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1  Introduction
With the advancement of edge computing, the number of edge services running on 
mobile devices is growing explosively [1]. Edge computing can reduce processing times 
and improve application performance, but it also presents some new challenges. Pri-
vacy is a serious issue in edge computing as user data is collected, processed, transmit-
ted and shared over edge nodes [2]. The private information (i.e., location, service type, 
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parameter set obtained by MOGA and are trained to search for a more optimal param-
eter set locally. The parameter set obtained in the second phase is used as the input 
of the first phase, and the training process is repeated until the termination criteria are 
reached. A benchmark dataset, KDD cup 1999, is used to demonstrate and validate 
the performance of the proposed approach for intrusion detection. The proposed 
approach can discover a pool of MBPNN-based solutions. Combining these MBPNN 
solutions can significantly improve detection performance, and a GA is used to find the 
optimal MBPNN combination. The results show that the proposed approach achieves 
an accuracy of 98.81% and a detection rate of 98.23% and outperform most systems of 
previous works found in the literature. In addition, the proposed approach is a gen-
eralized classification approach that is applicable to the problem of any field having 
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etc.) in the services is prone to release during service offloading [3], so it is imperative to 
improve privacy security in edge computing [4]. Encrypting sensitive data before out-
sourcing is conducive to privacy security, but it will require additional data uploads [5], 
while edge nodes are always expected to conserve energy by uploading the minimum 
possible amount of data, and it is meaningful to find a mechanism to consume as little 
energy as possible for data uploading [6]. The explosive growth and variety of informa-
tion available on edge nodes frequently overwhelm users; recommender systems are a 
promising way for users to quickly find the valuable information that they are interested 
in from massive data [7–9]. In addition to these challenges, edge computing introduces 
a scale of cyber security challenges that regular data center operators may not be accus-
tomed to dealing with. An intrusion, which is one of the main cyber security challenges, 
is any set of actions intended to compromise the confidentiality, integrity, or availabil-
ity of a resource [10]. Cyber intrusions are prevalent, increasingly sophisticated, and are 
adept at hiding from detection [11]. To counteract ever-evolving threats, the network-
based intrusion detection system (NIDS) has been considered to be one of the most 
promising methods.

Intrusion detection techniques have become a significant topic of research in recent 
years. Many researchers propose different algorithms in different categories, such as 
artificial neural networks (ANNs) [12], SVM [13], k-nearest neighbor [14], random for-
est [15], deep learning approaches [16], Bayesian approaches [17] and decision trees [18]. 
As a result, the performances of detection techniques are becoming better and stronger.

The artificial neural network (ANN), the computing paradigm that mimics the way 
neural systems of the human brain work, is widely used in cyber intrusion detection. 
Hodo et al. [19] present a multi-level perceptron, a type of supervised artificial neural 
network (ANN) to detect distributed denial of service (DDoS/DoS) attacks. The experi-
mental results demonstrate 99.4% accuracy and can successfully detect various DDoS/
DoS attacks. Yin et  al. [20] propose a deep learning approach for intrusion detec-
tion using recurrent neural networks (RNN-IDS). The experimental results show that 
RNN-IDS is suitable for modeling a classification model with high accuracy. Naseer 
and Saleem [21] propose a deep convolutional neural network (DCNN)-based intru-
sion detection system (IDS). The experimental results of the proposed DCNN-based 
IDS show the promising results for real world application in anomaly detection sys-
tems. Benmessahel et al. [22] present an evolutionary neural network (ENN), which is a 
combination of ANN and evolutionary algorithm (EA), and experiments show that this 
approach is effective for cyber intrusion detection. Arul Anitha and Arockiam [23] pro-
pose an artificial neural network-based IDS (ANNIDS) technique based on a multilayer 
perceptron (MLP) to detect the attacks initiated by destination oriented direct acyclic 
graph information solicitation (DIS) attack and version attack in IoT environments. Sun 
and Lyu [24] use the LSTM neural network with long and short memory function to 
train the KDD99 dataset, and identify the DOS according to the trained model. This is 
a research process pertaining to planned adjustment of the hyperparameters to find the 
optimal solution after processing the data. Shenfield et al. [25] present a novel approach 
to detecting malicious cyber traffic using artificial neural networks suitable for use in 
deep packet inspection-based IDS. The presented results show that this novel classi-
fication approach is capable of detecting shell code with extremely high accuracy and 
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minimal numbers of false identifications. Amruta and Talha [26] present a Denial of Ser-
vice Attack Detection system using ANN for wired LANs. The proposed ANN classifier 
yields 96% accuracy for their training dataset. Most of the systems have produced prom-
ising classification accuracy.

ANN has the ability to approximate an arbitrary function mapping and learn from 
examples, much like the human brain. In many cases, ANN surpasses the conventional 
statistical method for the classification task in various fields of application [27]. However, 
designing an ANN is a difficult process. Its performance depends on the optimization of 
various design parameters such as choosing an optimal number of hidden nodes, suita-
ble learning algorithm, learning rate and initial value of the weights, and some objectives 
conflict with each other, such as accuracy and complexity. Therefore, multi-objective 
optimization (MOO) is considered to be a more realistic approach to the design of ANN 
than the single-objective approach [28]. In addition, ANN has some shortcomings such 
as slow convergence speed, entrapment in local optima and unstable network struc-
ture [29]. In contrast, the genetic algorithm (GA) exhibits its characteristics of global 
search and quick convergence ability and is the most widely used technique in data min-
ing and knowledge discovery [30]. On the other hand, the method of Pareto optimality 
has been widely used in MOO [31]. It offers a pool of non-inferior individual solutions 
and ensemble solutions instead of a single optimum, which accordingly provides more 
degrees of freedom in selection of proper solutions. The multi-objective genetic algo-
rithm (MOGA) [32] and the non-dominated sorting genetic algorithm (NSGA II [33], 
NSGA III [34]) are two examples of GA-based MOO methods that apply the concept of 
Pareto optimality.

Some multi-objective genetic algorithm (MOGA)-based approaches are proposed for 
effective intrusion detection based on benchmark datasets. Elhag et al. [35] propose a 
multi-objective evolutionary fuzzy system that can be trained using different metrics. 
The system obtains more accurate solutions and allows the final user to decide which 
solution is better suited for the current network characteristics. Stehlík et al. [36] pro-
pose multi-objective evolutionary algorithms (NSGA-II and SPEA2 [37]) for intrusion 
detection parameterization, with a focus on the impact of the evolutionary algorithm 
(and its parameters) on the optimality of the found solutions, the speed of conver-
gence and the number of evaluations. Kumar and Kumar [30] propose the three-phase 
MOGA-based algorithm Micro Genetic Algorithm2 (AMGA2) [38], which considers 
conflicting objectives simultaneously, such as detection rate of each attack type, error 
rate, accuracy and diversity. In the first phase, a Pareto front of non-inferior individual 
solutions is approximated. In the second phase, the entire solution set is further refined, 
and another improved Pareto front of ensemble solutions is approximated over that of 
individual solutions. In the third phase, a combined method like the majority voting 
method is used to fuse the predictions of individual solutions for determining predic-
tions of ensemble solutions. The experiments conducted on two benchmark datasets 
demonstrate that the proposed approach can discover individual solutions and ensemble 
solutions for intrusion detection.

This paper aims to develop a novel two-phase cycle training algorithm for intrusion 
detection. The MOGA-based approach is used to find the Pareto optimal parameter set 
for the neural networks. A modified back-propagation neural network (MBPNN) set is 
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created based on the Pareto optimal parameter set and trained to find a more optimal 
parameter set locally. The proposed approach can discover a pool of MBPNN-based 
solutions to detect the intrusions accurately. The approach proposed in this paper has 
been published by the international conference on ML4CS 2020 [39]. Based on the con-
ference paper, this report is mainly expanded as follows: A genetic algorithm is used to 
find the optimal combination solution set for prediction, instead of the manual selection 
method used in the conference paper, and the genetic algorithm manifests better per-
formance. Some experimental datasets are added, all experiments are repeated, and the 
corresponding described text, figure and table of the experimental results are updated.

The rest of this paper is organized as follows: Sect. 2 presents an overview of the pro-
posed methodology. The experimental results and discussion are presented in Sect. 3. 
Finally, the concluding remarks of the study are provided in Sect. 4.

2 � Materials and methods
2.1 � The proposed approach

TPC-MOGA-MBPNN includes training session, testing session and the combined 
method, as described below.

2.1.1 � The training session

The training session as illustrated in Fig.  1 is implemented by TPC-MOGA-MBPNN. 
In the first phase, a MOGA tries to find the Pareto optimal parameter set for the neu-
ral networks. The MOGA considers average false positive rate (Avg FPR), mean squared 
error (MSE) and negative average true positive rate (Avg TPR) on the training dataset as 
the objectives to be minimized. Meanwhile, the weights, biases and gain factors of neural 
networks become the genotype to be evolved simultaneously by MOGA. In this phase 
we use the global search capability of MOGA to search for the initial parameter val-
ues of the neural network, thereby avoiding entrapment in local minima. In the second 
phase, the neural network set is trained to find a more optimal parameter set locally. The 
non-dominated parameter set obtained from the first phase is considered as the input 

Fig. 1  Training session of the proposed methodology
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archive. A neural network set is generated by selecting an excellent parameter set from 
the input archive, then back-propagation is used to update the weights for the neurons 
in order to bring the error function to a minimum. In this phase, we use the local search 
and fast learning capabilities of the neural network to refine the parameter set from the 
first phase, and we obtain a more optimal non-dominated parameter set. The non-dom-
inated parameter set obtained in the second phase is used as the input of the first stage, 
and the training process of the two-phase algorithm is repeated until the termination 
criteria are met. In addition, a new self-adaptive parameter adjustment strategy is also 
used in the training process of the genetic algorithm and neural network.

The detailed implementation of the proposed algorithm is as follows: 

Step 1:	� Generate random initial population.  Create random initial population, and 
maintain it in a solution archive. The structure of the chromosomes that make 
up the entire population is illustrated in Fig. 2. The weight segment in chro-
mosomes represents the weights between the input layer and hidden layer and 
also includes the weights between the hidden layer and output layer. The bias 
segment is dedicated to representing the biases of hidden nodes and output 
nodes. The gain factors of hidden nodes and output nodes are represented by 
the gain factor segment. After studying multiple training results of the neural 
network, the numerical range of neural network parameters is estimated, and 
the initial value of neural network parameters is limited between − 1000 and 
1000.

Step 2:	� Evaluate objective fitness functions.  Calculate the objective fitness function 

Fig. 2  The chromosome represents the neural network parameters
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values for the neural network corresponding to a solution, then sort all solu-
tions based on these values and update the solution archive. First, create neu-
ral networks based on the parameters represented by all chromosomes in the 
MOGA population. Then, these neural networks are used to classify the sam-
ples in the training dataset one by one. Next, calculate and record TPR and 
FPR for five output types. The TRP and FPR are the most important criteria for 
the classifier. At the same time, MSE is an important criterion for evaluating 
the performance of neural network classification. MSE is recorded and calcu-
lated as follows. 

 where Dl and Y o
l  represent the desired output and actual output for the lth sample of 

the neural network, respectively, and n is the number of samples in the training dataset. 
After calculating the Avg TPR and Avg FPR for the types, they together with MSE con-
stitute three objective fitness functions of the MOGA. Using Avg TRP instead of TRP as 
objective fitness function of the algorithm can avoid bias against specific attack types, 
especially those with less training samples such as R2L and U2R. For the same reason, 
Avg FRP is also used as an objective fitness function. Finally, all chromosomes are sorted 
and the solution archive is updated. The chromosomes are sorted according to the fol-
lowing two rules [40]:

(1)	 First, chromosomes are sorted according to non-inferior order, and the chromo-
somes with small non-inferior order values are ranked at the top of the solution 
archive.

(2)	 Second, chromosomes with the same non-inferior order are sorted according to 
crowded degree, where the less crowded chromosomes are closer to the top of the 
solution archive.

	� Among the above two rules, the first rule is made to find non-inferior solu-
tions, and the second rule is set down to ensure that the distribution of non-
inferior solutions is as dispersive as possible.

Step 3:	� Stopping criteria or designated generation.  MOGA uses two different crite-
ria to determine when to stop the solver. MOGA detects whether there is no 
change in the best fitness value for some number of generations (stall genera-
tion limit). MOGA also stops when the designated number of generations is 
reached: by default, this number is 300. If either of the two stopping criteria is 
reached, the algorithm will stop and go to step 5; otherwise, the algorithm will 
go to step 4.

Step 4:	� Selection, crossover and mutation. MOGA uses selection, crossover and muta-
tion operators in the solution archives to generate new populations. The new 
population is added into the solution archive, then MOGA goes back to step 
2 and the above steps are repeated. The MOGA used in this paper is a vari-
ant of Stud GA [41]. First, some of the best solutions in the archive obtained 
from step 2 are moved to a stallion archive, and the rest of the solutions are 

(1)MSE =
1

n

n∑

l=1

(Dl − Y o
l )

2
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moved to the other temporary archive. Then, the linear ranking selection is 
used to select a solution from the stallion archive as a stallion and to select the 
other solution from the temporary archive. Next, the selected two solutions are 
randomly chosen for crossover to create two offspring by arithmetic crossover 
operator. Afterward, all the chromosomes resulting from the crossover oper-
ation are sent through a consequent mutation process. Finally, the selection, 
crossover and mutation operators are used repeatedly to generate new popula-
tion until the maximum population size is reached.

Step 5:	� Termination criteria. The algorithm will terminate only if the following three 
conditions are met:

(1)	 The Avg TPR is greater than the designated value.
(2)	 The Avg FPR is smaller than the designated value.
(3)	 The number of non-inferior individual solutions is greater than the designated 

value.

	� If termination criteria are satisfied, the algorithm will terminate; otherwise, 
the algorithm will go to step 6.

Step 6:	� Generate neural network set for training.  Calculate the objective fitness func-
tion values on the validation dataset for each solution in the archive, then 
sort all solutions based on their function values and select some of the best 
solutions to generate neural networks using the parameters represented by 
the solutions. The MBPNN [42] that is used in our approach adds gain fac-
tors G to change the steepness of the neural network activation function. Dur-
ing the learning process, gain factors change along with the weights and biases 
to speed up the convergence. The main modifications of the algorithm are as 
follows:

	� (1)	 The neural network activation function is still a sigmoid function, but the value 
range is changed to [−0.5,+0.5] . This can overcome the problem that the changes 
of weights and biases do not change the calculation when learning zero-value sam-
ples. The modified sigmoid is as follows: 

(2)	 Let f be the neural network activation function and add gain factor Gj to the net 
input Ij , which is computed as the sum of the input features multiplied by the 
weights, so that the output yj is defined as follows: 

(3)	 The rule for gain factor updating is the same as the rule for weights and biases, and 
the updated value of the gain factor �Gj can be calculated as follows: 

 where η is learning rate and δj represents an error term at node j.

(2)f (x) = −0.5+
1

1+ e−x

(3)yj = f (GjIj)

(4)�Gj = ηδjIj/Gj
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Step 7:	� Neural network training. Each created neural network from step 6 is trained on 
the training dataset by a back-propagation algorithm, which reduces the error 
values and update weights, biases and gain factors, so that the actual output 
values and desired output values become close enough. The method to update 
gain factors is expressed as Eq. (4).

Step 8:	� Generation of new population from trained neural network set. When the 
learning process for neural networks is completed, the objective fitness func-
tion values on the validation dataset are calculated for each trained neural 
network. Some of the best neural networks are selected and new chromo-
somes are constructed based on their parameters, and then, these chromo-
somes form a new population. The new population is added into the solution 
archive, then step 2 and the above steps are repeated.

2.1.2 � The testing session

The testing session is depicted in Fig. 3. The testing session of the proposed approach 
integrates the predictions of several MBPNN classifiers to obtain the prediction of the 
final ensemble. The majority voting method is used to determine into which attack type 
a test sample is ultimately classified. The final attack type of a test sample is the one 
which receives the most votes.

The detailed implementation of the testing session is as follows: 

Step 1:	� Generation of a neural network set for testing. Select some non-inferior solu-
tions from the archive of non-dominated solutions obtained by genetic algo-
rithm, and generate neural networks using the parameters represented by 
the solutions. The users can select several different solutions for combined 

Fig. 3  Test session of the proposed methodology
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prediction according to their own preferences. For example, they may choose 
a solution subset with large TPRs, a solution subset with small FPRs, or a com-
bined solution subset with large TPRs and small FPRs.

Step 2:	� Neural network prediction. Each created neural network from step 1 is used 
to classify samples of the test dataset by the forward propagation algorithm of 
MBPNN, and the neural network releases a prediction result.

Step 3:	� Combination of prediction results of different neural networks. The prediction 
results from different MBPNN are combined by the majority voting method 
to yield the final output of the ensemble. For each individual sample, the pre-
diction result of each MBPNN will receive one vote, and the final attack type 
of this sample is the one which receives the largest number of votes.

2.1.3 � The combined classification method

In the testing session, some non-inferior solutions are selected from the archive of non-
dominated solutions obtained in the training session, and an MBPNN set is generated 
for prediction. Therefore, how to choose these non-inferior solutions is critical to the 
performance of combined prediction.

A genetic algorithm is used to find the optimal combination solution set. Each chro-
mosome represents one combination solution set, where the structure of the chromo-
somes is illustrated in Fig. 4. Each gene of the chromosomes corresponds to a solution in 
the solution archive. When the gene value is 1, it means that the corresponding solution 
is selected into the combination solution set, and when it is 0, this corresponding solu-
tion is not selected. Since the number of solutions in the solution archive is too large, we 
choose a subset of the archive to form chromosomes. The Avg TPR segment in chromo-
somes represents some solutions with maximum Avg TPRs selected from the solution 
archive. The AVG_FPR segment represents some solutions with minimum AVG_FPRs, 
and the accuracy segment represents some solutions with maximum accuracy values.

The GA takes Avg TPR, Avg FPR and accuracy of combination solution set on the 
training dataset as the optimization objectives. To simplify the calculation, the three 
objectives are combined into a single objective using a linear weighting method, as 
shown in the following formula:

where fk(I) represents the kth objective, which is one of the three objectives (Avg TPR, 
Avg FPR and accuracy), and ak is the weight of the kth objective.

(5)maxF(l) =

3∑

k=1

ak ∗ fk(I)

Fig. 4  The chromosome represents which solutions are selected in the combination solution set
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2.2 � The intrusion detection dataset

The performance of the proposed approach is measured based on the KDD cup 1999 
[43] dataset, which is the most widely used dataset for validation of an IDS. Each record 
of the KDD dataset contains 41 feature attributes and 1 label attribute. The dataset con-
tains five major types of attacks: normal, probe, denial of service (DoS), user-to-root 
(U2R) and remote-to-local (R2L). The last four are attack types, which can be subdi-
vided into 39 different attack types. The dataset is very large, including 5 million training 
records and 2 million test records, so it is practically very difficult to use the whole data-
set. In this study, we first remove records that have the same value for all features and 
then randomly select different records to form subsets that contain different propor-
tions of normal and attack instances. The selected subsets used in our experiments are 
depicted in Table 1. Three data subsets are extracted: DATASUBSET1, DATASUBSET2 
and DATASUBSET3. The number of samples in the three subsets increases successively: 
DATASUBSET1 extracts 12,250 records, DATASUBSET2 extracts 26,160  records and 
DATASUBSET3 extracts 145,586 records. With the increase of the number of samples, 
the classification features covered by the samples become more comprehensive, but the 
calculation cost is also significantly increased. By randomly extracting samples, each 
data subset is divided into three smaller subsets, namely training dataset, validation 
dataset and test dataset. The training dataset is used to fit the weights, biases and gain 
factors of MBPNN during the learning process. The validation dataset is used to com-
pare the performance of different MBPNN classifiers and decide which ones to choose 
for the next step. The test dataset is a set of samples used only to assess the performance, 
and has never been exposed to a training session.

Data Transformation. We use one-hot encoding scheme to transform the three cat-
egorical features: protocol, service and state. A dimension is added for each new feature 
value found in the training set. The added dimensions indicate the presence or absence 
of a certain category, represented by binary [0, 1]. Following this scheme, the resulting 
datasets are extended into 123-dimensional features.

Data Normalization. We use min–max normalization to scale feature values, since the 
ranges of numerical features differ considerably from one another. We scale feature val-
ues linearly into the range of [ −0.5 , 0.5] by using the following equation.

(6)x′ =
x −min(x)

max(x)−min(x)
− 0.5

Table 1  Three data subsets of KDD cup 1999 dataset

Type DATASUBSET1 DATASUBSET2 DATASUBSET3

Training Validation Test Training Validation Test Training Validation Test

Normal 1000 1000 1000 4000 2000 2000 70,266 8783 8783

Probe 1000 1000 1000 3000 1500 1500 1705 213 213

DoS 1000 1000 1000 4000 2000 2000 43,658 5457 5457

U2R 100 50 100 100 70 90 42 5 5

R2L 1000 1000 1000 2000 600 1300 799 100 100

Total 4100 4050 4100 13,100 6170 6890 116,470 14,558 14,558
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where x′ represents the normalized data, x represents the raw data, min(x) finds the 
minimum value for the current feature, and max(x) searches for the maximum value for 
the current feature.

Oversampling and Undersampling. The KDD dataset is a dataset with unbalanced 
numbers of samples, in which the number of normal and DoS samples is more than 
70,000, and the number of U2R samples is less than 300. The classification of imbalanced 
datasets mostly benefits the majority type. This type of conundrum is resolved by over-
sampling or undersampling in order to generate the type-balanced dataset. In this paper, 
random undersampling is used to sample normal and DoS type, while Synthetic Minor-
ity Oversampling Technique (SMOTE) [44] is used to sample U2R and R2L type.

2.3 � Experimental setup

To evaluate the proposed approach, an experimental application is implemented in C#. 
MBPNN is used as a basic classifier. The performance of the proposed technique is eval-
uated based on the benchmark KDD cup 1999 dataset. Avg TPR, Avg FPR and MSE are 
used as objective fitness functions of MOGA. The majority voting method is used to 
integrate the predictions of several basic classifiers to acquire the combined prediction 
for the final ensemble. The results of experiments are computed on a Windows PC with 
an AMD Ryzen 9 3900XT 12-Core, 3.80 GHz CPU and 32 GB RAM.

2.3.1 � Performance metrics

In order to evaluate the performance of the proposed IDS, we use the following widely 
known metrics: accuracy, true positive rate and false positive rate, Avg TPR, Avg FPR, 
defined as follows: 

(1)	 True positive (TP) is the number of attack records classified correctly;
(2)	 True negative (TN) is the number of normal records classified correctly;
(3)	 False positive (FP) is number of normal records classified incorrectly;
(4)	 False negative (FN) is the number of attack records classified incorrectly.

True positive rate (TPR), also known as detection rate, recall or sensitivity, is the propor-
tion of positive cases that are correctly identified and is calculated as follows:

False positive rate (FPR), also known as false alarm rate (FAR), is the proportion of posi-
tive cases that are incorrectly identified and is calculated as follows:

Accuracy is the proportion of the total number of predictions that is correct and is calcu-
lated as follows:

(7)TPR =
TP

TP+ FN

(8)FPR =
FP

FP+ TN
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Average true positive rate (Avg TPR), also known as false alarm rate (Avg DR), is the aver-
age TPR of all major types and is calculated as follows:

where TPRl represents the TPR of the lth major types, and K is the number of major 
types in the dataset.

Average false positive rate (Avg FPR), also known as false alarm rate (Avg FAR), is the 
average FPR of all major types and is calculated as follows:

The closer the values of these metrics (except for FPR and Avg FPR) are to one, the bet-
ter the performance of IDS. The FPR and Avg FPR should be closer to zero for better 
performance.

2.3.2 � Design of experiments

The proposed approach involves two algorithms: MOGA and MBPNN. These two algo-
rithms require setting many hyperparameters, such as the hidden node number, max-
imum learning rate and maximum crossover probability. In this paper, through many 
iterations of experiments, the parameters are constantly adjusted, and the best param-
eter values are selected.

The implementation of MOGA requires some parameters as depicted in Table 2. Des-
ignated generation is used to set the maximum number of cycles for the genetic algo-
rithm. In order to find more solutions, the population size is maintained at a large value. 
The stallion population is created to retain the few optimal solutions. Trained popula-
tion size is the number of selected chromosomes, which is used to create MBPNN for 
phase 2. The probabilities of crossover and mutation change with the quality of the 
obtained solutions, and bad solutions will increase the probabilities but cannot exceed 
the set maximum values.

(9)Accuracy =
TN+ TP

TN+ TP+ FN+ FP

(10)Avg TPR =
1

K

K∑

l=1

(TPRl)

(11)Avg FPR =
1

K

K∑

l=1

(FPRl)

Table 2  Configuration of MOGA

Parameter Values

Designated generation 400

Population size 300

Stallion population size 10

Trained population size 20

Maximum crossover probability 0.4

Maximum mutation probability 0.1
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The parameters of MBPNN are depicted in Table 3. The designated training epochs 
number is used to set the maximum number of cycles. The number of input nodes is 
the number of cyber intrusion feature attributes after one-hot encoding. The number 
of hidden nodes is kept small to reduce computation. The number of output nodes cor-
responds to five types of cyber intrusion. The learning rate increases when the network 
error is large: otherwise, it will decrease. The learning rate cannot exceed the set maxi-
mum value. Maximum and minimum initial values are used to set the range of the initial 
parameter values.

The parameters of GA for combined prediction are depicted in Table 4. The MBPNN 
number indicates how many solutions are selected from the solution archive to par-
ticipate in the optimization calculation of the genetic algorithm. Designated genera-
tion is set to 300. The population size is set to 30, and the number of elite solutions is 
3. The maximum crossover probability and mutation probability are set to 0.4 and 0.1, 
respectively.

3 � Results and discussion
Here, the two-phase cycle training algorithm is executed to optimize parameter values 
for MBPNN. After that, we use GA to select some of the best solutions obtained by the 
training algorithm to create MBPNN classifiers for the final ensemble. Finally, each cre-
ated MBPNN is used to classify samples on the test dataset, and the prediction results 
are combined by the majority voting method to yield the final output of the ensemble.

3.1 � Results of different data subsets

The two-phase cycle training algorithm is applied to three data subsets as described in 
Table 1 and produces three sets of MBPNN-based ensemble solutions. We choose some 

Table 3  Configuration of MBPNN

Parameter Values

Designated training epochs number 100

Input nodes number 123

Hidden nodes number 3

Output nodes number 5

Maximum learning rate 0.5

Maximum initial value of neural network parameters 1000

Minimum initial value of neural network parameters − 1000

Table 4  Configuration of GA

Parameter Values

Number of MBPNN 45

Designated generation 300

Population size 30

Elite population size 3

Maximum crossover probability 0.4

Maximum mutation probability 0.1
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Fig. 5  Training performance of the proposed approach for DATASUBSET1

Fig. 6  Test performance of the proposed approach for DATASUBSET1

Fig. 7  Training performance of the proposed approach for DATASUBSET2
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Fig. 8  Test performance of the proposed approach for DATASUBSET2

Fig. 9  Training performance of the proposed approach for DATASUBSET3

Fig. 10  Test performance of the proposed approach for DATASUBSET3
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of the best solutions to create MBPNN classifiers and then use these classifiers to predict 
the types of training samples and test samples. The performance of MBPNN classifiers 
on training data of DATASUBSET1 is depicted in Fig. 5, and the performance on test 
data is shown in Fig. 6. The performances of MBPNN classifiers on training and test data 
of DATASUBSET2 are depicted in Figs. 7 and 8, respectively, and the performances on 
training and test data of DATASUBSET3 are depicted in Figs. 9 and 10.

We choose one individual solution with the highest overall accuracy, one individual 
solution with the largest overall detection rate, and one individual solution with the 
smallest overall false alarm rate from the three data subsets to carry out prediction. The 
predicted performance for five types on the test dataset is shown in Table  5, and the 
overall performance is listed in Table 6. In Table 5, the highest DR and lowest FAR for 
each major type are emphasized in bold, and the italicized values represent the methods 
that have a good trade-off between DR and FAR. In Table 6, the best performance values 
are also emphasized in bold, and the italicized values are used to represent the best com-
prehensive performance.

From the results shown in these figures and tables, the following conclusions can be 
drawn: 

Table 5  Performance for different data subsets

Type DATASUBSET1 DATASUBSET2 DATASUBSET3

BestAccu BestDR BestFAR BestAccu BestDR BestFAR BestAccu BestDR BestFAR

 Normal

 DR 92.64 89.5 92.86 95.96 95.92 97.13 99.21 97.56 99.28
 FAR 1.4 0.93 1.66 2.94 2.85 3.42 1.78 1.19 1.89

Probe

 DR 95.88 91.4 94.47 95.96 96.08 95.65 95.31 96.24 96.71
 FAR 1.51 0.73 0.85 0.52 0.52 0.52 0.18 0.26 0.24

DoS

 DR 99.47 100 99.68 99.79 99.79 99.79 98.44 98.26 98.3

 FAR 1.84 2.7 2.02 1.75 1.77 1.65 0.36 0.56 0.19
U2R

 DR 75.42 24.07 71.65 45.51 43.55 48.75 100 100 80

 FAR 0.28 0.08 0.23 0.13 0.13 0.18 0.11 1.42 0.1

R2L

 DR 93.65 97.77 95.11 89.24 89.38 87.09 82 32 81

 FAR 1.81 11.14 2.15 2.05 2.19 1.69 0.03 0.14 0.06

Table 6  Comparison of overall accuracy, detection rate and false alarm rate for different data 
subsets

DATASUBSET1 DATASUBSET2 DATASUBSET3

BestAccu BestDR BestFAR BestAccu BestDR BestFAR BestAccu BestDR BestFAR

Accuracy 94.76 87.17 94.71 94.43 94.37 94.4 98.75 97.36 98.74

DR 98.55 98.94 98.29 96.96 97.05 96.47 98.21 98.78 98.11

FAR 15.23 33.88 14.89 11.38 11.73 10.52 0.9 3.56 0.84
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(1)	 The Avg DR and Avg FPR of most solutions obtained by the algorithm are gathered 
together to form a clear Pareto front, which exhibits the excellent optimization per-
formance of the algorithm.

(2)	 The smaller the number of samples in the data subset, the greater the number of 
divergent solutions that are not in the Pareto front, and the larger the range of the 
Pareto front. This shows that the algorithm can improve the detection performance 
by adding the number of samples.

(3)	 Although oversampling and undersampling are used, the algorithm has worse 
detection performance for types with small numbers of samples. The DRs of U2R 
on DATASUBSET1 and DATASUBSET2 are less than 76, while the DRs of other 
types are generally greater than 90. The same situation occurs for R2L of DATASU-
BSET3.

(4)	 As the number of samples in the data subset increases, the detection performance 
of the algorithm improves. Among performance metrics, the biggest improvement 
is in FAR. The FAR of DATASUBSET1 is approximately 15, the FAR of DATASUB-
SET1 is approximately 11, and the FAR of DATASUBSET3 is 1.

Table 7  Performance of combined solutions

Attack type BestAccu BestDR BestFAR Combined

Normal

 DR 99.21 97.56 99.28 99.28
 FAR 1.78 1.19 1.89 1.7

DoS

 DR 95.31 96.24 96.71 98.36
 FAR 0.18 0.26 0.24 0.19

Probe

 DR 98.44 98.26 98.3 96.71

 FAR 0.36 0.56 0.19 0.23

U2R

 DR 100 100 80 100
 FAR 0.11 1.42 0.1 0.09

R2L

 DR 82 32 81 86
 FAR 0.03 0.14 0.06 0.03

Table 8  Comparison of overall accuracy, detection rate and false alarm rate of combined solutions

Attack type BestAccu BestDR BestFAR Combined

Accuracy 98.75 97.36 98.74 98.81
DR 98.21 98.78 98.11 98.23

FAR 0.9 3.56 0.84 0.8
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3.2 � Results of combined experiment

An experiment called the combined experiment was performed, which classifies by 
using the majority voting method. A genetic algorithm is used to select some of the best 
solutions for the majority voting method. The results of the combined experiment are 
compared with the results of some excellent individual solutions. The predicted per-
formances for five types of combined experiment are shown in Table 7, and the over-
all performance is listed in Table  8. In these tables, BestAccu, BestDR, and BestFAR, 
respectively, represent one solution with largest overall accuracy, with largest overall 
detection rate, and with smallest overall false alarm rate, which is the same as the previ-
ous description. The best performance values are also emphasized in bold, and the itali-
cized values are used to represent the best comprehensive performance.

These tables show that although some individual solutions can achieve good perfor-
mance, the combination of these solutions can still significantly improve their perfor-
mance. The details of performance comparison are as follows: 

(1)	 The detection performances of the combined classification method on normal, 
DoS, U2R and R2L are better than all individual solutions. Only the performance 
on probe is worse than the performance of the BestFAR individual solution.

(2)	 The overall accuracy and FAR of the combined classification method are the best 
among all the solutions, and the DR of the combined classification method is also 
very close to the optimal value.

(3)	 The comprehensive performance of the combined method is significantly bet-
ter than all individual solutions. This also proves that the combined classification 
method is a feasible classification method with better performance for intrusion 
detection.

3.3 � Discussion

More experiments are conducted to validate the performance of the proposed approach. 
The experimental results of TPC-MOGA-MBPNN are compared with the results of 
some well-known models reported in the literature, as shown in Table  9. It is evident 

Table 9  Comparison with other methods

Method Normal DoS Probe U2R R2L Accuracy DR FAR

Multi-level SVM-ELM [45] 98.13 99.54 87.22 21.93 31.39 95.75 95.17 1.87

NFC[36] 98.2 99.5 84.1 14.1 31.5 N/A 95.2 1.9

Genetical algorithm [45] 69.5 99.4 71.1 18.9 5.4 90 94.95 30.46

SVM+BIRCH clustering [45] 99.3 99.5 97.5 19.7 28.8 95.7 N/A 0.7

MOGFIDS [45] 98.36 97.2 88.6 15.79 11.01 93.2 91.96 1.6

Association rules [45] 99.47 96.6 74.8 3.8 1.21 92.4 N/A 0.53

Multiclass SVM [45] 99.6 96.8 75 5.3 4.2 92.46 90.74 0.43
Winning the KDD99 [45] 99.5 97.1 83.3 13.2 8.4 93.3 91.81 0.55

t-SNE SVM [46] 99.85 99.62 98.89 86.8 96.51 N/A N/A N/A

Hybrid classifier [47] 96.8 98.66 93.4 46.97 71.43 96.77 96.77 3

DT-SVM [48] 99.7 99.92 98.57 48 37.8 N/A N/A N/A

GA FPM [49] N/A 98.85 98.05 78.7 98.7 N/A N/A N/A

Proposed approach (combined) 99.28 98.36 96.71 100 86 98.81 98.23 0.8
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that the proposed TPC-MOGA-MBPNN outperforms the cited approaches with respect 
to consistently good overall accuracy and DR.

4 � Conclusion
In this paper, a novel TPC-MOGA-MBPNN algorithm based on MOGA and MBPNN is 
proposed for effective intrusion detection. The proposed approach is capable of produc-
ing a pool of non-inferior individual solutions that exhibit classification trade-offs for the 
user. By using certain heuristics or prior domain knowledge, a user can select an ideal 
solution or combined solution as per application specific requirements. The proposed 
approach attempts to tackle the issues of low DR, high FPR and lack of classification 
trade-offs in the field of intrusion detection. The proposed approach consists of encod-
ing of chromosomes that provide optimized parameter values of the MBPNN. MOGA is 
employed to build a multi-objective optimization model that generates Pareto optimal 
solutions with simultaneous consideration of Avg TPR, Avg FPR and MSE in the data-
set. A two-phase cycle training algorithm-based approach can rapidly generate numer-
ous non-inferior solutions. In the first phase, a MOGA tries to find the Pareto optimal 
parameter set for the neural networks. In the next phase, some selected MBPNNs based 
on chromosomes obtained by MOGA are trained to find a more optimal parameter set 
locally. The non-dominated parameter set obtained in the second phase is used as the 
input of the first stage, and the training of the two-phase algorithm is repeated until the 
termination criteria are reached.

The KDD cup 1999 dataset is used to demonstrate and validate the performance of 
the proposed approach for intrusion detection. The proposed approach exhibits the 
excellent optimization performance of the algorithm and a very clear Pareto front has 
been obtained. The optimized set of MBPNN exhibits the classification trade-offs for 
the users. The user may select an ideal solution as per application-specific requirements. 
We also demonstrate that combining a few MBPNN classifiers represents a feasible clas-
sification method and yields better performance than using an individual MBPNN for 
classification. A genetic algorithm is used to find the optimal MBPNN combination and 
can discover an optimized set of MBPNN with good accuracy and detection rate from 
benchmark datasets. The result shows that the proposed approach could achieve an 
accuracy of 98.81% and a detection rate of 98.23%, which outperform most systems of 
previous works found in the literature. The results of this work have also provided an 
alternative with respect to the issue of selecting an optimal solution among the non-
dominated Pareto optimal solutions.

The main challenges of the proposed approach are as follows: 

(1)	 The MOGA requires substantial time to compute fitness functions in various gen-
erations. This may be overcome by computing the function values in parallel, or 
limiting the population size.

(2)	 The performance of the proposed approach is affected by the number of samples. 
A large number of samples are needed for excellent performance, which inevitably 
requires considerable calculation.

(3)	 The computing power of edge computing devices was usually weak, but the pro-
posed algorithm requires strong computing power. This problem can be solved by 
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training the model on a high-performance PC, and only employing the edge nodes 
to run the trained model for prediction.

(4)	 The proposed approach only uses a small subset of the benchmark dataset for val-
idation, and its applicability can be validated by more experiments on real cyber 
traffic in the field of intrusion detection.

Abbreviations
GA: Genetic algorithm; MOGA: Multi-objective genetic algorithm; MBPNN: Modified back-propagation neural network; 
Avg FPR: Average false positive rate; MSE: Mean squared error; Avg TPR: Average true positive rate; NIDS: Network-based 
intrusion detection system; ANNs: Artificial neural networks; ANN: Artificial neural network; DDoS/DoS: Distributed denial 
of service; RNN-IDS: Intrusion detection using recurrent neural networks; DCNN: Deep convolutional neural network; 
IDS: Intrusion detection system; ENN: Evolutionary neural network; EA: Evolutionary algorithm; ANNIDS: Artificial neural 
network-based intrusion detection system; MLP: Multilayer perceptron; DIS: Direct acyclic graph information solicitation; 
MOO: Multi-objective optimization; NSGA II: Non-dominated sorting genetic algorithm; AMGA2: Micro Genetic Algo-
rithm2; U2R: User-to-root; R2L: Remote-to-local; TP: True positive; TN: True negative; FP: False positive; FN: False negative; 
TPR: True positive rate; FPR: False positive rate; FAR: False alarm rate.

Acknowledgements
This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFC1405700) 
and the Industry University Research Cooperation Project of Jiangsu Province (Grant No. BY2019005).

Authors’ contributions
Yiguang Gong, Yunping Liu, and Chuanyang Yin conceptualized and designed the review. Yiguang Gong wrote the 
paper. All authors reviewed and edited the manuscript. All authors read and approved the final manuscript.

Availability of data and materials
The KDD cup 1999 dataset is used to demonstrate and validate the performance of the proposed approach for intrusion 
detection. The dataset can be accessed from the following website: http://​kdd.​ics.​uci.​edu/​datab​ases/​kddcu​p99/​kddcu​
p99.​html

Declarations

 Competing interests
The authors declare that there are no conflicts of interest regarding the publication of this paper.

Received: 29 October 2020   Accepted: 10 June 2021

References
	1.	 W. Zhong, X. Yin, X. Zhang, S. Li, W. Dou, R. Wang, L. Qi, Multi-dimensional quality-driven service recommendation 

with privacy-preservation in mobile edge environment. Comput. Commun. 157,116–123 (2020). https://​doi.​org/​10.​
1016/j.​comcom.​2020.​04.​018

	2.	 L. Qi, C. Hu, X. Zhang, M.R. Khosravi, S. Sharma, S. Pang, T. Wang, Privacy-aware data fusion and prediction with 
spatial-temporal context for smart city industrial environment. IEEE Trans. Ind. Inform. 17(6), 4159–4167 (2020). 
https://​doi.​org/​10.​1109/​TII.​2020.​30121​57

	3.	 X. Xiaolong, Q. Huang, Y. Zhang, S. Li, L. Qi, W. Dou, An lsh-based offloading method for iomt services in integrated 
cloud-edge environment. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 16(3s), 1–19 (2021). https://​doi.​
org/​10.​1145/​34083​19

	4.	 X. Xu, H. Qihe, X. Yin, M. Abbasi, M.R. Khosravi, L. Qi, Intelligent offloading for collaborative smart city services in edge 
computing. IEEE Internet Things J. 7(9), 7919–7927 (2020). https://​doi.​org/​10.​1109/​JIOT.​2020.​30008​71

	5.	 Q. Liu, Y. Tian, W. Jie, T. Peng, G. Wang, Enabling verifiable and dynamic ranked search over outsourced data. IEEE 
Trans. Serv. Comput (2019). https://​doi.​org/​10.​1109/​TSC.​2019.​29221​77

	6.	 Z. Cai, X. Zheng, A private and efficient mechanism for data uploading in smart cyber-physical systems. IEEE Trans. 
Netw. Sci. Eng. 7(2), 766–775 (2018). https://​doi.​org/​10.​1109/​TNSE.​2018.​28303​07

	7.	 L. Qi, X. Wang, X. Xu, W. Dou, S. Li, Privacy-aware cross-platform service recommendation based on enhanced 
locality-sensitive hashing. IEEE Trans. Netw. Sci. Eng (2020). https://​doi.​org/​10.​1109/​TNSE.​2020.​29694​89

	8.	 L. Wang, X. Zhang, T. Wang, S. Wan, G. Srivastava, S. Pang, L. Qi, Diversified and scalable service recommendation 
with accuracy guarantee. IEEE Trans. Comput. Soc. Syst (2020). https://​doi.​org/​10.​1109/​TCSS.​2020.​30078​12

	9.	 L. Wang, X. Zhang, R. Wang, C. Yan, H. Kou, L. Qi, Diversified service recommendation with high accuracy and effi-
ciency. Knowl.-Based Syst. 204, 106196 (2020). https://​doi.​org/​10.​1016/j.​knosys.​2020.​106196

	10.	 R. Heady, G. Luger, A. Maccabe, M. Servilla. The architecture of a network level intrusion detection system, p. 8 
(1990). https://​doi.​org/​10.​2172/​425295

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://doi.org/10.1016/j.comcom.2020.04.018
https://doi.org/10.1016/j.comcom.2020.04.018
https://doi.org/10.1109/TII.2020.3012157
https://doi.org/10.1145/3408319
https://doi.org/10.1145/3408319
https://doi.org/10.1109/JIOT.2020.3000871
https://doi.org/10.1109/TSC.2019.2922177
https://doi.org/10.1109/TNSE.2018.2830307
https://doi.org/10.1109/TNSE.2020.2969489
https://doi.org/10.1109/TCSS.2020.3007812
https://doi.org/10.1016/j.knosys.2020.106196
https://doi.org/10.2172/425295


Page 21 of 22Gong et al. J Wireless Com Network        (2021) 2021:149 	

	11.	 Melissa Michael, The state of cyber security (2017). https://​blog.f-​secure.​com/​the-​state-​of-​cyber-​secur​ity-​2017
	12.	 I. Manzoor, N. Kumar, A feature reduced intrusion detection system using ANN classifier. Expert Syst. Appl. 88, 

249–257 (2017)
	13.	 R. Vijayanand, D. Devaraj, B. Kannapiran, Intrusion detection system for wireless mesh network using multiple sup-

port vector machine classifiers with genetic-algorithm-based feature selection. Comput. Secur. 77, 304–314 (2018)
	14.	 L. Li, Y. Yu, S. Bai, Y. Hou, X. Chen, An effective two-step intrusion detection approach based on binary classification 

and k-nn. IEEE Access 6, 12060–12073 (2018)
	15.	 N. Farnaaz, M.A. Jabbar, Random forest modeling for network intrusion detection system. Procedia Comput. Sci. 89, 

213–217 (2016)
	16.	 R. Vinayakumar, M. Alazab, K.P. Soman, P. Poornachandran, A. Al-Nemrat, S. Venkatraman, Deep learning approach for 

intelligent intrusion detection system. IEEE Access 7, 41525–41550 (2019)
	17.	 A. Cemerlic, L. Yang, J.M. Kizza, Network intrusion detection based on Bayesian networks, in SEKE, pp. 791–794 

(2008)
	18.	 Z. Cataltepe, U. Ekmekci, T. Cataltepe, I. Kelebek, Online feature selected semi-supervised decision trees for network 

intrusion detection, in NOMS 2016—2016 IEEE/IFIP Network Operations and Management Symposium, pp. 1085–1088 
(2016)

	19.	 E. Hodo, X. Bellekens, A. Hamilton, P.-L. Dubouilh, E. Iorkyase, C. Tachtatzis, R. Atkinson, Threat analysis of iot networks 
using artificial neural network intrusion detection system, pp. 1–6 (2016)

	20.	 C. Yin, Y. Zhu, J. Fei, X. He, A deep learning approach for intrusion detection using recurrent neural networks. IEEE 
Access 5, 21954–21961 (2017)

	21.	 S. Naseer, Y. Saleem, S. Khalid, M.K. Bashir, J. Han, M.M. Iqbal, K. Han, Enhanced network anomaly detection based on 
deep neural networks. IEEE Access 6, 48231–48246 (2018)

	22.	 I. Benmessahel, K. Xie, M. Chellal, A new evolutionary neural networks based on intrusion detection systems using 
multiverse optimization. Appl. Intell. 48(8), 2315–2327 (2018)

	23.	 A.A. Anitha, L. Arockiam, Annids: artificial neural network based intrusion detection system for internet of things. Int 
J Innovative Technol Exploring Eng (IJITEE) 8(11), 2583–2588 (2019)

	24.	 Z. Sun, P. Lyu, Network attack detection based on neural network LSTM, in 2019 2nd International Conference on 
Mechanical, Electronic and Engineering Technology, pp.12–17 (2019)

	25.	 A. Shenfield, D. Day, A. Ayesh, Intelligent intrusion detection systems using artificial neural networks. ICT Express 
4(2), 95–99 (2018)

	26.	 N. Talhar, Effective denial of service attack detection using artificial neural network for wired lan, in 2016 International 
Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), pp. 229–234. IEEE (2016)

	27.	 M. Paliwal, U.A. Kumar, Neural networks and statistical techniques: a review of applications. Expert Syst. Appl. 36, 
2–17 (2009)

	28.	 F. Ahmad, N.A.M. Isa, Z. Hussain, S.N. Sulaiman, A genetic algorithm-based multi-objective optimization of an artifi-
cial neural network classifier for breast cancer diagnosis. Neural Comput. Appl. 23(5), 1427–1435 (2013)

	29.	 X.-Y. Cao, H.-L. Yu, Y.-Y. Zou, Character recognition based on genetic algorithm and neural network, in Proceedings of 
the 2012 International Conference on Information Technology and Software Engineering, pp. 915–923. Springer (2013)

	30.	 G. Kumar, K. Kumar, A multi-objective genetic algorithm based approach for effective intrusion detection using 
neural networks, in Intelligent Methods for Cyber Warfare, pp. 173–200. Springer (2015)

	31.	 H.A. Abbass, Pareto neuro-evolution: constructing ensemble of neural networks using multi-objective optimization, 
in The 2003 Congress on Evolutionary Computation, 2003. CEC’03, vol. 3, pp. 2074–2080. IEEE (2003)

	32.	 C.M. Fonseca, P.J. Fleming, et al, Genetic algorithms for multiobjective optimization: formulation discussion and 
generalization, in Icga, vol. 93, pp. 416–423. Citeseer (1993)

	33.	 K. Deb, A. Pratap, S. Agarwal, T.A.M.T. Meyarivan, A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE 
Trans. Evolut. Comput. 6(2), 182–197 (2002)

	34.	 X. Xiaolong, B. Shen, X. Yin, M.R. Khosravi, S. Wan, Edge server quantification and placement for offloading social 
media services in industrial cognitive iov. IEEE Trans. Ind. Inform. 17(4), 2910–2918 (2021)

	35.	 S. Elhag, A. Fernández, A. Altalhi, S. Alshomrani, F. Herrera, A multi-objective evolutionary fuzzy system to obtain a 
broad and accurate set of solutions in intrusion detection systems. Soft Comput. 23(4), 1321–1336 (2019)

	36.	 M. Stehlik, A. Saleh, A. Stetsko, V. Matyas, Multi-objective optimization of intrusion detection systems for wireless 
sensor networks, in Artificial Life Conference Proceedings 13, pp. 569–576. MIT Press (2013)

	37.	 X. Xiaolong, X. Liu, X. Zhanyang, F. Dai, X. Zhang, L. Qi, Trust-oriented iot service placement for smart cities in edge 
computing. IEEE Internet Things J. 7(5), 4084–4091 (2020)

	38.	 S. Tiwari, G. Fadel, K. Deb, Amga2: improving the performance of the archive-based micro-genetic algorithm for 
multi-objective optimization. Eng. Optim. 43(4), 377–401 (2011)

	39.	 Y. Gong, Y. Liu, C. Yin, Z. Fan, A two-phase cycle algorithm based on multi-objective genetic algorithm and modified 
bp neural network for effective cyber intrusion detection, in International Conference on Machine Learning for Cyber 
Security, pp. 73–88. Springer (2020)

	40.	 F. Ye, L. Nannan et al., Multiobjective optimization method based on pareto solution and its application. Lift. Transp. 
Mach. 2006(9), 13–15 (2006)

	41.	 W. Khatib, P.J. Fleming, The stud ga: a mini revolution? In International Conference on Parallel Problem Solving from 
Nature, pp. 683–691. Springer (1998)

	42.	 Zhu J, Non-classical mathematical methods for intelligent systems (2001)
	43.	 KDD Cup, The UCI KDD Archive. http://​kdd.​ics.​uci.​edu/​datab​ases/​kddcu​p99/​kddcu​p99.​html (1999)
	44.	 N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, Smote: synthetic minority over-sampling technique. J. Artif. 

Intell. Res. 16, 321–357 (2002)
	45.	 W.L. Al-Yaseen, Z.A. Othman, M.Z.A. Nazri, Multi-level hybrid support vector machine and extreme learning machine 

based on modified k-means for intrusion detection system. Expert Syst. Appl. 67, 296–303 (2017)
	46.	 Y. Hamid, M. Sugumaran, A t-sne based non linear dimension reduction for network intrusion detection. Int. J. Inf. 

Technol. 12(1), 125–134 (2020)

https://blog.f-secure.com/the-state-of-cyber-security-2017
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html


Page 22 of 22Gong et al. J Wireless Com Network        (2021) 2021:149 

	47.	 C. Xiang, P.C. Yong, L.S. Meng, Design of multiple-level hybrid classifier for intrusion detection system using Bayesian 
clustering and decision trees. Pattern Recognit. Lett. 29(7), 918–924 (2008)

	48.	 S. Peddabachigari, A. Abraham, C. Grosan, J. Thomas, Modeling intrusion detection system using hybrid intelligent 
systems. J. Netw. Comput. Appl. 30(1), 114–132 (2007)

	49.	 P.U. Kadam, M. Deshmukh, Real-time intrusion detection with genetic, fuzzy, pattern matching algorithm, in 2016 
3rd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 753–758. IEEE (2016)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	A novel two-phase cycle algorithm for effective cyber intrusion detection in edge computing
	Abstract 
	1 Introduction
	2 Materials and methods
	2.1 The proposed approach
	2.1.1 The training session
	2.1.2 The testing session
	2.1.3 The combined classification method

	2.2 The intrusion detection dataset
	2.3 Experimental setup
	2.3.1 Performance metrics
	2.3.2 Design of experiments


	3 Results and discussion
	3.1 Results of different data subsets
	3.2 Results of combined experiment
	3.3 Discussion

	4 Conclusion
	Acknowledgements
	References


