kA

	(–α)
∫ t

 (t – s)–αe–ks ds + 
	(–α)

∫ t
 (t – s)–α(Iα–h(s) – k

∫ s
 e–k(s–x)Iα– ×

h(x) dx) ds. The first boundary condition of () gives

A
(
αe–kη + βe–kT – γ

(
 – e–kξ

))
+ A(α + β – γξ )

= ε + γ

∫ ξ



∫ s


e–k(s–x)Iα–h(x) dx ds

– α

∫ η


e–k(η–s)Iα–h(s) ds – β

∫ T


e–k(T–s)Iα–h(s) ds. ()

From the second boundary condition of (), we get

A

(
γ

k
(
e–kζ – e–kT)

+
kα

	( – α)

∫ η


(η – s)–αe–ks ds +

kβ

	( – α)

∫ T


(T – s)–αe–ks ds

)

+ Aγ(T – ζ )
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= –ε – γ

∫ T

ζ

∫ s


e–k(s–x)Iα–h(x) dx ds +

α

	( – α)

∫ η


(η – s)–αIα–h(s) ds

–
kα

	( – α)

∫ η


(η – s)–α

(∫ s


e–k(s–x)Iα–h(x) dx

)

ds

+
β

	( – α)

∫ T


(T – s)–αIα–h(s) ds

–
kβ

	( – α)

∫ T


(T – s)–α

(∫ s


e–k(s–x)Iα–h(x) dx

)

ds. ()

A simultaneous solution of () and () leads to

A =
(

ερ

qz
+

ερσ

qz
+

ε

q

)

+
(

γρσ

qz
+

γ

q

)∫ ξ



∫ s


K(s, x)h(x) dx ds

–
(

αρσ

qz
+

α

q

)∫ η


K(η, x)h(x) dx

–
(

βρσ

qz
+

β

q

)∫ T


K(T , x)h(x) dx +

(
γρ

qz

)∫ T

ζ

∫ s


K(s, x)h(x) dx ds

–
(

αρ

qz

)∫ η


h(x) dx +

(
αkρ

qz

)∫ η


K(η, x)h(x) dx

–
(

βρ

qz

)∫ T


h(x) dx +

(
βkρ

qz

)∫ T


K(T , x)h(x) dx. ()

A =
(

–
γσ

qz

)∫ ξ



∫ s


K(s, x)h(x) dx ds +

(
ασ

qz

)∫ η


K(η, x)h(x) dx

+
(

βσ

qz

)∫ T


K(T , x)h(x) dx –

ε

z
–

εσ

qz
–

(
γ

z

)∫ T

ζ

∫ s


K(s, x)h(x) dx ds

+
α

z

∫ η


h(x) dx

–
αk

z

∫ η


K(η, x)h(x) dx +

β

z

∫ T


h(x) dx –

βk
z

∫ T


K(T , x)h(x) dx. ()

We substitute () and () in () to get the desired solution,

u(t) =
[(

ερ

qz
+

ερσ

qz
+

ε

q

)

e–kt –
(

ε

z
+

εσ

qz

)]

︸ ︷︷ ︸
μ(t)

+
∫ t


K(t, x)h(s) ds

+
[(

γρσ

qz
+

γ

q

)

e–kt –
γσ

qz

]

︸ ︷︷ ︸
μ(t)

∫ ξ



∫ s


K(s, x)h(x) dx ds

+
[(

γρ

qz

)

e–kt –
(

γ

z

)]

︸ ︷︷ ︸
μ(t)

∫ T

ζ

∫ s


K(s, x)h(x) dx ds

+
[(

ασ

qz

)

–
(

αρσ

qz
+

α

q

)

e–kt
]

︸ ︷︷ ︸
μ(t)

∫ η


K(η, x)h(x) dx
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+
[(

βσ

qz

)

–
(

βρσ

qz
+

β

q

)

e–kt
]

︸ ︷︷ ︸
μ(t)

∫ T


K(T , x)h(x) dx

+
[

α

z
–

(
αρ

qz

)

e–kt
]

︸ ︷︷ ︸
μ(t)

∫ η


h(x) dx +

[
β

z
–

(
βρ

qz

)

e–kt
]

︸ ︷︷ ︸
μ(t)

∫ T


h(x) dx

+
[(

αkρ

qz

)

e–kt –
αk

z

]

︸ ︷︷ ︸
μ(t)

∫ η


K(η, x)h(x) dx

+
[(

βkρ

qz

)

e–kt –
βk

z

]

︸ ︷︷ ︸
μ(t)

∫ T


K(T , x)h(x) dx.

By direct computation the converse of the lemma holds. This completes the proof. �

Lemma  For any g, p ∈ C([, T];R) we have
∣
∣
∣
∣

∫ t


K(t, x)g(x) dx –

∫ t


K(t, x)p(x) dx

∣
∣
∣
∣ ≤ tα–

k	(α)
(
 – e–kt)‖g – p‖,

∣
∣
∣
∣

∫ t


K(t, x)g(x) dx –

∫ t


K(t, x)p(x) dx

∣
∣
∣
∣ ≤ t

k
(
 – e–kt)‖g – p‖.

2 Main results
Given Cα–[, T] = {u ∈ C[, T] : cDα–u ∈ C[, T]}. Let � = (Cα–[, T],‖ · ‖α–) denote
the Banach space of all continuous functions from [, T] to R, endowed with the norm
defined by ‖u‖α– = sup≤t≤T |u(t)| + sup≤t≤T |cDα–u(t)|.

Replacing h(x) by f (x, u(x), cDα–u(x)) in Lemma , an operator F : � → � associated
with problem () can be defined as

(Fu)(t) = μ(t) +
∫ t


K(t, x)f

(
x, u(x), cDα–u(x)

)
dx

+ μ(t)
∫ ξ



∫ s


K(s, x)f

(
x, u(x), cDα–u(x)

)
dx ds

+ μ(t)
∫ T

ζ

∫ s


K(s, x)f

(
x, u(x), cDα–u(x)

)
dx ds

+ μ(t)
∫ η


K(η, x)f

(
x, u(x), cDα–u(x)

)
dx

+ μ(t)
∫ T


K(T , x)f

(
x, u(x), cDα–u(x)

)
dx

+ μ(t)
∫ η


f
(
x, u(x), cDα–u(x)

)
dx

+ μ(t)
∫ T


f
(
x, u(x), cDα–u(x)

)
dx

+ μ(t)
∫ η


K(η, x)f

(
x, u(x), cDα–u(x)

)
dx

+ μ(t)
∫ T


K(T , x)f

(
x, u(x), cDα–u(x)

)
dx. ()
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Observe that

(cDα–Fu
)
(t) =

(cDα–μ
)
(t) +

∫ t


f
(
x, u(x), cDα–u(x)

)
dx

– k
∫ t


K(t, x)f

(
x, u(x), cDα–u(x)

)
dx

+
(cDα–μ

)
(t)

∫ ξ



∫ s


K(s, x)f

(
x, u(x), cDα–u(x)

)
dx ds

+
(cDα–μ

)
(t)

∫ T

ζ

∫ s


K(s, x)f

(
x, u(x), cDα–u(x)

)
dx ds

+
(cDα–μ

)
(t)

∫ η


K(η, x)f

(
x, u(x), cDα–u(x)

)
dx

+
(cDα–μ

)
(t)

∫ T


K(T , x)f

(
x, u(x), cDα–u(x)

)
dx

+
(cDα–μ

)
(t)

∫ η


f
(
x, u(x), cDα–u(x)

)
dx

+
(cDα–μ

)
(t)

∫ T


f
(
x, u(x), cDα–u(x)

)
dx

+
(cDα–μ

)
(t)

∫ η


K(η, x)f

(
x, u(x), cDα–u(x)

)
dx

+
(cDα–μ

)
(t)

∫ T


K(T , x)f

(
x, u(x), cDα–u(x)

)
dx. ()

For computational convenience, we set

R =
(

Tα–

k	(α)
(
 – e–kT)

+ ‖μ‖
∫ ξ



sα–

k	(α)
(
 – e–ks)ds + ‖μ‖

∫ T

ζ

sα–

k	(α)
(
 – e–ks)ds

+ ‖μ‖ ηα–

k	(α)
(
 – e–kη

)
+ ‖μ‖ Tα–

k	(α)
(
 – e–kT)

+ η‖μ‖ + T‖μ‖ + ‖μ‖η( – e–kη)
k

+ ‖μ‖T( – e–kT )
k

)

,

R =
(

T + T
(
 – e–kT)

+
∥
∥cDα–μ

∥
∥

∫ ξ



sα–

k	(α)
(
 – e–ks)ds

+
∥
∥cDα–μ

∥
∥

∫ T

ζ

sα–

k	(α)
(
 – e–ks)ds +

∥
∥cDα–μ

∥
∥ ηα–

k	(α)
(
 – e–kη

)

+
∥
∥cDα–μ

∥
∥ Tα–

k	(α)
(
 – e–kT)

+ η
∥
∥cDα–μ

∥
∥ + T

∥
∥cDα–μ

∥
∥

+
∥
∥cDα–μ

∥
∥η( – e–kη)

k
+

∥
∥cDα–μ

∥
∥T( – e–kT )

k

)

,

R = R + R –
Tα–

k	(α)
(
 – e–kT)

– T – T
(
 – e–kT)

.

We deal with the existence and uniqueness of solutions for problem (). Before stating and
proving the main results, we introduce the following hypotheses:
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(A) f : [, T] ×R×R→R is jointly continuous.
(A) There exists Lf >  such that

∣
∣f (t, u, u) – f (t, v, v)

∣
∣ ≤ Lf

(|u – v| + |u – v|), ∀t ∈ [, T], u, v, u, v ∈ R.

(A) There exists a function y ∈ C([, T],R+) such that

∣
∣f (t, u, v)

∣
∣ ≤ y(t), ∀(t, u, v) ∈ [, T] ×R×R.

(A) There exist a function g ∈ C([, T],R+) and a nondecreasing function
χ : R+ →R

+ such that

∣
∣f (t, u, v)

∣
∣ ≤ g(t)χ

(|u| + |v|), ∀(t, u, v) ∈ [, T] ×R×R.

(A) There exists a constant W >  such that

W
‖μ‖α– + ‖g‖χ (r)R > .

The next theorem gives us a uniqueness result.

Theorem  Assume that (A), (A) hold. If Lf R < , then the BVP () has a unique solution
on [, T].

Proof Consider the operator F defined by () and define a ball Br = {u ∈ Cα–[, T] :
‖u‖α– ≤ r} with r ≥ ‖μ‖α–+Nf R

–Lf R
, where Nf = sup≤t≤T |f (t, , )|.

First we show that FBr ⊂Br . For any u ∈ Br , t ∈ [, T], we have

∣
∣(Fu)(t)

∣
∣ ≤ ‖μ‖ +

∫ t



∣
∣K(t, x)

∣
∣
∣
∣f

(
x, u(x), cDα–u(x)

)∣
∣dx

+ ‖μ‖
∫ ξ



∫ s



∣
∣K(s, x)

∣
∣
∣
∣f

(
x, u(x), cDα–u(x)

)∣
∣dx ds

+ ‖μ‖
∫ T

ζ

∫ s



∣
∣K(s, x)

∣
∣
∣
∣f

(
x, u(x), cDα–u(x)

)∣
∣dx ds

+ ‖μ‖
∫ η



∣
∣K(η, x)

∣
∣
∣
∣f

(
x, u(x), cDα–u(x)

)∣
∣dx

+ ‖μ‖
∫ T



∣
∣K(T , x)

∣
∣
∣
∣f

(
x, u(x), cDα–u(x)

)∣
∣dx

+ ‖μ‖
∫ η



∣
∣f

(
x, u(x), cDα–u(x)

)∣
∣dx + ‖μ‖

∫ T



∣
∣f

(
x, u(x), cDα–u(x)

)∣
∣dx

+ ‖μ‖
∫ η



∣
∣K(η, x)

∣
∣
∣
∣f

(
x, u(x), cDα–u(x)

)∣
∣dx

+ ‖μ‖
∫ T



∣
∣K(T , x)

∣
∣
∣
∣f

(
x, u(x), cDα–u(x)

)∣
∣dx.
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But

∣
∣f

(
t, u(t), cDα–u(t)

)∣
∣ =

∣
∣f

(
t, u(t), cDα–u(t)

)
– f (t, , ) + f (t, , )

∣
∣

≤ ∣
∣f

(
t, u(t), cDα–u(t)

)
– f (t, , )

∣
∣ +

∣
∣f (t, , )

∣
∣

≤ Lf ‖u‖α– + sup
≤t≤T

∣
∣f (t, , )

∣
∣ ≤ Lf r + Nf .

Then

‖Fu‖ ≤ ‖μ‖ + (Lf r + Nf )

×
(

Tα–

k	(α)
(
 – e–kT)

+ ‖μ‖
∫ ξ



sα–

k	(α)
(
 – e–ks)ds

+ ‖μ‖
∫ T

ζ

sα–

k	(α)
(
 – e–ks)ds + ‖μ‖ ηα–

k	(α)
(
 – e–kη

)

+ ‖μ‖ Tα–

k	(α)
(
 – e–kT)

+ η‖μ‖ + T‖μ‖

+ ‖μ‖η( – e–kη)
k

+ ‖μ‖T( – e–kT )
k

)

≤ ‖μ‖ + (Lf r + Nf )R, ()

and

∥
∥cDα–Fu

∥
∥ ≤ ∥

∥
(cDα–μ

)∥
∥ + (Lf r + Nf )

×
(

T + T
(
 – e–kT)

+
∥
∥cDα–μ

∥
∥

∫ ξ



sα–

k	(α)
(
 – e–ks)ds

+
∥
∥cDα–μ

∥
∥

∫ T

ζ

sα–

k	(α)
(
 – e–ks)ds +

∥
∥cDα–μ

∥
∥ ηα–

k	(α)
(
 – e–kη

)

+
∥
∥cDα–μ

∥
∥ Tα–

k	(α)
(
 – e–kT)

+ η
∥
∥cDα–μ

∥
∥ + T

∥
∥cDα–μ

∥
∥

+
∥
∥cDα–μ

∥
∥η( – e–kη)

k
+

∥
∥cDα–μ

∥
∥T( – e–kT )

k

)

≤ ∥
∥cDα–μ

∥
∥ + (Lf r + Nf )R. ()

Combining () and () we get

‖Fu‖α– ≤ ‖μ‖α– + (Lf r + Nf )(R + R) = ‖μ‖α– + (Lf r + Nf )R≤ r,

which implies that FBr ⊂Br .
Next we show that the operator F is a contraction. ∀u, v ∈ � we have

∣
∣(Fu)(t) – (Fv)(t)

∣
∣

≤
∫ t



∣
∣K(t, x)

∣
∣
∣
∣f

(
x, u(x), cDα–u(x)

)
– f

(
x, v(x), cDα–v(x)

)∣
∣dx
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+ ‖μ‖
∫ ξ



∫ s



∣
∣K(s, x)

∣
∣
∣
∣f

(
x, u(x), cDα–u(x)

)
– f

(
x, v(x), cDα–v(x)

)∣
∣x ds

+ ‖μ‖
∫ T

ζ

∫ s



∣
∣K(s, x)

∣
∣
∣
∣f

(
x, u(x), cDα–u(x)

)
– f

(
x, v(x), cDα–v(x)

)∣
∣dx ds

+ ‖μ‖
∫ η



∣
∣K(η, x)

∣
∣
∣
∣f

(
x, u(x), cDα–u(x)

)
– f

(
x, v(x), cDα–v(x)

)∣
∣dx

+ ‖μ‖
∫ T



∣
∣K(T , x)

∣
∣
∣
∣f

(
x, u(x), cDα–u(x)

)
– f

(
x, v(x), cDα–v(x)

)∣
∣dx

+ ‖μ‖
∫ η



∣
∣f

(
x, u(x), cDα–u(x)

)
– f

(
x, v(x), cDα–v(x)

)∣
∣dx

+ ‖μ‖
∫ T



∣
∣f

(
x, u(x), cDα–u(x)

)
– f

(
x, v(x), cDα–v(x)

)∣
∣dx

+ ‖μ‖
∫ η



∣
∣K(η, x)

∣
∣
∣
∣f

(
x, u(x), cDα–u(x)

)
– f

(
x, v(x), cDα–v(x)

)∣
∣dx

+ ‖μ‖
∫ T



∣
∣K(T , x)

∣
∣
∣
∣f

(
x, u(x), cDα–u(x)

)
– f

(
x, v(x), cDα–v(x)

)∣
∣dx

≤ LR‖u – v‖α–. ()

In a like manner

∥
∥cDα–Fu – cDα–Fv

∥
∥ ≤ LR‖u – v‖α–. ()

From () and () it follows that

‖Fu – Fv‖α– ≤ LR‖u – v‖α–.

So F is a contraction. By the Banach contraction mapping theorem the BVP has a unique
solution on [, T]. �

The second result is about the existence and uniqueness of solution.

Theorem  Assume that (A), (A) and (A) hold. If Lf R < , then the BVP () has a
unique solution on [, T].

Proof Consider the ball Br = {u ∈ � : ‖u‖α– ≤ r} with r ≥ ‖μ‖α– +R‖y‖. We define two
operators F and F on Br as follows:

(Fu)(t) =
∫ t


K(t, x)f

(
x, u(x), cDα–u(x)

)
dx,

(Fu)(t) = μ(t) + μ(t)
∫ ξ



∫ s


K(s, x)f

(
x, u(x), cDα–u(x)

)
dx ds

+ μ(t)
∫ T

ζ

∫ s


K(s, x)f

(
x, u(x), cDα–u(x)

)
dx ds

+ μ(t)
∫ η


K(η, x)f

(
x, u(x), cDα–u(x)

)
dx
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+ μ(t)
∫ T


K(T , x)f

(
x, u(x), cDα–u(x)

)
dx

+ μ(t)
∫ η


f
(
x, u(x), cDα–u(x)

)
dx

+ μ(t)
∫ T


f
(
x, u(x), cDα–u(x)

)
dx

+ μ(t)
∫ η


K(η, x)f

(
x, u(x), cDα–u(x)

)
dx

+ μ(t)
∫ T


K(T , x)f

(
x, u(x), cDα–u(x)

)
dx.

For u, v ∈ Br , it is clear that ‖Fu + Fv‖α– ≤ ‖μ‖α– + R‖y‖ ≤ r thus Fu + Fv ∈ Br .
By using condition (A), one can also easily show that ‖Fu – Fv‖α– ≤ LR‖u – v‖α–,
which implies that F is a contraction.

In addition, the operator F is continuous as a result of the continuity of f . Also F is
uniformly bounded as

∣
∣(Fu)(t)

∣
∣ ≤

∫ t


K(t, x)

∣
∣f

(
x, u(x), cDα–u(x)

)∣
∣dx

≤ ‖y‖ Tα–

k	(α)
(
 – e–kT)

. ()

Note that

(cDα–Fu
)
(t) = cDα–

[∫ t


K(t, x)f

(
x, u(x), cDα–u(x)

)
dx

]

=
∫ t


f
(
x, u(x), cDα–u(x)

)
dx – k

∫ t


K(t, x)f

(
x, u(x), cDα–u(x)

)
dx,

∣
∣
(cDα–Fu

)
(t)

∣
∣ ≤

∫ t



∣
∣f

(
x, u(x), cDα–u(x)

)∣
∣dx

+ k
∫ t


K(t, x)

∣
∣f

(
x, u(x), cDα–u(x)

)∣
∣dx

≤ ‖y‖T +
Tα–

	(α)
(
 – e–kT)

.

()

As  ≤ t ≤ T , from () and () we obtain

‖Fu‖α– ≤ ‖y‖
(

T +
Tα–

k	(α)
(
 – e–kT)

+
Tα–

	(α)
(
 – e–kT)

)

.

Now it will be shown that the operator F is compact. We fix sup(t,u,v)∈[,T]×Br×Br |f (t,
u, v)| = fr .

For t < t, t, t ∈ [, T], then

∣
∣Fu(t) – Fu(t)

∣
∣

≤
∣
∣
∣
∣

∫ t


K(t, x) – K(t, x) dx

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ t

t

K(t, x) dx
∣
∣
∣
∣
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≤ ∣
∣e–kt – e–kt

∣
∣
∫ t


ekx∣∣Iα–f

(
x, u(x), cDα–u(x)

)∣
∣dx

+
∫ t

t

e–k(t–x)∣∣Iα–f
(
x, u(x), cDα–u(x)

)∣
∣dx

≤ ‖y‖
(

∣
∣e–kt – e–kt

∣
∣
∫ t


ekx∣∣Iα–(x)

∣
∣dx +

∫ t

t

e–k(t–x)∣∣Iα–(x)
∣
∣dx

)

→ , ()

as t – t → . In a like manner

∣
∣cDα–Fu(t) – cDα–Fu(t)

∣
∣ →  as t → t. ()

Equations () and () imply that F is relatively compact, and by the Arzela-Ascoli the-
orem we conclude that F is compact on Br . Hence, the existence of the solution of the
BVP holds by Krasnoselskii’s fixed point theorem. �

Theorem  Assume that (A), (A) and (A) hold. Then the BVP () has at least one so-
lution on [, T].

Proof The proof will be split into several steps. In the first step, we show that the operator
F : � → � maps bounded sets into bounded sets of � .

Let Br = {u ∈ � : ‖u‖α– ≤ r} be a bounded set in � . Then by (A) we have

∣
∣(Fu)(t)

∣
∣ ≤ ‖μ‖ +

∫ t



∣
∣K(t, x)

∣
∣g(x)χ

(‖u‖α–
)

dx

+ ‖μ‖
∫ ξ



∫ s



∣
∣K(s, x)

∣
∣g(x)χ

(‖u‖α–
)

dx ds

+ ‖μ‖
∫ T

ζ

∫ s



∣
∣K(s, x)

∣
∣g(x)χ

(‖u‖α–
)

dx ds

+ ‖μ‖
∫ η



∣
∣K(η, x)

∣
∣g(x)χ

(‖u‖α–
)

dx

+ ‖μ‖
∫ T



∣
∣K(T , x)

∣
∣g(x)χ

(‖u‖α–
)

dx

+ ‖μ‖
∫ η


g(x)χ

(‖u‖α–
)

dx + ‖μ‖
∫ T


g(x)χ

(‖u‖α–
)

dx

+ ‖μ‖
∫ η



∣
∣K(η, x)

∣
∣g(x)χ

(‖u‖α–
)

dx

+ ‖μ‖
∫ T



∣
∣K(T , x)

∣
∣g(x)χ

(‖u‖α–
)

dx.

Taking sup≤t≤T implies that

sup
≤t≤T

∣
∣Fu(t)

∣
∣ ≤ ‖μ‖ + ‖g‖χ (r)R. ()

In a like manner

sup
≤t≤T

∣
∣cDα–Fu(t)

∣
∣ ≤ ∥

∥cDα–μ
∥
∥ + ‖g‖χ (r)R. ()
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Combining () and () we get

‖Fu‖α– ≤ ‖μ‖α– + ‖g‖χ (r)R.

Next we show that the operator F : � → � maps bounded sets into equicontinuous sets
of � . Let t, t ∈ [, T] with t < t and u ∈Br ; then we obtain

∣
∣(Fu)(t) – (Fu)(t)

∣
∣

≤ ∣
∣μ(t) – μ(t)

∣
∣

+
∣
∣
∣
∣

∫ t


K(t, x)g(x)χ

(‖u‖α–
)

dx –
∫ t


K(t, x)g(x)χ

(‖u‖α–
)

dx
∣
∣
∣
∣

+
∣
∣μ(t) – μ(t)

∣
∣
∫ ξ



∫ s



∣
∣K(s, x)

∣
∣g(x)χ

(‖u‖α–
)

dx ds

+
∣
∣μ(t) – μ(t)

∣
∣
∫ T

ζ

∫ s



∣
∣K(s, x)

∣
∣g(x)χ

(‖u‖α–
)

dx ds

+
∣
∣μ(t) – μ(t)

∣
∣
∫ η



∣
∣K(η, x)

∣
∣g(x)χ

(‖u‖α–
)

dx +
∣
∣μ(t)

– μ(t)
∣
∣
∫ T



∣
∣K(T , x)

∣
∣g(x)χ

(‖u‖α–
)

dx

+
∣
∣μ(t) – μ(t)

∣
∣
∫ η


g(x)χ

(‖u‖α–
)

dx +
∣
∣μ(t) – μ(t)

∣
∣
∫ T


g(x)χ

(‖u‖α–
)

dx

+
∣
∣μ(t) – μ(t)

∣
∣
∫ η



∣
∣K(η, x)

∣
∣g(x)χ

(‖u‖α–
)

dx +
∣
∣μ(t)

– μ(t)
∣
∣
∫ T



∣
∣K(T , x)

∣
∣g(x)χ

(‖u‖α–
)

dx.

Then the right hand side of the above inequality tends to zero as t → t. That is |Fu(t) –
Fu(t)| →  as t → t. In a like manner

∣
∣cDα–Fu(t) – cDα–Fu(t)

∣
∣ →  as t → t.

Note that the right hand side of the above inequality is independent of u ∈Br , by Arzela-
Ascoli theorem we conclude that F is completely continuous.

The last step to complete the assumptions of the Leray-Schauder nonlinear alternative
theorem is to show the boundedness of the set of all solution to equation u = δFu, δ ∈
[, ]. Assume that u is a solution, Then in the same manner as we show the operator F is
bounded, we can obtain

∣
∣u(t)

∣
∣ =

∣
∣δ(Fu)(t)

∣
∣ ≤ δ

(‖μ‖α– + ‖g‖χ (r)R
) ≤ ‖μ‖α– + ‖g‖χ (r)R.

This implies

‖u‖
‖μ‖α– + ‖g‖χ (r)R ≤ .

But by (A) there exists a constant such that W 
= u.
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Construct the set � = {u ∈ φ : u < W }. It is obvious that the operator F : � → � is
continuous and completely continuous, by the constructed �, �u ∈ ∂� such that u = δFu

for some δ ∈ (, ). Consequently, by the nonlinear alternative of Leray-Schauder type, we
deduce that F has a fixed point u ∈ � which is a solution of the BVP. �

3 Examples
Given the problem

⎧
⎨

⎩

(cD/ + cD/)u(t) = L( u(t)
+u(t) + tan–(cD/u(t)) +

√
sin t),  ≤ t ≤ ,

u() + u() =
∫ 

 u(s) ds, cD/u() + cD/u() =
∫ 

 u(s) ds + .

Here

f
(
t, u(t), cD/u(t)

)
= L

(
u(t)

 + u(t)
+ tan–(cD/u(t)

)
+

√
sin t

)

,

k = , α = α = β = β = γ = γ = ,

η = , ξ = , ζ = , T = , ε = , ε = ,

q =
(
αe–kη + βe–kT – γ

(
 – e–kξ

))
= .,

ρ = (α + β – γξ ) = ,

σ =
(

γ

k
(
e–kζ – e–kT)

+
kα

	( – α)

∫ η


(η – s)–αe–ks ds +

kβ

	( – α)

∫ T


(T – s)–αe–ks ds

)

≤ .,

z = γ(T – ζ ) –
σρ

q
= –.,

‖μ‖ =
∣
∣
∣
∣

(
γρσ

qz
+

γ

q

)

–
γσ

qz

∣
∣
∣
∣ = .,

‖μ‖ =
∣
∣
∣
∣

(
γρ

qz

)

–
(

γ

z

)∣
∣
∣
∣ = .,

‖μ‖ =
∣
∣
∣
∣

(
ασ

qz

)

–
(

αρσ

qz
+

α

q

)

e–kT
∣
∣
∣
∣ = .,

‖μ‖ =
∣
∣
∣
∣

(
βσ

qz

)

–
(

βρσ

qz
+

β

q

)

e–kT
∣
∣
∣
∣ = .,

‖μ‖ =
∣
∣
∣
∣
α

z
–

(
αρ

qz

)

e–kT
∣
∣
∣
∣ = .,

‖μ‖ =
∣
∣
∣
∣
β

z
–

(
βρ

qz

)

e–kT
∣
∣
∣
∣ = .,

‖μ‖ =
∣
∣
∣
∣

(
αkρ

qz

)

–
αk

z

∣
∣
∣
∣ = .,

‖μ‖ =
∣
∣
∣
∣

(
βkρ

qz

)

–
βk

z

∣
∣
∣
∣ = ..
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Clearly f is continuous and ∀t ∈ [, ], ∀u, v, u, v ∈ R we have

∣
∣f (t, u, v) – f (t, u, v)

∣
∣ ≤ L

∣
∣
∣
∣

|u|
 + |u| –

|u|
 + |u|

∣
∣
∣
∣ + L

∣
∣tan– v – tan– v

∣
∣ ≤ L

(|u – u| + |v – v|),

with R ≤ ., R ≤ ., R ≤ ..
Choosing L < 

R+R
, Theorem  implies that our problem has unique solution.

For the illustration of Theorem  consider the function

f
(
t, u(t), cD/u(t)

)
= te–u(t) ln

(
 +  sin u(t)

)
+

cD/u(t)
 + cD/u(t)

+
√

 + t,

f (t, u, v) = te–u
ln

(
 +  sin u

)
+

|v|
 + |v| +

√
 + t, t ∈ [, ], u, v ∈R,

clearly f is continuous and bounded as

∣
∣f (t, u, v)

∣
∣ ≤ t ln  +  +

√
 + t =: g(t), with ‖g‖ = (ln ) +  +

√
,

g(t) ∈ C/[, ], and then the BVP has a solution in [, ].
For the applicability of Theorem  consider the function

f
(
t, u(t), cD/u(t)

)
= L

(
u(t)

 + u(t)
+ tan–(cD/u(t)

)
+

√
sin t

)

,

where f is continuous, Lipschitzian and bounded as

∣
∣f (t, u, v)

∣
∣ ≤ L

(

 +
π


+

√
sin t

)

=: y(t) ≤ L
(

 +
π



)

,

with R ≤ .; if we choose L < 
R

, then the BVP has a solution in [, ].

4 Concluding remarks
In this paper, we have discussed the existence and uniqueness of solutions for a new class
of boundary value problems consisting of sequential fractional differential equations sup-
plemented with four point nonlocal integral fractional boundary conditions. It should
be stressed that, similarly problems for nonlocal separated (non separated) multi-point
boundary value problems can be investigated. So the present work is a useful contribu-
tion to the existing literature on the topic.
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