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Abstract

With the benefit of partially or entirely offloading computations to a nearby server, mobile edge computing gives
user equipment (UE) more powerful capability to run computationally intensive applications. However, a critical
challenge emerged: how to select the optimal set of components to offload considering the UE performance as well
as its battery usage constraints. In this paper, we propose a novel energy and performance efficient deep learning
based offloading algorithm. The optimal offloading schemes of components based on remaining energy and its
performance can be determined by our proposed algorithm. All of these considerations are modeled as a cost
function; then, a deep learning network is trained to compute the solution by which the optimal offloading scheme
can be determined. Experimental results show that the proposed method is superior to existing methods in terms of
energy and performance constraints.
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1 Introduction
With the development and popularity of smart terminals
referred to as user equipment (UE), various network ser-
vices and applications continue to emerge. Although UEs
have experienced a tremendous increase in computational
power over the years, it still cannot process intensive com-
putation and huge data in a short time [1–3], for which
cloud computing used to be a solution. However, the delay
caused by the communication between the UE and the
cloud server poses a severe challenge to the feasibility
of this typical solution [4]. The European Telecommuni-
cations Standards Institute proposed placing small edge
servers near end users to reduce network latency, and
studied them as mobile edge computing (MEC) [5–7].
MEC refers to deploying computing and storage

resources at the edge of mobile networks to provide
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IT service environments and cloud computing capabil-
ities for mobile networks, thereby providing users with
ultra-low latency and high-bandwidth network service
solutions. As one of the key technologies, computation
offloading [8, 9] refers to the technology in which UEs
hand over part or all of their computing tasks to the cloud
computing environment to address the shortcomings of
mobile devices in terms of resource storage, computation
performance, and energy efficiency.
Affected by the way of thinking in cloud computing,

the existing offloading solutions generally have the follow-
ing problems: (1) assuming that the server has unlimited
computing power, (2) assuming that users have constant
uplink and downlink network conditions, and (3) ignor-
ing different user priorities caused by different energy and
network conditions [10–12].
In this paper, we propose a novel energy and perfor-

mance efficient deep learning based offloading algorithm
(EPED), which partially offload computations from UE to
MEC under a comprehensive optimization of UE’s energy
consumption and performance. Based on the concept of
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component which refers to each computation step and
related data, in this paper, performance is measured by
component execution time and energy consumption is
also accurately measured by component workload. For
each component, there are two choices to deploy it, i.e.,
either deploy it locally or remotely. We design a cost func-
tion for each deployment method, comprehensively con-
sidering the performance and energy consumption [13].
Then, the overall cost of computation offloading can be
measured by all components, and finally, the best offload-
ing scheme is determined by a deep learning method
under the constraint of the smallest overall cost.
The proposed method can adaptively select the optimal

combinations of application components to offload, with
the smallest cost of execution time and energy consump-
tion. The following summarized our contributions:

1. We split an application into multiple components
and designed a mathematical model of cost function
for each component, considering energy
consumption, execution time, and server-side
resource consumption.

2. Based on the cost function of each component, we
proposed a mathematical model of the cost function
of final offloading scheme, comprehensively
evaluating the overall cost of all components. The
cost function of final offloading scheme is not
designed as the simple linear addition of all
components but the interactions and connections
between adjacent components, by which, the cost of
offloading scheme can be accurately evaluated.

3. Based on the cost function of final offloading scheme,
we designed a mathematical model of parameter
constraint which can bring the smallest cost.

4. We proposed a supervised deep neural network
(DNN) to calculate the parameters of the cost
function of final offloading scheme. To train this
DNN, the most important problem is how to design
an appropriate training dataset, and hence, we also
proposed a method of getting the training dataset in
our experiments.

The rest of this paper is organized as follows. Section 2
presents our energy and performance efficient deep learn-
ing based offloading algorithm. Section 3 describes our
experiments, comparison with other methods, and how
to prepare the training dataset. Section 4 discusses some
related work, and Section 5 concludes the paper.

2 Proposed EPED
The execution process of an application can be divided
into several steps. Each of these steps as well as the
related data is called a component of the application exe-
cution. The component can be either deployed on the
local side (UE) or mobile edge server side (MES). An

efficient offloading approach should select an optimal part
of components to offload to MES but not the whole, aim-
ing to which, EPED is proposed as the following 5 key
steps: (1) determines the costs of deploying a compo-
nent on local side and MES side respectively; (2) designs
the cost function formula of offloading scheme, wherein
the cost is the dependent variable of offloading decision;
(3) searches the best offloading schemes for some spe-
cific component states with exhaustive method and (4) the
best offloading schemes as well as their component states
respectively, and these two parts are then designed as the
outputs and inputs of our training dataset; (5) and finally,
using a deep neural network, we can get the best offload
scheme of any component states from the training dataset.

2.1 Local side execution cost
The local side execution cost consists of energy consump-
tion and execution time. Orsini et al. [14] proposed that
the execution time can be evaluated by the input data
amount needed for a component. But this method ignored
that the input data and the processed data were not equal
in amount. If we assume that the output of a component
is the input of the next component, then we use dn−1,n to
denote the input data amount of component cn as well as
the output data amount of component cn−1 . Then, the
workload of component c is denoted as :

Wc = V · On · dc−1,c (1)

whereWc is measured in CPU clock cycles and V denotes
the number of clock cycles a processor will perform per
byte and is measured in cycles per byte. Yang et al. [15]
presented the study of this value. On is the computational
complexity of cn and represents the data amplification fac-
tor of cn. It is obvious that the input data and the processed
data were not equal in amount since the input data may
be processed several times by a component; this is why we
introduce the denotation of On.
Now, if the component c is deployed and run on the local

UE side, its execution time is equal to the time to complete
the workloadWc, which is given by :

Tl(c) = Wc
fl

(2)

where fl is the CPU rate of UE, which is measured in
million instructions per second (MIPS).
Let the energy consumption due to this workload be Ec

and is given by:

Ec = U · Wc (3)

where U is the unit power consumption of UE and is
measured in MAH per CPU cycle.
If the total energy of the UE is Et , then the remaining

energy for the next component c + 1 is given by:

Er = Et − U · Wc (4)
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After the execution time and energy consumption were
determined by formula (2) and (4) respectively, the local
side execution cost of component c can be evaluated by:

Fl(c) = γ1Tl(c) + γ2Ec (5)

where γ1 and γ2 are weighting coefficients which can
balance the contribution of time delay and energy con-
sumption in the local cost function respectively.

2.2 MES side execution cost
Except local side execution, UE can also offload a com-
ponent to remote side, i.e., MES to execute. Like the local
side, the execution cost of the MES side also includes the
execution time while this time is much shorter than the
local side. We can represent this time similarly as (2) by:

Tr(c) = Wc
fr

(6)

where fr is the CPU rate of MES.
The time spent on transfer data from UE to MES should

also be considered. This time depends on themobile inter-
net environment of UE, and this paper only considers the
most commonly used 4G environment. 4G communica-
tion is implemented by the orthogonal frequency division
multiple access (OFDMA) technology. With such tech-
nology, the upload and download speed depends on the
bandwidth B and the transmission subcarrier number N.
Assuming the same additive white Gaussian noise

(AWGN) channel in transmission for uplink and down-
link, the maximum achievable uplink and downlink data
rate can be easily derived as [16]:

ru = n
B
N
log2(1 + pu|hul|2

�(gul)dβNo
) (7)

rd = n
B
N
log2(1 + ps|hdl|2

�(gdl)dβNo
) (8)

where B is the bandwidth, β is the path loss exponent,
d is the distance between UE and MES, n is the number
of subcarriers that will be allocated for transmission from
UE to MES, No is the noise power, pu and ps refer to the
transmit power of UE and MES respectively, hul and hdl
are the channel fading coefficient for uplink and downlink
respectively, and gul and gdl are the required bit error rate
for uplink and downlink respectively. �(gul) = −2log5gul

3 is
the SNR margin to satisfy the required bit error rate with
quadrature amplitude modulation constellation.
Using (7) and (8), the time spent for UE to send the input

data of component c to MES can be derived as:

Ts(c) = (1 − pc−1)
dc−1,c
ru

(9)

where pc−1 is the offloading decision of the previous com-
ponent c − 1. pc−1 = 0 if component c − 1 was executed
locally and pc−1 = 1 if component c − 1 was executed on

MES. If the previous component c − 1 was executed on
MES, then its output, i.e., the input of component c need
not be transmitted between UE and MES, and hence, the
time spent is zero, while the previous component c − 1
was executed locally, then the data transmission will be
actually needed.
Similarly, after the execution of component c, its output

should be sent back to UE if the next component c + 1
will be executed locally, while the transmission is unnec-
essary if component c + 1 will be executed on MES; the
time spent for UE to accept the output data of component
c from MES is derived as:

Ta(c) = (1 − pc+1)
dc,c+1
ru

(10)

Finally, the MES side execution cost is derived as:

Fr(c) = γ3Ts(c) + γ4Tr(c) + γ5Ta(c) (11)

where γ3, γ4, and γ5 are weighting coefficients which
can balance the contribution of these three types of time
respectively.

2.3 Cost function
We have discussed that a component can be either exe-
cuted locally or remotely, for which the cost function is
shown as (5) and (11) respectively. To derive the cost func-
tion of offloading scheme conveniently, we represent the
cost of a single component c as:

Fc =
{
Fl(c), pc = 1
Fr(c), pc = 0 (12)

The cost function of offloading scheme is the sum eval-
uation of all components and hence can be represented as:

F =
∑

F(c) (13)

Let the offloading decisions of all components compose
the decision space P = p1, p2, · · ·, pM , where M is the
number of the components. Then, the goal of EPED is to
find a special decision space P∗ to minimize (13), which
can be represented as:

P∗ = argPmin
∑

F(c) (14)

2.4 Algorithm implementation
To determine the optimal offloading scheme shown as
(14), a DNN structure is employed in this paper. For
training this DNN, the most important thing is preparing
the training dataset. Our training dataset was got by the
following steps:

1. A component has a state (c, v, b, d) representing the
mobile environment of this component, wherein c is
the component number, v is the input data amount,
b is the bandwidth, and d is the distance between UE
and MES.
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2. The offloading decision of a component depends on
its state; therefore, the states of components and the
corresponding offloading decisions should be the
inputs and outputs of the DNN, respectively.

3. Supposing there are M components in total, and we
randomly generate a state for each component,
hence, we finally get M different states. Since each
component has two offloading choices, there are 2M
different offloading schemes. Using the exhaustive
method, we calculated the cost of each scheme and
selected the best which can minimize (13).

4. Then, if the DNN is trained well, if we input the above
M states, it should output a best offloading scheme.

5. By repeatedly doing step 3 for S times, we can get
different states and the corresponding best offloading
schemes, which compose S rows training data. The
i th row of the training data is denoted as:

samplei = {Ii,P∗
i } (15)

where Ii is the state of all M components. Therefore, Ii
consists of 4M data items since each state has 4 state
items. The neuron number of the input layer is also 4M
to accept Ii accurately. P∗

i is the desired optimal offloading
scheme ofM components.

Ii={(ci,1, vi,1, bi,1, di,1), · · ·, (ci,M, vi,M, bi,M, di,M)} (16)

P∗
i = (p∗

i,1, p∗
i,2, · · ·, p∗

i,M) (17)

For example, (ci,1, vi,1, bi,1, di,1) is the state of component 1
which is randomly generated in the ith pass in step 5, and
(pi,1, pi,2, · · ·, pi,m) is the offloading scheme corresponding
this pass.
The DNN is designed as Fig. 1, which is a fully

connected neural network, but we did not show the real

connections between different layers since there are too
many neurons. When we input a training record into
DNN, a state of a component will be accepted by 4 adja-
cent neurons. Since there areM components, the number
of input nodes is 4M, and the output layer has M nodes
each represents the offloading decision of the correspond-
ing components.
The training dataset is prepared from a limited num-

ber of states, but the well-trained DNN can predict the
optimal offloading scheme of any combination of states.
Although the proposed DNN is designed for fixed num-
ber of components, we can introduce a large M to satisfy
different scenarios; then, the DNN is competent for any
scenarios less than M s. For example, if M = 10 and the
actual component number is 8, we can just let the input
and output of samplei = 0 if i > 8.
The EPED algorithm is summarized as follows:

3 Experiments
3.1 Experiment setup
We implemented the experiments on a workstation with
a 32-core CPU and 1 TB RAM. We set M = 100 and ran-
domly generated 10,000 states for each component; then,
we get a dataset {samplei = {Ii,P∗

i }|i = 1, 2, . . . , 10, 000}.
We employed different sparsity of this dataset as our train-
ing data, i.e., 10, 20, 50, 100, 200, 500, 1000, and 2000
respectively; samples were selected to train the DNN.
We first verified the accuracy of EPED under different

sparsity and then compared the predictive performance of
our EPED with other 2 types of representative methods.
The 2 compared types of methods are:

1. Total offloading scheme (TOS) [16]: TOS is a coarse
grained approach. It makes no decision but selects all
the components to offload from UE to MES. No

Fig. 1 Proposed deep neural network
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Algorithm 1 component matrices computing
Input: training dataset{samplei = {Ii,P∗

i }|i = 1, 2, . . . , S}
Output: the optimal offloading scheme for any states

combination
Initialize the DNN with random weights
repeat

for each samplei(1 ≤ i ≤ S) do
Input Ii and get the corresponding output Pi
Calculate the sum of squared error between Pi

and P∗
i
Using back propagation adjust all the weights of

the DNN.
end for

until convergence
Input any required states for optimal offloading scheme
satisfied:

P∗ = argPmin
∑

F(c)

components will be executed on UE via this method;
therefore, TOS seems to be able to save energy of
UEs. However, this method needs a lot of data
transmission, which also requires energy
consumption. Therefore, we select this method to
make a comparison.

2. Random offloading scheme (ROS) [16]: ROS
performs offloading by a simple strategy, just
randomly select some components to offload.

For the convenience of comparison, we proposed the
predictive accuracy as follows:

MAE =
∑ |pi,m − p∗

i,m|
N

(18)

RMSE =
√∑

(pi,m − p∗
i,m)2

N
(19)

where p∗
i,m is the prediction of offloading scheme of a com-

ponent, pi,m is its real best offloading scheme, and N is
the number of all components. Step 3 of Section 2.4 has
shown how to get the real best offloading scheme.

3.2 Experiment implementation
Figure 2 shows the prediction accuracies of EPED under
different number is S. Figure 2 indicates that the predic-
tion accuracy of EPDE improves with the increment of
the sample number. When the sample number is ≥ 50,
the MAE and RMSE are all less than 0.5, which indi-
cates that EPED can make an accurate prediction, since
0 ≤ pi,m ≤ 1. However, when the sample number exceeds
1000, the prediction accuracy declines quickly. It means
that the performance of EPED is not linear to the sparsity.

We compared EPED between TOS and ROS for accu-
racy rate and cost consumption. The accuracy rate is
defined as:

R = Np
M

(20)

where Np is the number of accurately offloaded compo-
nents.
Figure 3 compared EPED between TOS and ROS for

accuracy rate. The accuracy rate is obtained from training
dataset of sample number = 100, sample number = 500,
and sample number = 1000 respectively. We have verified
that the prediction accuracy of EPDE improves with the
increment of the sample number. Therefore, the DNN can
make more accurate offloading scheme with a large sam-
ple number. Figure 3 also indicates that the performance
of our proposed EPED is competent for most scenarios,
while the other twomethods are hard to improve. It is easy
to understand, the other two methods select total or ran-
dom offloading, the more sample number, the more errors
they will make.
Figure 4 compared EPED between TOS and ROS for

accuracy cost consumption under different sample num-
bers. If compared to other methods, EPED will run the
application with the smallest cost. Another important
thing is that EPED has the minimum slope of the curve,
which indicates that when the prediction scene becomes
complex, EPED can have a relatively small decrease of
offloading performance.

4 Related work
To improve the performance of mobile device offloading
to utilize the benefits of Clouds, many attempts have been
made by researchers. Some studies have focused onmeth-
ods on how to effectively offload tasks to MES with the
minimal energy and time cost. This section introduces
several representative works.
To maximize the potential of energy savings, MAUI [17]

minimizes the burden on programmers by combining the
reflection of programming, portability of code, network
costs, serialization, and type safety. In MAUI, applica-
tions are prebuilt and executed on HTC smartphones, and
the MAUI server uses a dual core desktop running Win-
dows 7 with the v3.5 .NET Framework. Using MAUI, the
mobile game components can be offloaded to a remote
cloud server and save energy for two types of games. If
running computer games, 27% of the energy consump-
tion can be saved, and 45% of the energy consumption can
be saved if running chess games. CloneCloud [18] offload
the calculation task of the resource-intensive components
of a mobile application to a more powerful clone which
is created on a cloud. It periodically or on-demand syn-
chronizes all tasks of mobile devices to adjust the current
offloading scheme. The advancement of CloneCloud is
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Fig. 2 Different prediction accuracy of EPED under different training dataset sparsity

that an offloaded task can be even partitioned into pieces
and select some pieces to run locally while another part
of pieces runs on the server side. A related weakness of
CloneCloud is that if native resources are not virtualized
or are inaccessible for clone, then CloneCloud cannot vir-
tualize such type of resources. It can co-work with thread-
granularity migration to improve performance. The differ-
ence between MAUI and CloneCloud is that the former
only can save energy consumption of mobile applications
through automatically offloading, while CloneCloud can
minimize either execution time or energy consumption
of applications by adaptively determining computation-
intensive components. In mobile network, offloading
demands usually encountered the inaccessible cloud com-
puting resources, which may bring failure to offloading
scheme. COSMOS [19] aims to solve this problem by the
risk-based offloading idea. COSMOS canmake risk-based

offloading strategies to decrease the uncertainties caused
by variable network environments. COSMOS offloads
task from local to server with the attempt of little energy
consumption and the rental fees of cloud resources.
A big trouble of the mobile network environment

offloading is the high WAN latency caused by an unsta-
ble network environment or a long distance between
user equipment and servers. Cloudlets [20] puts forward
a clever idea to find the cloud resources close to the
users. The distance between user equipment and such
cloud resources is only one router hop. The infrastruc-
ture of cloudlets is decentralized and widely dispersed.
The infrastructure of cloudlets is self-managing and low
energy consumption. In a word, the cloudlet is a pre-
defined cloud in consisting of several static stations
and is generally established in public domains. However,
cloudlets cannot guarantee the availability for a nearby

Fig. 3 Comparison of offloading accuracy rates of TOS, ROS, and EPED
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Fig. 4 Comparison of overall cost of TOS, ROS, and EPED

mobile device. Habak et al. [21] considers how to orga-
nize a group of colocated devices to provide a cloud
service as edge servers. The proposed architecture of fem-
tocloud provides a dynamic, self-configuringmobile cloud
which can serve a cluster of mobile devices. The system of
femtocloud mainly contains two parts: one is a highly sta-
ble and well-configured controller and the other is many
mobile and unpredictable devices, i.e., a compute clus-
ter to perform the computation. Spontaneous proximity
cloud (SPC) [22] lets a set of neighboring mobile devices
work in a collaborative way and decreases the high latency
between the user equipment and the cloud server by the
data sharing between different users.

5 Conclusion
This paper proposed a new method EPED that can adap-
tively select the optimal combinations of components to
offload, with the smallest cost of execution time and
energy consumption. EPED splits an application into mul-
tiple components and designs a mathematical model of
the cost function for each component, considering energy
consumption, execution time, and server-side resource
consumption. Based on the cost function of each compo-
nent, we proposed a mathematical model of cost function
of final offloading scheme, comprehensively evaluating
the overall cost of all components. The cost function of
final offloading scheme is not designed as the simple lin-
ear addition of all components but the interactions and
connections between adjacent components, by which the
cost of offloading scheme can be accurately evaluated.
Based on the cost function of final offloading scheme,
we designed a mathematical model of parameter con-
straint which can bring the smallest cost. We proposed a
supervised deep neural network (DNN) to calculate the
parameters of the cost function of final offloading scheme.
We also proposed a method of getting a training dataset
in our experiments.
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