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Abstract
A new framework of data assessment and prioritization for real-time prediction of
spatial information is presented. The real-time prediction of spatial information is
promising for next-generation mobile networks. Recent developments in machine
learning technology have enabled prediction of spatial information, which will be quite
useful for smart mobility services including navigation, driving assistance, and
self-driving. Other key enablers for forming spatial information are image sensors in
mobile devices like smartphones and tablets and in vehicles such as cars and drones
and real-time cognitive computing like automatic number/license plate recognition
systems and object recognition systems. However, since image data collected by
mobile devices and vehicles need to be delivered to the server in real time to extract
input data for real-time prediction, the uplink transmission speed of mobile networks is
a major impediment. This paper proposes a framework of data assessment and
prioritization that reduces the uplink traffic volume while maintaining the prediction
accuracy of spatial information. In our framework, machine learning is used to estimate
the importance of each data element and to predict spatial information under the
limitation of available data. A numerical evaluation using an actual vehicle mobility
dataset demonstrated the validity of the proposed framework. Two extension schemes
in our framework, which use the ensemble of importance scores obtained from
multiple feature selection methods, are also presented to improve its robustness
against various machine learning and feature selection methods. We discuss the
performance of those schemes through numerical evaluation.

Keywords: Spatial information, Real-time prediction, Mobile crowdsensing, Data
assessment, Machine learning, Feature selection

1 Introduction
The demand for real-time prediction of spatial information is steadily growing [1]. Spa-
tial information includes traffic flows (cars, pedestrians, etc.), road surface conditions,
construction activities, noise levels, air quality, traffic-related accidents, and crimes. The
latest Geospatial Industry Outlook and Readiness Index report (GeoBuiz-18) estimates
that the geographic information system and spatial analytics market will grow from 66.2
billion U.S. dollars in 2017 to 88.3 billion in 2020 [2].
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The development of real-time cognitive computing is essential to providing such real-
time prediction of spatial information; most of the information mentioned above can
be extracted from still or moving images acquired by cameras. For instance, automatic
number-plate/license plate recognition enables the locations of individual vehicles to be
determined [3], from which information on vehicle traffic flows can be obtained. Recent
advances in object recognition technology have enabled data to be collected for specific
target objects, including people (either walking or standing), damaged road surfaces, and
car accidents. This provides a powerful way of obtaining input data for predicting spatial
information.
Other key-enabling technologies are those found in small, lightweight, energy-saving

image sensors that can produce high-quality fine-grained images. The reason “high qual-
ity” is important is that the performance of the recognition technologies mentioned above
depends on the quality of the input images. The reason image sensors must be “small,
lightweight, and energy saving” is that they have to be implemented in small devices like
smartphones, drones, and wearable devices. According toMarketsandMarkets, the image
sensor market is expected to grow from 12.8 billion U.S. dollars in 2016 to 24.8 billion by
2023 [4].
A question we thus need to address is, “How can we collect input data for pre-

dicting spatial information?” If we relied only on fixed image sensors, we would need
a number of dense grids of fixed image sensors to cover a wide geographical area
like New York City or Tokyo, which would be inefficient in terms of deployment and
maintenance costs. Mobile crowdsensing (MCS) has been proposed to effectively col-
lect sensor data [5]. In MCS, conventional mobile devices equipped with sensors such
as smartphones as well as platforms that are becoming mobile devices, such as vehi-
cles equipped with cameras and sensors, work as distributed mobile sensors to acquire
sensor data associated with their respective locations in a timely manner. Thanks to
the inherent nomadic characteristic of mobile device users, this approach should pro-
vide spatially and temporally complete coverage of wide geographical areas. Thus,
the integration of fixed sensors and MCS is also a key for collecting image sensor
data.
However, since image data collected bymobile devices and vehicles need to be delivered

to the server in real time to extract input data for real-time prediction, there is an obsta-
cle that must be overcome: the relatively slow uplink transmission in mobile networks.
According to the officially announced specifications of Long-Term Evolution-Advanced,
the highest speed (peak rate) is 1.5 Gbps. The 5th generation network being developed
will have a peak rate of up to 10 Gbps. However, actual throughput is generally much
lower than the peak rate (possibly as low as a few of a percent of the peak rate) because the
peak rate is the rate measured under ideal conditions. Under real-world conditions, par-
ticularly in the uplink, transmission speed is limited due to multiple deterioration factors
like the poor transmission capability of mobile devices and the contention-based access
of wireless devices. In contrast, the data rates of image sensors can be quite high, poten-
tially of the order of billions of bits per second [6]. Obviously, if many mobile and fixed
sensors connected to a base station transmit image sensor data through the uplink at the
same time, the total amount of transmitted data could easily exceed the capacity of the
uplink.
This paper proposes a new framework to overcome this uplink bottleneck problem:
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the use of assessment and prioritization of image data collected by mobile devices from
which input data for real-time prediction are extracted. Assessment means assessing the
importance of image data collected by each mobile device. Prioritization means assign-
ing a higher priority to the more important image data in uplink transmission. Prediction
has to be performed only using the available data because some data will be missing
because of the limited capacity of uplink transmission. We evaluated the effectiveness of
this approach by using an actual vehicle mobility dataset. The use of machine learning
for data assessment and prioritization drastically reduced the uplink traffic volume while
maintaining prediction accuracy.
Data in the proposed framework are assessed by using feature selection of machine

learning [7, 8]. Feature selection enables the importance score of each data element to
be extracted from the prediction model of machine learning. However, the score is not
robust against various machine learning and feature selection methods: different feature
selection methods may produce different importance scores for the same data element.
To solve this problem, this paper presents two extension schemes in the proposed frame-
work, which use the ensemble of importance scores obtained from multiple feature
selection methods. Those schemes are validated through numerical evaluation. Note that
this paper is the extended version of our previous paper [9].
The rest of this paper is organized as follows. Section 2 introduces the related work,

which includes an overview of the prior works on feature selection. Section 3 presents
the system model, the basic idea, and the problem formulation of our data assessment
and prioritization framework. We then present and discuss the results of our numerical
evaluation in Section 4. Then, the extension schemes with numerical results are presented
in Sections 5 and 6. Finally, Section 7 concludes with a summary of the key points and a
mention of future work.

2 Related work
2.1 Prioritization methods

In traditional mobile networks, delay-sensitive data for interactive applications like
teleconferences or online games have been widely given higher priority to improve
user experience quality [10]. However, in next-generation mobile networks, commu-
nication quality for machines will become more important than that for people [11].
The real-time spatial information considered here could be a typical application for
machines; it could be used by smart mobility services including navigation, driving assis-
tance, and self-driving. The data assessment and prioritization framework proposed
in this paper is well suited for such machine centric applications in next-generation
mobile networks. Similar works have been done by other researchers including some
of the authors of this paper [12, 13]. Yamada et al. presented software-defined net-
work (SDN)-based control for mobile traffic prediction using past traffic logs collected
at base stations. Inagaki et al. presented Internet-of-Things (IoT) device control to
predict spatial information in real-time. The main differences between this work and
those works are as follows: (1) this work considers and compares multiple kinds of
machine learning methods, whereas the other works considered only random for-
est (RF) as a machine learning method, and (2) this work discusses the ensemble of
importance scores obtained by multiple feature selections, whereas the other works
did not.
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2.2 Feature selection methods

2.2.1 Overview

Gevrey et al. systematically discussed methods for evaluating the contributions of data to
prediction [7]. Methods for evaluating the contributions of data are commonly referred to
as “feature selection” methods. According to Chandrashekar and Sahin [8], feature selec-
tion methods can be categorized as filter selection, wrapper selection, and embedded
selection. Filter selection is done during pre-processing: the correlation or similarity of
data is analyzed in advance before machine learning. Wrapper selection is more like an
optimization approach: it attempts to find the combination of elements that maximizes
prediction accuracy. Embedded selection is the most practical and convenient: it enables
the importance of each element to be determined through a machine learning training
process.

2.2.2 Commonly usedmethods

The perturb method aims to assess the effect of small changes in each input on the out-
put in machine learning [7]. The algorithm adjusts the input values of one variable while
leaving the others untouched. The change in the output result for each change in the
input elements is recorded. The mean squared error (MSE) of the output should increase
as a larger amount of noise is added to the important input variable. This method is
straightforward and applicable to a wide variety of machine learning methods includ-
ing multilayer perceptron (MLP) and RF though it does not belong to any of the three
categories suggested by Chandrashekar and Sahin.
The weights method uses an embedding approach. It essentially involves partitioning

the hidden-output connection weights of each hidden neuron into components asso-
ciated with each input element [7]. It can be applied to neural-network (NN)-based
methods including a long short-term memory (LSTM) network, which will be explained
later in Section 4.
The impurity method also uses an embedding approach. The RFmachine learning algo-

rithm is highly accurate and far more robust than decision trees. It can model a huge
feature space [14]. In RF, at each node of the decision tree, m elements are randomly
selected out of the total number of features, and the best split is selected out of these
m elements. At each node t within the binary trees T of RF, the optimal split is sought
by using the impurity i(t) [15], which is a computationally efficient approximation of the
entropy—measuring how well a potential split separates the samples of the two groups in
this particular node. This means that the impurity reflects the importance of the element
used for splitting.

2.2.3 Ensemblemethods

According to Shen et al. [16], feature selection ensemble is an ensemble-based method
that aims to construct a group of feature subsets and then produce an aggregated result
out of the group. In so doing, the performance variance of obtaining a single result from
a single approach can be reduced. It is also intuitively appealing that the combination of
multiple subsets may remove fewer important features, resulting in a compact, robust,
and efficient solution.
Saeys et al. introduced the use of ensemble methods for feature selection [17]. They

showed that by constructing ensemble feature selection techniques, robustness of feature
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ranking and feature subset selection could be improved by using similar techniques as in
ensemble methods for supervised learning. When analyzing robustness versus classifica-
tion performance, ensemble methods show great promise for large-feature/small-sample-
size domains. It turns out that the best trade-off between robustness and classification
performance depends on the dataset at hand, giving rise to a new model selection strat-
egy, incorporating both classification performance as well as robustness in the evaluation
strategy.

3 Proposed framework
3.1 Systemmodel

Figure 1 illustrates a system for predicting spatial information in real time. Mobile devices
equipped with a sensor acquire sensor data and transmit them to a base station through
an uplink channel. Here, we assume that vehicles equipped with image sensors (cameras)
are the mobile devices. The base stations forward the received data to a server via a relay
network. The server extracts the elements of spatial information from the collected sensor
data and produces spatial information.
Figure 2 shows a block diagram of the system. Each mobile device consists of a sen-

sor, pre-processor, transmitter, controller, and data storage, while the server consists of a
receiver, converter, learner, predictor, and evaluator. In this figure, the solid lines indicate
data flows, while the broken lines indicate control messages.
Image data collected by mobile devices need to be delivered to the server in real time to

extract input data for real-time prediction even when the transmission speed is low due to
bandwidth limitation, uplink traffic congestion, or poor signal quality. Therefore, under
such bandwidth limitations, only mobile devices with higher priority data are allowed to

Fig. 1 System for predicting spatial information in real time
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Fig. 2 Block diagram of proposed framework. Solid and broken lines indicate data flows and control
messages, respectively

transmit their image data. The controller prioritizes the sensor data in accordance with
the importance of each element of spatial information as determined by the evaluator.
The server receives the sensor data and converts them into a form that can be used by
the learner as input data for prediction. The predictor in the server predicts and produces
spatial information by using the featuremodel, which will be discussed later in Section 3.2.
In contrast, training data for prediction can be collected frommobile devices as a back-

ground process. That is, the way to forward them to the server is out of the scope of our
framework because they can be forwarded through mobile networks at off-peak traffic
time or a rich bandwidth provided by WiFi or millimeter-wave transmission. The learner
in the server produces a feature model by using the training data received through the
machine-learning training process discussed in Section 3.2.
Figure 3 illustrates the process flow of the proposed framework, which is split into the

rea time and background flows. In this figure, the solid lines indicate the main flow of
the process, while the broken lines indicate the information update. In the real-time flow,
first, sensor data are acquired at each mobile device. Then, the data are prioritized at
mobile devices on the basis of the importance given from the background flow. Data are
transmitted by mobile devices in accordance with the priority. Here, we can consider two
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Fig. 3 Process flow in proposed framework. Solid and broken lines indicate main process flow and
information update, respectively

cases: (1) communication capacity can be estimated and (2) communication capacity is
not given. In the former case, an existing method for capacity estimation in communi-
cation networks would be used. A simple and classical approach for this is measuring
roundtrip time, as suggested in prior works [18–20]. If communication capacity can
be successfully estimated in advance, transmitted data are limited before actually being
transmitted, so the total volume of the transmitted data does not exceed the communi-
cation capacity. In the latter (no given communication capacity) case, transmitted data
are dropped by the channel access control protocol, so the total volume of the transmit-
ted data does not exceed the communication capacity as actually occurs in real systems
such as wireless local area networks and cellular networks. In both cases, in our frame-
work, data with high importance are transmitted with high priority. At the server, data
are extracted and are used as input for prediction. In the background flow, sensor data for
training are acquired at each mobile device. As we mentioned above, the way to prioritize
and transmit data for training is out of the scope of this paper. Data used as input and out-
put for training are extracted at the server. TheMLmodel is updated using those data, and
the updated model is used for performing prediction in the real-time flow. The impor-
tance of data is also updated, and it is used when data are prioritized for transmission in
the real-time flow.
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3.2 Prediction and data assessment using machine learning

Figure 4 shows three example patterns of spatial information recorded on different days:
d1, d2, and d3. They show the values, which could indicate the volume of any spatial infor-
mation extracted from image sensor data like the volume of road traffic (the numbers of
vehicles or pedestrians), for five geographical sections (sections A to E) for each time slot
(1:01 to 1:05 pm). Each pattern consists of a set of input data and the expected result.
The learner accumulates the recorded patterns. The predictor predicts the future results,
which will be actually obtained at 1:00pm, from the currently obtained input data if it
finds the corresponding input data in the recorded patterns.
In the figure, the black elements are common to the three patterns, while white ele-

ments vary among the patterns. This means that the white elements are meaningful for
prediction. In other words, the white elements are more important for prediction than
the black ones.
However, there are two problems. The exact same input is rarely found in the recorded

patterns, so the prediction needs to be done using similar previously recorded inputs.
Elements in different records that are exactly the same are also rarely found, so the impor-
tance of elements needs to be evaluated over different records even though they are not
exactly the same. These two problems are overcome by machine learning of data features.
By using a sufficient number of recorded patterns as training data, supervised learning

using an NN or RF method produces generalized feature models that enable the system
to perform prediction from the immediately acquired input even if the exact same input
is not found in the recorded patterns. Moreover, machine learning enables the system to
evaluate which elements are important for prediction. As we explained in Section 2.2, this

Fig. 4 Example patterns of spatial information recorded on different days
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capability is called feature selection and enables us to obtain the importance score of each
data element.

3.3 Formulation of proposed framework

This section presents the key idea of our framework. The objective function and traffic-
volume constraint of our framework can be formulated as

max
X(t)

A(X(t)), (1)
∑

x∈X(t)
dx ≤ C(t), (2)

where X(t) and A(X(t)) mean the set of input data received from mobile devices for
prediction at time t and the accuracy of the prediction at time t achieved using X(t),
respectively. In Eq. (2), dx and C(t) mean the data volume of an input data element x and
the capacity of the network at time t, respectively. Equation (2) is the constraint meaning
that the total volume of data transmitted by mobile devices must be smaller than or equal
to the capacity of the network. However, since the prediction system is operated on a real-
time basis, it is impossible to search for and find the optimal X(t) among all possible sets
of X(t). Therefore, in our framework, we convert Eq. (1) into

max
X(t)

∑

x∈X(t)
sx, (3)

where sx means the importance score of input data element x obtained by using a feature
selection method. The constraint in Eq. (2) still works for Eq. (3). Equation (3) means
that we need to maximize the total score of input data for prediction. Converting Eq. (1)
into Eq. (3) is reasonable because, as we mentioned above, feature selection methods give
higher scores to input data that make larger contributions to prediction accuracy.
Finally, we mention how to solve Eq. (3). This problem is considered as a classical 0-1

Knapsack problem [21]. A simple approach for this is just to sort x in the ascending order
of sx, and then “greedily” pick as many x as possible from the top under the constraint
of (2).

4 Numerical evaluation
4.1 Settings

We numerically evaluated the validity of our framework. We considered prediction of car
traffic volume in a specific geographical area as our evaluation scenario.
The same as Wang et al. [5], we used actual data from the CRAWDAD dataset. We

used the global positioning system (GPS) coordinates collected from 536 taxi cabs in San
Francisco over 25 days. The unit time of the dataset was 1 min. The dataset was split
into 20 days (28,800 min) and 5 days (7200 min) for training and testing, respectively.
Twenty percent of the training dataset (5769 min) was used for validation. We defined
144 geographical sections, each 1 km by 1 km, in the San Francisco area. We assumed
the presence in each geographical section of at least one device that aggregates raw image
sensor data acquired within the geographical section. Therefore, 144 aggregated images
were collected over the whole geographical area. The capacity of the uplink transmission
was given by the number of aggregated images the server can receive normalized by 144.
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We assumed that the number of taxies in each section corresponds to the car traffic
volume there and was ideally extracted from the image uploaded from the section. The
number of taxies in each section in a sequence of timeslots t−W , t−W +1, . . ., t−1 was
used to predict the number of taxies in each section at a time t + T . Specifically, results
are shown for the case W = 10 and T = 10. We assumed that training had been done
using all data for that in advance before real-time prediction. On the other hand, real-
time prediction was performed using available data limited by the capacity of the uplink
transmission. When the input data for a section is missing, 0 was used instead for that
section.
For machine learning methods for prediction, we used three NN-based methods: MLP,

3D-convolutional NN (3D-CNN) [22], and LSTM from the Keras with Tensorflow. 3D-
CNN is an extension of a CNN and well suited for predicting spatiotemporal information.
LSTM is a recurrent NN (RNN) algorithm that is well suited for prediction from time
series data. The objective of LSTM networks is to model long-term dependencies and
determine the optimal time lags for time series problems [23]. These characteristics are
especially desirable for short-term prediction due to the lack of prior knowledge of the
relationship between prediction results and the length of input historical data. A typical
LSTM network has one input layer, and one recurrent hidden layer for which the basic
unit is a memory block instead of a traditional neuron node, and one output layer. The
memory blocks are a set of recurrently connected subnets. Each block contains one or
more self-connected memory cells and multiplicative units: the input, output, and for-
get gates, which provide continuous analogs of write, read, and reset operations on the
cells. We also used RF from the Scikit-learn. Keras and Scikit-learn are a framework and
a toolset for machine learning, respectively. Both are well known and widely used. The
parameter settings for the three NN-based methods are listed in Table 1. On the other
hand, for RF, the number of estimators and the maximum depth were 20 and 20. TheMSE
was used as the criterion. The other parameters were set in accordance with the default
settings of Scikit-learn. For feature selection methods, we used the perturb method for
all four machine learning methods. The weights and impurity methods are used only for
LSTM and RF, respectively. Data importance obtained by using these feature selection
methods was used for data prioritization; for instance, when the capacity of the uplink
transmission is 0.5, only the most important 72 images out of 144 can be received by the
server.
The NN-based methods and RF are suitable because, in the system model explained in

Section 3.1, prediction is performed at the server. If we consider another systemmodel in
which prediction is performed at mobile devices, these methods might be too computa-
tionally heavy to be deployed because mobile devices are resource-limited. To bridge this
gap, lightweight machine learning tailored for edge devices or edge artificial-intelligence
methods should be considered for such a system model [25].

4.2 Results

Figures 5 and 6 show the prediction errors as a function of the uplink capacity. The root
mean squared logarithmic error (RMSLE) was used as the metric for prediction accuracy
[26]. The uplink capacity (shown on the horizontal axes) was defined as the ratio of the
number of images received by the server through the uplink to the total number of images
generated by the image sensors. Basically, as the uplink capacity decreases, the RMSLE
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Table 1 Parameter settings for neural-network-based methods

Batch size 50

Epochs 30

Optimizer Adam [24]

Learning rate 0.001 [24]

Loss function Mean absolute error

MLP Input (no. of units=1440)

Batch normalization

Dense (no. of units=512)

Batch normalization

Activation (ReLU)

Dense (no. of units=256)

Batch normalization

Activation (ReLU)

Dense (no. of units=144)

3D-CNN Input (shape=(10,12,12))

Conv3D (filters=32, kernel_size=(3,3,3),

padding=‘same’)

Batch normalization

Activation (ReLU)

AveragePooling3D (pool_size=(2,2,2),

padding=‘same’)

Conv3D (filters=32, kernel_size=(3,3,3),

padding=‘same’)

Batch normalization

Activation (ReLU)

Dense (144)

LSTM Input (shape=(10,144))

LSTM (no. of units=128)

LSTM (no. of units=64)

Dense (no. of units=144)

Other parameters Keras default settings

increases. The results for the NN-basedmethods (MLP, 3D-CNN, LSTMwith the perturb
method, and LSTM with the weights method) are plotted in Fig. 4, while the results for
RF with the perturb method and the impurity method are plotted in Fig. 5. Also plotted
are the results for each prediction method with random dropping, which is reasonable as
a benchmark because, in data transmission systems without any prioritization, data are
randomly dropped when the data rate exceeds the capacity.
As shown in Fig. 5, for MLP, 3D-CNN, and LSTM, data prioritization using the per-

turb method reduced the uplink capacity to approximately 0.3 while ensuring the best
prediction accuracy in the random case. The random case achieved the best prediction
accuracy only when all the data were available (uplink capacity = 1.0). LSTM with the
weights method also worked well, as did the perturb method. As shown in Fig. 6, for RF,
the perturb and impurity methods similarly worked well; both reduced the uplink capac-
ity from approximately 0.1 while ensuring the best prediction accuracy in the random
case. These results demonstrate the validity of our framework: data prioritization using
feature selection can reduce traffic volume in the uplink while maintaining the quality of
spatial information (prediction accuracy in our numerical evaluation).
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Fig. 5 Prediction accuracy (RMSLE) vs. uplink capacity obtained using neural network-based methods (MLP,
3D-CNN, and LSTM) for prediction. “Perturb” or “weights” method was used for feature selection

5 Extension scheme 1: importance score ensemble
We have validated that data prioritization using feature selection can reduce traffic vol-
ume while maintaining the prediction accuracy of spatial information. However, the
importance score of data was not robust against various machine learning and feature
selection methods: different feature selection methods produced different importance

Fig. 6 Prediction accuracy (RMSLE) vs. uplink capacity obtained using RF machine learning method for
prediction. Perturb or impurity method was used for feature selection
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scores for the same data element. To solve this problem, Sections 5 and 6 present two
extension schemes in the proposed framework, which use the ensemble of importance
scores obtained from multiple feature selection methods.

5.1 Scheme

As we presented in Eq. (3), sx represents the importance score of input data element x
obtained using a feature selection method in Section 3. Here, by introducing the idea of
the feature selection ensemble, which was mentioned in Section 2, we extend sx as below:

sx =
∑

f∈F
gf

(
s fx

)
, (4)

where f and F mean a feature selection method and a set of feature selection methods
used in the proposed framework, respectively.
sfx means the importance score of input data element x obtained using feature selection

method f.
gf () is a function that adjusts the scale of importance scores obtained by feature selec-

tion method f so that importance scores obtained by different feature selection methods
become comparable. This paper considers two options for gf (): ranking and quantizing.
The former sorts the importance scores obtained using a feature selection method in
ascending order and converts the rank of each importance score into the score. This is
inspired by themethods developed byOlsson et al. andWang et al. [27, 28]. The latter first
picks the maximum and minimum of importance scores and assigns them to the top and
bottom steps. It then allocates the other scores to the corresponding step between the top
and bottom on the basis of the predetermined step size of quantization. This approach
is essentially equivalent to the min-max normalization, but the scores are quantized to
integers. Note that in ranking, when two importance scores are identical or very simi-
lar, they are converted into different ranks, while in quantizing, they are allocated to the
same step.

5.2 Numerical evaluation

This section presents the numerical evaluation of extension scheme 1. The setup of the
numerical evaluation is basically the same as in Section 4. Figures 7, 8, and 9 plot the
results obtained using LSTM, MLP, and RF, respectively. As feature selection methods,
the perturb and weights methods were used for LSTM and MLP, while the perturb and
impurity methods were used for RF. In the figures, Ext. 1 (rank) and (quant) mean exten-
sion scheme 1 with ranking and quantizing, respectively. The number of steps in the
quantization was set to 30.
First, Fig. 7 suggests that there were only trivial differences among the methods

when we used LSTM. However, in Fig. 8, the perturb method has the best predic-
tion accuracy, while the weights method has the worst. In Fig. 7, the perturb method
has the best prediction accuracy again, while the impurity method has the worst. In
both figures, extension scheme 1 with ranking and quantizing followed the perturb
method and performed much better than the worst methods. This suggests that exten-
sion scheme 1, which uses the ensemble of importance scores obtained from multiple
feature selection methods, does not always perform best but works robustly as we
expected.
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Fig. 7 Prediction accuracy (RMSLE) vs. uplink capacity obtained using LSTM for prediction. Perturb, weights,
or extension scheme 1 with ranking and quantizing was used for feature selection

Fig. 8 Prediction accuracy (RMSLE) vs. uplink capacity obtained using MLP for prediction. Perturb, weights, or
extension scheme 1 with ranking and quantizing was used for feature selection
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Fig. 9 Prediction accuracy (RMSLE) vs. uplink capacity obtained using RF for prediction. Perturb, impurity, or
extension scheme 1 with ranking and quantizing was used for feature selection

6 Extension scheme 2: weighted importance score ensemble
6.1 Scheme

As presented in Section 5, extension scheme 1 sums up importance scores obtained
by multiple feature selection methods equally as defined in Eq. (4). Different from this
scheme, extension scheme 2 considers the effect of the importance scores obtained by
multiple feature selection methods, which is defined as:

sx =
∑

f∈F
wf gf (sfx), (5)

where wf is the weight for the importance score obtained by feature selection method
f. This paper considers the prediction accuracy using each feature selection as wf . More
concretely, we measure root mean squared error (RMSE) of prediction for each feature
selection method for possible uplink capacities by using the training dataset obtained
beforehand and use the inverse of RMSE as the weights in Eq. (5).

6.2 Numerical evaluation

This section demonstrates the numerical evaluation of extension scheme 2. The setup of
the numerical evaluationwas the same as in Section 4.We particularly want to observe the
improvement by extension scheme 2 against extension scheme 1. Note we used ranking
for extension scheme 1.
Figures 10, 11, and 12 show the results where LSTM, MLP, and RF were used, respec-

tively. Ext. 1 and Ext. 2 mean extension schemes 1 and 2, respectively. In Fig. 10, we see the
same observation as in Fig. 7; the methods differ only slightly. In Figs. 11 and 12, exten-
sion scheme 2 outperforms extension scheme 1, which performs similarly to the perturb
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Fig. 10 Prediction accuracy (RMSLE) vs. uplink capacity obtained using LSTM for prediction. Perturb, weights,
extension scheme 1 with ranking, or extension scheme 2 were used for feature selection. Ratio of wf for
perturb to other in extension scheme 2 is also plotted

Fig. 11 Prediction accuracy (RMSLE) vs. uplink capacity obtained using MLP for prediction. Perturb, weights,
extension scheme 1 with ranking, or extension scheme 2 were used for feature selection. Ratio of wf for
perturb to other in extension scheme 2 is also plotted
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Fig. 12 Prediction accuracy (RMSLE) vs. uplink capacity obtained using RF for prediction. Perturb, impurity,
extension scheme 1 with ranking, or extension scheme 2 were used for feature selection. Ratio of wf for
perturb to other in extension scheme 2 is also plotted

method. This result proves that introducing the weight as defined in Eq. (5) effectively
improves the prediction accuracy against extension scheme 1.
We also plotted the ratio of wf in Eq. (5) for the perturb method to the one for the other

method in Figs. 10 to 12. In Fig. 10, the ratio of wf for the perturb method is around 0.5
because the perturb method and the other method (weights) performed similarly. How-
ever, in Figs. 11 and 12, the ratio of wf for the perturb method changes in accordance with
how much the perturb method contributed to the improvement of prediction accuracy
compared with the other method (weights or impurity). Through the above observation,
we have confirmed that extension scheme 2 works as we expected.

7 Conclusion
This paper addressed the problem of reducing the uplink traffic volume in mobile net-
works while maintaining the accuracy of the spatial information prediction under the
limitation of available data. Our machine-learning-based approach is based on evaluating
the importance of each input data element for predicting spatial information. A numer-
ical evaluation using actual vehicle mobility data demonstrated that a method based on
our framework can reduce the uplink traffic volume while achieving the same level of
prediction accuracy as the benchmark method.
Furthermore, since different feature selection methods may produce different impor-

tance scores for the same data element, we presented two extension schemes that solve
that problem in the proposed framework by using the ensemble of importance scores
obtained by multiple feature selection methods. These two extension schemes were
validated through numerical evaluation.
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Prioritization based on data importance can be performed by using a wide variety of
means including wireless network selection, base station (access point) selection, channel
selection, bandwidth assignment, transmission power control, and media access control.
Future work includes to design and evaluate these various means in detail. The issue of
privacy risk in mobile crowdsensing (MSC) will also need to be considered. Since MSC
relies on data provided by the general public, the privacy issue has been well discussed as
detailed by Christin [29]. It is expected that by limiting collected data to only important
data for prediction, the proposed framework can easily reduce privacy risk compared with
the case where all data are collected.
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