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Abstract

Inertial navigation is an edge computing-based method for determining the position
and orientation of a moving vehicle that operates according to Newton’s laws of
motion on which all the computations are performed at the edge level without
need to other far resources. One of the most crucial struggles in Global Positioning
System (GPS) and Inertial Navigation System (INS) fusion algorithms is that the
accuracy of the algorithm is reduced during GPS interruptions. In this paper, a low-
cost method for GPS/INS fusion and error compensation of the GPS/INS fusion
algorithm during GPS interruption is proposed. To further enhance the reliability and
performance of the GPS/INS fusion algorithm, a Robust Kalman Filter (RKF) is used to
compensate the influence of gross error from INS observations. When GPS data is
interrupted, Kalman filter observations will not be updated, and the accuracy of the
position will continuously decrease over time. To bridge GPS data interruption, an
artificial neural network-based fusion method is proposed to provide missing
position information. A well-trained neural network is used to predict and compensate
the interrupted position signal error. Finally, to evaluate the effectiveness of the
proposed method, an outdoor test using a custom-designed hardware, GPS, and INS
sensors is employed. The results indicate that the accuracy of the positioning has
improved by 67% in each axis during an interruption. The proposed algorithm can
enhance the accuracy of the GPS/INS integrated system in the required navigation
performance.
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1 Introduction
In recent years, accurate vehicle positioning through edge computing concepts has

significantly affected many applications of the transportation industry, such as in-

telligent driver assistance technology, routing, and auto-drive systems. Generally,

the overall performance of low-cost inertial sensors degrades over a certain

amount of time, and by using a high-grade sensor, the production cost of the ve-

hicle will be significantly affected. Consequently, using low-cost sensors with an

accurate positioning algorithm is the best solution to maintain accuracy and prod-

uctivity [1]. Global Positioning System (GPS) and other similar systems such as

Global Navigation Satellite System (GNSS), Global Navigation Satellite System

(GLONASS), and Beidou are now widely accessible around the world and stand as
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standard navigation systems in transportation applications. Inertial Navigation

System (INS) consists of 3-axis sensors measuring linear acceleration and angular

velocity in order to calculate position, velocity, and Euler angles. With enhance-

ments in processors, integration of two or more low-cost sensors with a more

complex but accurate fusion algorithm can have a significant influence on the ex-

tension of flight, shipping, and car industries [2, 3]. For GPS/INS integrated sys-

tem, the navigation solution is traditionally achieved by using Kalman Filter (KF).

However, the major inadequacy related to KF is that the system states are usually

nonlinear. Extended Kalman Filter (EKF) is the nonlinear version of the KF, which

linearizes about an estimate of the current mean and covariance. Since there are

two integrators in calculating position from acceleration data, a second-order EKF

is the most suitable approach in data fusion algorithms [4, 5]. In order to improve

the accuracy of the position and compensate the INS error in the long-term ab-

sence of GPS data, the neural network is an excellent approach to reduce the cu-

mulative error of INS [6]. In this paper, the ultimate objective is to train an

artificial neural network from GPS data to learn the latest available position signals

and then use this trained network to predict the time series in the absence of the

GPS signal. Considering extensive capability of neural networks to solve nonlinear

problems and overcome the drawbacks of KF and different types of Artificial

neural networks (ANN) such as Multilayer Perceptron (MLP), Radial Basis

Function (RBF), and Adaptive Neuro-Fuzzy Inference System (ANFIS) approaches

are used in data fusion applications [7, 8]. Also, a variety of training methods are

used in this field, but the most common methods are based on error Back-

Propagation (BP) methods [9, 10].

Recently, there has been a significant focus on GPS and INS sensor data fusion algo-

rithms, especially in absolute position estimation during a failure in communication

with sensors or an outage in GPS. The primary focus in most of the articles is to main-

tain position accuracy improvement. For example, in [11], Design of an INS/GPS algo-

rithm using parallel Kalman filters is investigated. In [12], an Adaptive IIR/FIR fusion

filter approach is implemented. In [6, 13], a GPS/INS data fusion is applied using

Unscented Kalman Filter (UKF) and RKF. In [14], the Fusion algorithm using UKF and

BP neural networks is investigated. Also, in [15, 16], hybrid integration methods using

different types of neural networks are investigated.

Kalman Filter is the most remarkable real-time optimal estimator, which has

found a vast field of application [17]. KF has become an indispensable data fusion

approach for GPS/INS integrated navigation. Compared to other alternative

methods of GPS/INS fusion like Particle Filter [18] or IIR/FIR Filers [19], Kalman

Filter proposes a better adaptivity and flexibility of implementation in low-cost sys-

tems along with strong optimality and accuracy of estimation. However, the stand-

ard KF algorithm can hardly deal with nonlinearity in model and robust issues

such as uncertainty. In this research, EKF has been utilized to solve the issue of

dealing with nonlinearity. Recently, researchers have proposed and suggested robust

filter algorithm [20–22] which stands for high stability and flexibility and better

capability of controlling the negative effect of both the dynamic model uncertainty

and the long-term measurements errors. The performance of integrated positioning

will be degraded due to the gross error from observations in challenging
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environments. A robust Kalman filter could be employed to reduce the effect of

gross error in observation.

In this work, EKF, along with a robust method, has been proposed to ensure dealing

with the mentioned issues, and, improve the accuracy of the GPS/INS system. The ro-

bust algorithm evaluates the innovation vector with chi-square test and modifies the

faulty innovation vector. Kalman filter robustness is the ability of the filter to deal with

adverse environments and input conditions.

The primary purpose of this research is to design a high precision fusion algorithm

along with a custom standalone hardware for civil and small-industry applications.

Since increasing cost would affect negatively on the final product, in this research, low-

cost MEMS sensors are used. Although expensive sensors provide high accuracy data,

MEMS sensors provide a lower but acceptable range of accuracy along with a much

lower price. Furthermore, all other parts of the hardware, i.e., processor, are chosen

carefully from a low to medium range of price to ensure production capability of the

system. Compared to other works in the same field as [11, 15, 16, 23], two primary pur-

poses in this work have been improved. First, the design of the hardware from both as-

pects of cost-effectiveness and multi-platform capability of the product (i.e., robots and

autonomous drones) has been considered. Second, the accuracy improvement of the al-

gorithm in most probable scenarios, standard scenario (using RKF), and GPS outage

scenario (using Neural Network), has been investigated.

Choosing between ANN or machine learning methods in GPS/INS fusion algo-

rithms depends on the type of the vehicle and main scenario, in which the algo-

rithm is being used. Neural Networks implicitly integrates temporal data and

recognizes temporal data patterns with arbitrary time intervals. Therefore, Neural

Networks is suitable for applications where input-output data has temporal pat-

terns. This has a beneficial effect on prediction accuracy [9]. The most crucial dif-

ference between ANN and machine learning methods is its performance as the

scale of data increases. ANN algorithms need a large amount of data in order to

be capable of accurate prediction, whereas machine learning methods perform well

with less amount of data. On the other hand, when there is a large amount of

data, the performance of ANN methods increases over time. In this work, GPS and

INS sensors produce a tremendous amount of data over time, as the INS sensor

works at 100 Hz. Thus, after a certain amount of time, when ANN is trained well,

its performance would overcome the machine learning algorithm.

In the second section, GPS, INS, and the proposed scheme and formulations of the

data fusion are presented. Results of an outdoor test with designed hardware are pre-

sented in Section 3. Finally, Section 4 makes the concluding remarks.

2 Materials and methods
In this section, the formulation of the work is briefly described. Primarily, position cal-

culation of GPS and also output variables of INS are described. Also, GPS/INS fusion

algorithm using EKF as a primary step for integrated navigation is investigated. Then, a

robust methodology to increase the performance of EKF is proposed. Finally, integra-

tion schemes based on loosely-coupled integration method along with the proposed al-

gorithm are demonstrated.
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2.1 Formulation

GPS is a collection of 32 satellites orbiting the earth’s surface and is continuously pro-

viding position data to receivers on earth [5]. The position is determined through

measuring a range between receiver and a minimum of four satellite positions by meas-

uring the bias error between receiver and GPS clock. This range is called pseudo-range

and is determined as per Eqs. (1)–(3), as below.

ρi ¼ ri þ b ð1Þ

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x j
� �2 þ y−y j

� �2
þ z−z j
� �2r

ð2Þ

b ¼ ct j ð3Þ

where (xj, yj, zj) denotes the satellite position in three-dimensional space, (x, y, z) is the

receiver position, ρi is the pseudo-range in meters, b is the clock bias of the receiver, c

is the speed of light, and tj is the satellite clock [24]. The final coordinate frame in this

paper is Earth Centered Earth Fixed (ECEF), which is denoted by superscript e. Other

coordinate frames used in this paper are Inertia and Body frames denoted by super-

scripts i and b, respectively. The z-axis in ECEF frame is towards the rotation axis of

earth from the center to the North Pole, and the x-axis is towards the equinox (in

Greenwich) (Fig. 1).

Accelerometer vector in and gyroscope angular velocity in body frame are denoted by

½abx aby abz �T and ½ωb
x ω

b
y ω

b
z �T , respectively. Also, the transformation matrix for converting

body-frame angular rates to Euler angular rates is given by Eq. (4), as below.

ϕ
:

θ
:

ψ
:

2
64

3
75 ¼

1 sinϕ tanθ cosϕ tanθ
0 cosϕ − sinϕ
0 sinϕ secθ cosϕ secθ

2
4

3
5 p

q
r

2
4

3
5 ð4Þ

Fig. 1 The ECEF coordinate frame
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where [p q r]T is the angular velocity vector and by integrating ½ϕ̇ θ̇ ψ̇�T , Euler angles

are obtained. Ce
b is the transformation matrix from body frame to earth frame defined

as per Eq. (5). Also, state space representation of the vehicle is defined as Eq. (6), as

below.

Ce
b ¼

cosθ cosψ sinφ sinθ cosψ þ cosφ sinψ − cosφ sinθ cosψ þ sinφ sinψ
− cosθ sinψ − sinφ sinθ sinψ þ cosφ cosψ cosφ sinθ sinψ þ sinφ cosψ

sinθ − sinφ cosθ cosφ cosθ

2
4

3
5

ð5Þ
δẋ tð Þ ¼ F tð Þδx tð Þ þ G tð Þu tð Þy tð Þ ¼ H δx tð Þ þ w tð Þ� ð6Þ

where F(t), G(t), and H(t) are 15 × 15, 15 × 6, and 15 × 3 matrices, and uacc and ugyro are

the accelerometer and gyroscope noises and are described in Eqs. (7)–(9), as below.

F tð Þ ¼

0 I 0 0 0
0 −2Ωe

ie ~ae 0 Ce
b

0 0 −Ωe
ie −Ce

b 0
0 0 0 −I 0
0 0 0 0 −I

2
66664

3
77775;G tð Þ ¼

0 0
0 Ce

b
−Ce

b 0
I 0
0 I

2
66664

3
77775 ð7Þ

H tð Þ ¼ I3�3 I3�3 03�3 03�3 03�3½ � ð8Þ

u tð Þ ¼ uacc
ugyro

� 	
ð9Þ

where ~ae and Ωe
ie , respectively represent the skew-symmetric forms of the acceleration

and angular velocity vectors.

H sets for different conditions as follows. Due to the type of GPS receivers, velocity

data may also be received. The first array of the matrix H represents observations of

Position, and the second array is observations of velocity. When GPS is jammed, or the

signal is interrupted, no data is available, and therefore, this matrix becomes zero, and

another approach should be utilized for estimation. The state vector is defined as Eq.

(10), as below.

δx tð Þ ¼ δpe δve ς δωb
ib δab


 �T ð10Þ

where δpe, δve, and ς are position n, velocity, and attitude errors, respectively. Also, δ

ωb
ib and δab are angular velocity and acceleration error. The error values are determined

by integrating the differential equations in (6) using appropriate initial conditions. The

error between output position and velocity of GPS/INS algorithm and the reference

position and velocity, e, is defined as Eq. (11), as below.

e tð Þ ¼ ep ev½ �T ð11Þ

The state space model is nonlinear because matrices F(t) and G(t) contain nonlinear

components. As a result, a linearized model needs to apply KF since the linear dynam-

ics of the sensors are unknown [12]. To implement KF in a microprocessor-based sys-

tem, a discrete form of the state space model is required as described in Eq. (12).

δxkþ1 ¼ Φkδxk þ Gdkuk ð12Þ
where u(k) is the process noise. The relations between continuous and discrete forms

of converted matrices are defined in Eqs. (11) and (12), as follows.
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Φk ≈ eFTs ¼ I þ F kTsð ÞTs ð13Þ

Gdk ¼ F−1 kTsð Þ eF kTsð ÞTs � I
� �

G kTsð Þ ≈ G kTsð ÞTs ð14Þ

where Φk is the state transition matrix. Ts is the sampling time. The measurement

equation would be defined as in (15), as below.

δyk ¼ Hkδxk þ wk ð15Þ

where δyk is the numerical difference between GPS and INS vectors, and wk is the

measurement noise.

2.2 Kalman Filter

In this paper, an EKF is implemented. At the first step of signal filtering, initial values

for estimation of the state variables X0
− and the covariance matrix of state estimation

error P0
− are selected. Next, the value of the state variables and the covariance matrix

of state estimation error are predicted for the current moment in Eqs. (16) and (17) as:

δx̂−kþ1 ¼ Φkδx̂
−
k ð16Þ

P−
kþ1 ¼ ΦkPkΦT

k þ GdQd;kG
T
dk ð17Þ

To improve the priori estimation, first, the Kalman gain is calculated and then, using

information vector y(k), the posteriori estimations are updated in Eqs. (18)–(20), as

follows.

Kk ¼ P−
kH

T
k HkP

−
kþ1H

T
k þ Rk

� �−1 ð18Þ
δx̂kþ1 ¼ δx̂−kþ1 þ Kk yk−Hkδx̂

−
k Þ

� � ð19Þ
Pkþ1 ¼ P−

kþ1−KkHkP
−
kþ1 ð20Þ

These calculations repeat every time a new data is received.

2.3 Robust Kalman Filter

Generally, the performance of the GPS/INS system entering a tunnel, area with build-

ings, or in a forest may frequently be degraded, causing gross observation errors in fil-

tering and estimation. Moreover, INS outputs are always exposed to high noise and

different types of uncertainties, such as bias, scale factor, and misalignment. Therefore,

inconsistency between vehicle and sensors lead to INS gross errors [25, 26]. Availability

of correct and persistent GPS data as observation is essential to continue correct esti-

mation in integrated navigation systems. Theoretically, GPS observations must be

Gaussian distributed with mean Hkδx̂k and covariance HkP−
kþ1H

T
k þ Rk . Therefore, ac-

cording to Eqs. (16)–(20), the standard EKF is carried out [27]. The square of the

Mahalanobis distance of the observations yk to its mean is considered as a test statistic

described in Eq. (21) as:

γk ¼ M2
k ¼ yk−Hkδx̂

−
k

� �T
HkP

−
kþ1H

T þ Rk
� �

yk−Hkδx̂
−
k

� � � χ2m ð21Þ

where Mk is the Mahalanobis distance, γk is a static variable used as an index for prob-

ability test, m is the degree of freedom, which is the same dimension as the observation

vector, and χ2aðmÞ is the probability threshold at significance level α, in which the null
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hypothesis test will be rejected. Usually, α is a small value, e.g., below 5%. In this contri-

bution, 1% for α1 and 0.01% for α2 are adopted. According to the law of the chi-square

test, if the statistical index γk is between two thresholds, the observations are subject to

gross error.

A scalar factor β is introduced in Eq. (22) to adjust the covariance of the observation

prediction in (17) and (18) to ensure robustness as follows:

R̂k ¼ βkRk ð22Þ

Equation (22) can be satisfied as stated in Eq. (23) as follows.

f βk
� � ¼ yk−Hkδx̂

−
k

� �T
HkP

−
kþ1H

T þ Rk
� �−1

yk−Hkδx̂
−
k

� �
−χ2m ¼ 0 ð23Þ

Since equation (23) is nonlinear in βk, by solving it iteratively using newton’s method,

Eq. 24 would be resulted as:

βk iþ 1ð Þ ¼ βk ið Þ− f βk ið Þ� �
f 0 βk ið Þ� � ð24Þ

Therefore, βk would be summarized as per Eq. (24) as follows.

βk ið Þ ¼ 1 ; i ¼ 0

βk iþ 1ð Þ ¼ βk ið Þ− M2
k ið Þ−χ2m

yk−Hkδx̂
−
k

� �T
HkP−

kþ1H
T þ Rk

� �−1
Rk HkP−

kþ1H
T þ Rk

� �−1
yk−Hkδx̂

−
k

� � ; i≥0

8><
>:

ð25Þ

If the gross error is small, GPS observations would significantly affect the update part

of the filter by magnifying the covariance matrix of the measurement noise. However, if

the error is considerably large, the observation is not beneficial. So, the covariance

matrix is set to infinity to remove the negative effect of observation with the gross

error. Therefore, the robust factor would be as Eq. (26).

βk ¼
1 if γk < χ2a1 mð Þ

M2
k

χ2a mð Þ if χ2a1 mð Þ < γk < χ2a2 mð Þ
∞ if χ2a1 mð Þ < γk

8>>><
>>>:

ð26Þ

Also, the Kalman gain in Eq. (15) is changed to the gain stated in Eq. (27), as follows.

Kk ¼ P−
kH

T
k HkP

−
kþ1H

T
k þ Rk

� �−1
if γk < χ2a1 mð Þ

βkP
−
kH

T
k βkHkP

−
kþ1H

T
k þ Rk

� �−1
if χ2a1 mð Þ < γk < χ2a2 mð Þ

(
ð27Þ

This way, the information from the dynamic model would dominate the effect of ac-

tual observation, and therefore, the gross error will be overcome. This method is tested

with the designed hardware and is presented in Section 3.

2.4 Integration scheme

There are two major types of integration schemes in sensor data fusion problems.

In loosely-coupled integration, GPS output data and inertial sensors are integrated

using a KF while in tightly-coupled integration, raw GPS data and INS measure-

ments are used to calculate position, velocity, and orientation [28]. The integrated

navigation system adopts the loosely-coupled integration scheme, and the fusion
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method incorporating the data preprocessing algorithm and Nonlinear Auto-

Regressive (NAR) Neural Network is proposed in the system, as shown in Fig. 2a.

The input of the KF is the position error of the INS calculated by subtracting the

GPS position from INS. Then, estimated system states are applied to the position,

velocity, and orientation of INS and consequently, the final navigation output is

resulted.

GPS/INS data fusion using KF, due to its high performance and simplicity, is the first

choice in meeting primary navigation demands, and in usual conditions, it calculates

the position of a vehicle with acceptable precision. However, in many occasional sce-

narios like in urban and military areas in which GPS is interrupted for a long period,

due to reasons like entering a tunnel or intentional signal jamming, GPS accuracy is

dramatically reduced because KF cannot estimate current position in the absence of

GPS signal. In order to correct this problem, the structure depicted in Fig. 2a is used

together with a neural network.

Using the neural network in real-world applications is highly dependent on the

proper training of the network before using it. In this work, the neural network

should provide data for a limited period but after a specified minimum amount of

time. This time is dedicated to the training of the neural networks and is necessary

for accurate prediction of the network and the entire algorithm during GPS out-

ages. In this structure, the neural network is used in two modes of training and

prediction. When the GPS data is available, the neural network trains from the KF

output data and, when the GPS signal interrupts, as in Fig. 2b, the neural network

predicts the position, velocity, and orientation error in the absence of the KF.

Feedforward neural network consists of three layers: input, hidden, and output layer.

Each layer is composed of several neurons and different layers and can have different

quantities of neurons (Fig. 3).

In this network, neurons are connected to their adjacent layers. Information transfers

using these connections, and the corresponding transfer function is selected separately

[14]. One of the conventional methods of training a neural network is the backpropaga-

tion approach. This approach consists of two paths: forward and backward. In forward

path, the input vector is applied to a network, and its outputs are transferred through

hidden layers into output layers so that the final output of MLP is achieved. Also,

weight matrixes and bias vectors are considered constant and invariant. This path is

represented using Eq. (28), as follows.

ŷiþ1 Kð Þ ¼ f iþ1 Wiþ1 Kð Þŷi þ biþ1 Kð Þ� � ð28Þ

Fig. 2 Indirect feedback structure and Neural Network. a Training mode. b Prediction mode
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where i is the layer number and ŷi is the previous layer output used to calculate layer

i + 1 as its input.

In the backward path, the network parameters are adjusted based on the error back-

propagation algorithm. The error vector is the difference between the desired response

and the network response. The error value in the training step is sent in the opposite

direction, from the output layer to the input layer, to adjust the weights and compen-

sate the error to reach the desired response. When the output vector is compared with

the desired vector, the error value in the nth output of the last layer is defined for the

kth pattern as per Eq. (29).

en Kð Þ ¼ y Kð Þ−ŷ Kð Þ ð29Þ

The main goal is to estimate the network weights in order to minimize the Root

Mean Square Error (RMSE) of the system and model output. The error value in each it-

eration for the nth neuron of the output layer is defined as e2nðKÞ. As a result, the net-

work cost function is described in Eq. (30).

J Kð Þ ¼
Xn
j¼1

e2j Kð Þ ð30Þ

With the capabilities of the NAR model to adapt to the complex and nonlinear dy-

namics of the time series, this model is one of the most appropriate tools for modeling

and predicting time series of GPS/INS integration problems and is widely used in vari-

ous applications [29] (Fig. 4).

NAR model input is a nonlinear function of previous outputs which is described as

Eq. (31).

y tð Þ ¼ f y t−1ð Þ; y t−2ð Þ;…; y t−qð Þ½ � þ e tð Þ ð31Þ

where y(t − 1), y(t − 2), …, y(t − q) is a model output feedback, q is the order of the sys-

tem, e(t) is the noise, and f(.) is the nonlinear function, which should be estimated.

Fig. 3 Structure of a typical Feedforward Neural Network
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In control and navigation applications, an estimation of the system states is required

at fixed intervals or a predetermined rate. Measurements of different sensors with dif-

ferent sampling characteristics should be synchronized, and standards of data transfer

in the processor must be met. Therefore, an algorithm for converting sample rates

should be used to ensure the availability of the data for signal processing at each inter-

val [30]. The scheme of converting the sample rate is shown in Fig. 5.

At a specified time t, if an observation is available, the KF applies prediction and up-

date steps. However, when the output is required, and measurement is not available,

only the prediction step will be applied, and the update step will be deactivated. In Fig.

5, M contains measured samples, and O contains samples at the resampled rate. Be-

cause GPS receiver has a lower sample rate than IMU, and for some other system-

based reasons, the data are usually not synchronous and should be resampled using dif-

ferent hardware or software methods.

Software resampling methods are generally based on interpolation, considering differ-

ent interpolation methods such as linear, cubic, and spline. Because of the small differ-

ences in the final values, and the fact that the computation of linear interpolation is

much easier than other methods, the linear method is used for resampling.

Fig. 4 Structure of a typical NAR Neural Network [29]

Fig. 5 Sample rate conversion scheme
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3 Results and discussion
Moving an object toward an area with a signal jammer or similarly, during GPS signal

interruption like the time that the vehicle is moving fast or passing through a tunnel,

are important scenarios in aeronautical and automotive applications. In this scenario, it

is presumed that at least four satellites are available, and at a particular moment, this

number decreases to less than three satellites and stays in this state for a long period.

In this section, the behavior of the system based on the defined scenario is studied, and

additionally, the effect of the neural network on the system performance over a limited

time is investigated.

An outdoor test has been performed to investigate the accuracy of the fusion algo-

rithm in the defined scenario. The test hardware is installed on a car, and a closed path

in an urban area has been travelled. The whole test is performed in 700 s, and after

600 s, GPS data has been interrupted for 14 s. The position results of the test are shown

in Figs. 12 and 13 separately.

Fig. 6 The designed hardware for GPS/INS integration

Fig. 7 The value of γk and relative significance thresholds
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The test hardware is a custom-designed circuit based on Digital Signal Processor

(DSP) in circular shape with a 100-mm diameter in order to fit in every moving vehicle

and work standalone (Fig. 6). The design based on a modular approach in three distinct

modular layers and the IMU sensor are also removable and replaceable.

The first layer includes power supply; the second layer includes the processor and

communication modules. The processor is TMS320F28335 made by Texas Instruments

with 150MHz and single-precision floating-point unit (FPU), which makes it suitable

for data acquisition and motor control. The third layer includes sensors, GPIO, and

PWM outputs with IMU model ADIS16448, which is connected through SPI port and

GPS model NV08C-CSM, which is connected through SCI port. Also, the program-

ming and online plot of results are processed through an XDS100 V2 emulator.

Table 1 RMS comparison of position error for the proposed algorithm

Latitude Longitude Altitude

Standard KF 1.022 0.769 0.981

Robust KF 0.968 0.634 0.805

Fig. 8 a Position error and b Velocity error of vehicle in (x, y, z) axis
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Figure 7 shows the values of γk, and the red and green lines are the threshold values

of significance levels α1 and α2, respectively. There are 71 values of γk which are be-

tween 8.9 and 3.2; also, there are 34 values of γk which are higher than 8.9. The pro-

posed algorithm for Robust Kalman Filter (RKF) is employed to process the various

levels of gross error in the system.

Fig. 9 a Accelerometer. b Gyroscope bias estimation in (x, y, z) axis

Fig. 10 Result of orientation estimation
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Table 1 illustrates the Root Mean Square (RMS) of the position error of two utilized

Kalman filters. Figures 8 and 9 represent the errors of position and velocity as well as

estimation of accelerometer and gyroscope biases in (x, y, z).

Results of orientation estimation are represented in Fig. 10. Since the test has been

performed by a car in an approximately closed path and low slope road, it is evident

that the ϕ and θ angles are close to zero. Also, the ψ angle clearly shows the closed

path. There is also a saturated data recorded at the first 10 s of the test due to the im-

mediate start acceleration of the test vehicle.

In order to improve the accuracy of the system, and also, identify the most ac-

curate neural network model, the order of the model must be appropriately de-

fined. Therefore, the best order of the model is calculated by observing the

correlation of the inputs and the outputs of the network. Comparing the values of

the correlations, and by the fact that the minimum absolute value is the best order

to be chosen, best order should be 13 or 16. Nevertheless, considering the correl-

ation results and limitations on processor computation capacity, the order of the

system is chosen as 5. therefore, five previous inputs must be used simultaneously

as the input of the Neural network. The result of the input and output data correl-

ation is shown in Fig. 11.

Figure 12 represents a comparison between the position of the test path as reference,

proposed RKF, and position estimation of the proposed neural network while GPS data

is interrupted. GPS data has been interrupted for about 17 s, and the results show im-

provement of the estimation using the proposed neural network. Figure 13 also shows

the same results of Fig. 12, but instead of Feedforward Neural Network, results of the

NAR Neural Network are compared. The improvements by different methods are com-

pared in Table 2.

In the proposed neural networks (Fig. 2), 75% of the data is dedicated to training, and

the remaining 25% is for test. To simulate and test the described scenario, GPS data is

presumed disconnected for 1500 samples starting from the sample number 60000 to

61500, and the last available GPS data is considered for these samples.

Fig. 11 Input-output correlation
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In Table 2, position error improvement by both feedforward and NAR Neural Net-

works is shown. The results indicate that both neural networks have a good effect on

the reduction of position error during GPS data interruption.

4 Conclusion
This study developed an implementation of ANN aided GPS/INS integration for mov-

ing vehicle applications towards an edge-enable and cloud-based access to information

[31–34]. In this paper, information fusion of GPS and INS sensors using Kalman Filter

Fig. 12 Position of the vehicle in (x, y, z) axis using FF NN
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Fig. 13 Position of the vehicle in (x, y, z) axis using NAR NN

Table 2 Comparison of position improvement by applying the Neural Network

Latitude Longitude Altitude

Feedforward 82.3% 67.4% 69.1%

NAR 86.3% 73.2% 71.6%
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has been investigated. To improve the performance of the Kalman Filter, a robust

method using Mahalanobis distance has been utilized. Also, in the previously defined

scenario, two different types of Neural Networks are used to bridge GPS data interrup-

tion. A comparison between the proposed neural networks has been presented. Also,

hardware was designed to test the proposed algorithm under the defined scenario. Ac-

cording to the presented figures, the proposed algorithm of GPS/INS data fusion shows

a positive effect on the compensation of navigation error, reducing RMS of the position

error by about 5%, and by using the neural network, the output position estimation

error is reduced by at least 67%. The plot diagram shows that by using the mentioned

algorithm, navigation system errors are well estimated in the absence of the GPS navi-

gation system, and errors are limited to a specified range. The final accuracy of the

state estimation highly depends on the covariance of the process and measurement

noise, quality, and grade of the sensors used in hardware; therefore, navigation error

compensation is generally limited.
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