
Fang et al. EURASIP Journal on Wireless Communications and Networking
 (2020) 2020:65
https://doi.org/10.1186/s13638-020-01675-8
RESEARCH Open Access
Local differential privacy for human-

centered computing

Xianjin Fang, Qingkui Zeng and Gaoming Yang*
Abstract

Human-centered computing in cloud, edge, and fog is one of the most concerning issues. Edge and fog nodes generate
huge amounts of data continuously, and the analysis of these data provides valuable information. But they also increase
privacy risks. The personal sensitive data may be disclosed by untrusted third-party service providers, and the current
solutions to privacy protection are inefficient, costly. It is difficult to obtain available statistics. To solve these problems, we
propose a local differential privacy sensitive data collection protocol in human-centered computing. Firstly, to maintain high
data utility, the selection of the optimal number of hash functions and the mapping length is based on the size of the
collected data. Secondly, we hash the sensitive data, add the appropriate Laplace noise to the client side, and send the
reports to the server side. Thirdly, we construct the count sketch matrix to obtain privacy statistics on the server side. Finally,
the utility of the proposed protocol is verified by synthetic datasets and a real dataset. The experimental results demonstrate
that the protocol can achieve a balance between data utility and privacy protection.

Keywords: Human-centered computing, Local differential privacy, Laplace noise, Count sketch
1 Introduction
With the development of Internet of Things, technology
[1], edge and fog nodes [2], mobile phones, smart cars,
wearable devices, and sensor networks have increasingly
become the sources of big data [3]. Human-centered com-
puting in cloud [4], edge, and fog has become necessary
tasks for enterprises and governments [5]. On the one
hand, big data collection and analysis can be used to train
machine learning models and to understand user group
characteristics to improve user experienc e[6]; on the
other hand, deriving sensitive data, such as user prefer-
ences, lifestyle habits, and location information [7], can re-
sult in privacy leaks. Researchers have conducted many
studies on how to prevent the disclosure of personal sensi-
tive information [8] and have proposed many privacy pro-
tocols [9].
Differential privacy (DP) [10] is a widely studied

privacy-preserving model; it requires that the addition or
deletion of any one record does not affect the query
© The Author(s). 2020 Open Access This article
which permits use, sharing, adaptation, distribu
appropriate credit to the original author(s) and
changes were made. The images or other third
licence, unless indicated otherwise in a credit l
licence and your intended use is not permitted
permission directly from the copyright holder.

* Correspondence: gmyang@aust.edu.cn
School of Computer Science and Engineering, Anhui University of Science
and Technology, Huainan 232001, China
results. The traditional differential privacy model is de-
ployed on the central server, and data collected from dif-
ferent sources are transformed into aggregate response
queries for privacy protection, i.e., the central server pub-
lishes query information that satisfies differential privacy.
Therefore, differential privacy is widely applied in all as-
pects of big data collection. For example, the US Census
Bureau uses differential privacy for demographics [11].
However, in the data collection phase, there is little

oversight over third-party service providers; conse-
quently, privacy leaks frequently occur, which happen on
Facebook [12] and Snapchat [13]. Such frequent privacy
disclosures have attracted the public’s attention, but in
practice, it is very difficult to find a trusted third-party
aggregator. This difficulty limits the application of trad-
itional differential privacy to a certain extent. Therefore,
it is necessary to consider how to ensure that private in-
formation is not disclosed when there is no trusted
third-party service provider.
As a result of extensive research on differential privacy,

local differential privacy (LDP) is based on traditional dif-
ferential privacy protection [14]. LDP can obtain valuable
information by aggregating clients’ perturbed reports
is licensed under a Creative Commons Attribution 4.0 International License,
tion and reproduction in any medium or format, as long as you give
the source, provide a link to the Creative Commons licence, and indicate if
party material in this article are included in the article's Creative Commons

ine to the material. If material is not included in the article's Creative Commons
by statutory regulation or exceeds the permitted use, you will need to obtain

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-020-01675-8&domain=pdf
http://orcid.org/0000-0002-7666-1038
http://creativecommons.org/licenses/by/4.0/
mailto:gmyang@aust.edu.cn

Fang et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:65 Page 2 of 12
without obtaining real released data information, and it
can prevent untrusted third parties from revealing privacy.
LDP can be applied to various data collection scenarios,
such as frequency estimation, heavy hitters identification,
and frequent itemset mining. Companies in different
fields, such as Google [15] and Apple [16], have used LDP
protocols to collect users’ default browser homepages and
search engine settings, which can identify harmful or mali-
cious hijacking user settings [17] and find the most fre-
quently used emojis or words.
However, the LDP model still has shortcomings with re-

spect to big data collection, such as low accuracy, high
space-time complexities, and statistical errors. Since dif-
ferent tasks require adopting different LDP protocols in
actual applications, to determining the appropriate param-
eters for each protocol is difficult, which undoubtedly
increases the cost of using LDP to protect sensitive data.
To solve these problems, we propose using the count
sketch [18] and Laplace mechanism [10] to reduce space-
time complexity and computational overhead and to ob-
tain high data utility under different distributions. The
main contributions of this paper are as follows:
(i) We design the LDP protocol to provide a control-

lable privacy guarantee level on the client side that does
not require trusted third-party servers;
(ii) The proposed protocol solves the problems of large

space-time overhead and low data utility and can be ap-
plied to different data distributions;
(iii) Experiments show that the proposed protocol can

provide available statistical information while protecting
user data privacy.
This paper is organized as follows. First, we describe

related works in Section 2 and the background know-
ledge for this paper in Section 3. Next, we introduce the
current protocols for big data collection in Section 4 and
propose our method in Section 6. Then, we evaluate our
method in Section 6 and analyze the results in Section 7.
At last, we make a summary of our work in Section 8.

2 Related works
Many scholars and enterprises have studied how to
apply LDP in cloud, edge, and fog scenarios and how
to improve the performance of LDP protocols. For
example, Erlingsson et al. [15] propose the RAPPOR
protocol, which uses a Bloom filter and random re-
sponse to implement an LDP frequency estimated in
the Chrome browser. In reference [16], Apple’s Differ-
ential Privacy team proposes using one-hot encoding
technology to encode sensitive data and deploy a
CMS algorithm for analyzing the most popular emojis
and media playback preferences in Safari. Fanti et al.
[19] propose the unknown-RAPPOR protocol to esti-
mate frequency without a data dictionary. Ding et al.
[20] propose an algorithm to solve the problem of
privacy disclosure when repeatedly collecting telem-
etry data and apply the algorithm to Microsoft-related
products. Wang et al. [14] propose the Harmony
protocol to achieve LDP protection. These authors
compute the numerical attributes means, and the
protocol is deployed in the Samsung’s system soft-
ware. Wang et al. [21] use the LDP protocol to an-
swer private multidimensional queries on Alibaba’s e-
commerce transaction records. LDP has been de-
ployed in the industry, and it has created practical
benefits.
One of LDP’s important applications is frequency

estimation. Wang et al. [22] propose an OLH algo-
rithm to obtain lower estimation error and to reduce
the communication overhead in a larger domain; the
algorithm can also be used in heavy hitters identifica-
tion. The Hadamard response [23] uses the Hadamard
transform instead of the hash function; this is because
the actual calculation of Hadamard entries is easier,
the server-side aggregates report faster. Joseph et al.
[24] propose a technique that repeatedly recomputes
a statistic with the error which leads to the decays of
errors; it happens when the statistic changes signifi-
cantly rather than the current value of the statistic is
recomputed. Wang et al [25] introduce a method that
adds postprocessing steps to frequency estimations to
make them consistent while achieving high accuracy
for a wide range of tasks. Most of the LDP protocols
for frequency estimation are implemented by random
responses, thereby resulting in low accuracy of the es-
timation results. Thus, the goal of this paper is to in-
vestigate the mechanisms that can achieve LDP with
high data utility.
Recent LDP studies have also focused on other applica-

tions [26, 27]. Bassily et al. [28] propose an S-HIST algo-
rithm for histogram release and utilize random projection
technology to further reduce the communication cost.
Wang et al. [22] propose identifying heavy hitters in data-
sets under LDP protection. Ren et al. [29] apply the LDP
model to solve the privacy problem in the case of collect-
ing high-dimensional crowdsourced data. Wang et al. [30]
propose privacy amplification by multiparty differential
privacy, which introduces an auxiliary server between the
client side and the server side. Ye et al .[31] propose
PrivKV, which can estimate the mean and frequency of
key-value data, and PrivKVM, which can improve estima-
tion accuracy through multiple iterations. Therefore,
many LDP protocols have been proposed to solve privacy
issues in cloud, edge, and fog computing scenarios.

3 Preliminary
3.1 Differential privacy
Differential privacy requires that any tuple in the dataset
be under a limited impact. For example, for two datasets

Fang et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:65 Page 3 of 12
D and D′ that are different by only one tuple, the at-
tacker cannot infer the sensitive information of a specific
data tuple from the query results, so it is impossible to
know whether the data of a certain user exist in the
dataset. The definition of differential privacy is as
follows:
Definition 1 ε-differential privacy [10]. Where ε > 0, a

randomized mechanism M satisfies ε-differential privacy
if for all datasets D and D′ that differ at most one tuple,
and all S⊆Range(M),;we have

Pr M Dð Þ∈S½ �≤eε � Pr M D0ð Þ∈S½ � ð1Þ

3.2 Local differential privacy
Local differential privacy requires any two tuples to be
indistinguishable. For example, for any two tuples x and
x′, the attacker cannot infer the sensitive information of
a specific data tuple from the query results, so it is im-
possible to know the specific tuple. ε- local differential
privacy is defined as follows:
Definition 2 ε-local differential privacy [14]. Where ε >

0, a randomized mechanism M satisfies ε-local differential
privacy if and only if for any two input tuples x and x′ in
the domain of M, and for any possible output x* of M, we
have

Pr M xð Þ ¼ x�½ �≤eε � Pr M x0ð Þ ¼ x�½ � ð2Þ
It can be concluded from the definition of ε-local dif-

ferential privacy that the output of a randomized mech-
anism of any pair of input tuples is similar, and
therefore cannot be inferred by the specific input tuple.
A smaller privacy budget ε ensures a higher privacy
level, but repeating the queries for the same tuple will
consume ε, thereby decreasing the level of privacy.
Therefore, the choice of ε needs to be determined ac-
cording to the specific scenario.

3.3 Sensitivity and Laplace mechanism
Differential privacy implements privacy protection by
adding noise to the query results, and the amount of
noise added should not only protect user privacy but
also maintain data utility. Therefore, sensitivity becomes
a key parameter of noise control. In local differential
privacy, sensitivity is based on a query function of any
two tuples; the following definitions are given.
Definition 3 Local sensitivity [32]. For f: Dn → Rd and

x∈Dn, the local sensitivity of f at x (with respect to the l1
metric) is:

LS f xð Þ ¼ max
y:d x;yð Þ¼1

f xð Þ− f yð Þk k1 ð3Þ

The notion of local sensitivity is a discrete analog
of the Laplacian (or maximum magnitude of the
partial derivative in different directions). The Laplace
mechanism of differential privacy [10] adds noise that
satisfies the Laplace distribution to the original data-
set to implement differential privacy protection; there-
fore, we have the following definition.
Definition 4 Laplace mechanism [33]. An algorithm A

takes as input a dataset D, and some ε > 0, a query Q
with computing function f: Dn → Rd, and outputs

A Dð Þ ¼ f Dð Þ þ Y 1; :::;Ydð Þ ð4Þ

where the Yi is drawn i.i.d from Lap(LSf(x)/ε), thus obey-
ing the Laplace distribution with the scale parameter
(LSf(x)/ε). For ease of expression, we denote Δs as the
local sensitivity and Lap(λ) as a random variable that
obeys the Laplace distribution of scale λ. The corre-

sponding probability density function is pdfðyÞ ¼ 1=2

λeð−
jyj
λ Þ.
3.4 System structure
Local differential privacy can be seen as a special case of
differential privacy [34]. Compare with the perturbation
process in DP, the perturbation process in LDP shifts
from the server side to the client side. The privacy leak-
age threat from untrusted third-party servers is elimi-
nated because trusted third-party servers are not
required. This collection consists of the following main
parts:

� The encoding is performed by the client side; each
tuple should be encoded into a proper vector to
ensure perturbation;

� The perturbation is performed by the client side,
and each piece of encoded data generates a
perturbed report by the random function, thereby
satisfying the definition of ε-local differential privacy.
Then, the client side sends these perturbed reports
to the server;

� The aggregation process is performed by the server
side, which aggregates reports from the client side
and generates available statistics, as shown in Fig. 1.
4 Problem setting
To use the LDP model to analyze and protect the col-
lected data, some scholars have proposed many privacy
protection schemes when estimating frequency. How-
ever, these solutions still have deficiencies, such as high
computational overhead and low data utility. Therefore,
we propose a modified solution to further improve data
utility and algorithm accuracy based on solving existing
deficiencies.

Fig. 1 Local differential privacy system structure

Fang et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:65 Page 4 of 12
4.1 Analyzing current methods
4.1.1 Generalized random response (GRR)
This random response technique was proposed by Warner
et al. [35]. For each piece of collected private data v∈D,
the user sends the true value of v with probability p and
sends randomly selected value v′ from D\{v} with a prob-
ability 1 − p. Assuming that domain D contains d = |D|
values, the perturbation function is as follows:

Pr GRR Dð Þ ¼ y½ � ¼ f
p ¼ eε

eε þ d−1
; if y ¼ v

q ¼ 1
eε þ d−1

; if y≠v
ð5Þ

Since p/q = eε, the ε-differential privacy definition is
satisfied.

4.1.2 Optimal local hash (OLH)
The OLH protocol was proposed in [22] to address the
problem of large category attributes. First, the client-side
algorithm maps the user’s true value v to a smaller hash
value domain g by using a hash function. Then, the algo-
rithm performs a random response to the hash value of
this smaller domain. The parameter g is a trade-off for
the loss of information between the hashing and
randomization step; when g = eε + 1, the trade-off is op-
timal. The time complexity of the algorithm is O(logn),
and the space complexity is O(nlog|D|).
4.1.3 Randomized aggregatable privacy-preserving ordinal
response (RAPPOR)
The RAPPOR protocol [15] is deployed in Google’s
Chrome browser. In the RAPPOR protocol, the user’s real
value v is encoded into the bit vector B. When there are
numerous category attributes, the protocol causes prob-
lems, such as a high communication cost and low accuracy.
Therefore, RAPPOR uses the Bloom filter for encoding.
The value v is mapped to a different position in the bit vec-
tor B using k hash functions, i.e., the corresponding pos-
ition is set to 1, and the remaining positions are set to 0.
After encoding, RAPPOR utilizes a perturbation function
to obtain the perturbed bit vector B′.
4.1.4 Hadamard Count Mean Sketch (HCMS)
The Hadamard Count Mean Sketch protocol was
proposed by Apple’s Differential Privacy Team [16]
in 2016 to complete large-scale data collection with
LDP and to obtain accurate counts. By utilizing the
Hadamard transform, the sparse vector is trans-
formed to send a single privacy bit, so each user just
sends one private bit. A certain tuple x sent by a
given user belongs to a set of values D; j is a ran-
domly selected index from k hash functions, and l is
a randomly selected index from the m bits of the
hash map domain.

Fang et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:65 Page 5 of 12
Algorithm 1 shows the client’s perturbation process.
First, each user initializes the vector v and sets the map-
ping value of the attribute value d in v at the j-th hash
function to 1, and the vector v forms a one-hot vector.
Second, the algorithm randomly flips the l-th bit of the
vector, denoted as wl∈{− 1,1}, with a probability of (1/eε

+ 1). Finally, the client side sends the report s{wl, j, l} to
the server. The time complexity of the algorithm is
O(n+kmlog(m)+|D|k), and the space complexity is
O(log(k) + log(m) + 1).

Algorithm 2 shows the server aggregation process.
First, it takes each report w(i) and transforms it to x(i).
Then, the server constructs the sketch matrix MH and
add x(i) to row j(i), column l(i) of MH. Next, it uses the
transpose Hadamard matrix to transform the rows of
sketch back. At last, the server estimates the count of
entry d∈|D| by debiasing the count and averaging over
the corresponding hash entries in MH.
4.1.5 Deficiencies of current protocols
Many current protocols have been proposed to protect priv-
acy, but they still have deficiencies. First, the LDP protocol
has very strict requirements for selecting parameters and
concerning the size of the data. For example, the choice of
parameters k and m in the HCMS algorithm greatly influ-
ences data variance and utility, and different tasks need to
identify different suitable parameters. Second, the RAPPOR
and CMS algorithms have large space-time complexity and a
high communication cost. For data collection in cloud, edge,
and fog scenarios, this problem will make computation
highly inefficient. Third, due to the use of random response
techniques, a data value with low frequency can even be esti-
mated as negative. Finally, when privacy-preserving data are
from different distributions, data utility varies greatly, and it
is difficult to fit these data to different tasks.
4.2 Design method to address deficiencies
Because of the shortcomings of current LDP protocols, we
use the Laplace mechanism to solve the problem that ran-
dom response technology requires strict data size and con-
struct the count sketch matrix for aggregation to reduce
space-time complexity. The protocol consists of the local
perturbator and aggregator.
The local perturbator is designed on the client side to per-

turb the raw data. When a user generates data, the local per-
turbator selects a random hash function to encode the data
as a one-hot encoding and adds the Laplace noises in the
mapping location. Then, the local perturbator sends the re-
port containing the selected hash function index and the
noised mapping location to the central server. Since the
client-side algorithm satisfies the LDP definition, even if the
adversary has the relevant background knowledge and ac-
quires another user’s data, the adversary cannot infer which
data are the user’s data. The process is shown in Fig. 2 a.
The aggregator is designed on the server side to aggregate

the reports. When the central server receives all the per-
turbed reports from the client side, the server will aggregate
them through an aggregator. The aggregator structures the
count sketch matrix and cumulates the number of mapping
positions for each attribute value under different hash func-
tions. The server side obtains each data value frequency esti-
mation by matrix count. Estimating the data entry d as an
example, the aggregator counts the number of xj’s frequency
of the corresponding mapping position under different hash
functions and sums up the numbers, as shown in Fig. 2 b.
5 Methods
For human-centered computing in cloud, edge, and fog sce-
narios, there are generally many users and one data service
provider in the LDP model. Therefore, the proposed protocol
designs the client and server algorithm for the users and ser-
vice providers, respectively. The client-side algorithm per-
turbs the user’s raw data and sends an incomplete report;
each user sends the perturbed report to the unique service
provider. When the service provider receives the user’s

Fig. 2 The algorithm system structure. a Perturbation. b Aggregation

Fang et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:65 Page 6 of 12
perturbed reports, the server-side algorithm aggregates the
reports to obtain the available statistics.

5.1 Client-side algorithm design
The client-side algorithm is designed to prevent user data
leakage by ensuring that the perturbed data obey local differ-
ential privacy. The raw data are first encoded by a randomly
selected hash function, and then the Laplace mechanism is
applied to implement the perturb operation in the hash map
location. The parameters passed by the server are used be-
fore the algorithm is deployed; these parameters in-
clude the privacy budget ε, the number of hash
functions k, and the length of hash mapping bit m.
According to equation (3), any two different pieces of
data have at the most two differences in the one-hot
encoding vector v, so the local sensitivity of adding
Laplace noise is 2. The report sent by the algorithm
includes two parts: a randomly selected hash function
index j and a hashed map position with noise l′. For
convenience, this algorithm is named the Laplace
Count Sketch (LCS) client-side algorithm. The spe-
cific steps are shown in Algorithm 3.

Fang et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:65 Page 7 of 12
Line 1 of Algorithm 2 initializes an all-zero vector of
length m, and in lines 2–4, the algorithm randomly se-
lects the hash function and hash mapping on vector v,
where hj(d) denotes choosing the function j to hash data
d. In addition, the mapping position is added with the
Laplace noise in lines 5–7. Since the mapping position is
an integer, the noise value should be rounded. As is
already known, the length of the mapping vector is m.
For the added noise mapping position l′, l′ will equal l′
minus m if the value of l′ is greater than or equal to m;
else, l′ equals l′ plus m if the value of l′ is less than 0.
The algorithm sends the perturbed report si in line 8.
Each user sends the perturbed report with O(1) time
complexity and O(k+m) space complexity; therefore, the
time complexity of the client-side algorithm is O(n), and
the space complexity of the client-side algorithm is
O(n(k+m)).
5.2 Server-side algorithm design
The server-side constructs the count sketch matrix using
the same parameters as those used by the client side
after collecting perturbed reports from different users.
First, the server-side algorithm constructs an all-zero
matrix of size k*m. Second, the algorithm cumulates the
index positions for each report position. Third, after
constructing the completed count sketch matrix, the al-
gorithm searches the position of each data value corre-
sponding to the row in the matrix in different hash
functions and adjusts the sketch counts according to La-
place distribution. Finally, the algorithm computes the
counts at these positions to obtain the frequency statis-
tics of each attribute value. The specific steps are shown
in Algorithm 4.

Line 1 of Algorithm 3 initializes an all-zero matrix of
size k*m. In line 2, the algorithm deals with the collected
n reports and adds 1 to the index position of the corre-
sponding row and column in the matrix. Then, in line 3,
the algorithm uses the count sketch to record the matrix
value of each data at the corresponding position of each
hash function and estimates the frequency of each
attribute value. The time and space complexities are
O(n+|D|*k) and O(k*m), respectively, in the server-side
algorithm.

5.3 Privacy and utility analysis
This section discusses the privacy and utility of the pro-
posed protocol. We first prove that the LCS protocol
satisfies the local differential privacy definition and then
theoretical analysis of the algorithm’s variance, and a
smaller variance ensures the higher data utility.
Theorem 1 The LCS protocol satisfies the definition

of ε- local differential privacy.
Proof. Given any pair of input tuples x and x′ and any

possible output x*, px is labeled as the probability density
function of A(x), and px′ is labeled as the probability
density function of A(x′); compare the probability of
these two.

Pr A xð Þ ¼ x�½ �
Pr A x0ð Þ ¼ x�½ � ¼

Pr xþ y½ �
Pr x0 þ y½ � ¼

px yð Þ
py yð Þ ¼ eε

j f xð Þ− f x0ð Þj
Δs

� �
≤eε

Since the sensitivity Δs = 2, the maximum difference
between the values of the functions f(x) and f(x′) is 2;
that is, |f(x)−f(x′)| has a value range of [0, 2], so (|f(x) −
f(x′)|/Δs) ≤ 1. Therefore, the definition of local differen-
tial privacy is satisfied.
We infer the variance of the LCS algorithm and de-

note the estimated frequency f′ (d), the real frequency
f(d), and Eð f 0ðdÞÞ ¼ f ðdÞ.

Var f 0 dð Þð Þ ¼ E f 0 dð Þ2� �
−E f 0 dð Þð Þ2

¼

XD

d

f dð Þ2

k2m2n

The larger the parameters k and m are, the smaller the
variance and the higher the utility are. However, space-
time complexity increases when k and m are very large.

6 Experimental section
6.1 Experimental datasets
The experiments use three datasets: two synthetic data-
sets and one real dataset; all datasets are a one-
dimensional classification attribute. The real dataset uses
the 2017 Integrated Public Use Microdata Series [36]
(US) and selects the education level EDU attribute,
which has 25 data categories; we extract 1% from the
dataset and take the first million pieces of data as the ex-
perimental dataset. The synthetic dataset satisfies the
uniform distribution and the Zipf distribution. The par-
ameter a of the Zipf distribution is set to 1.2, and each
synthetic dataset contains 100,000 pieces of data.

Fig. 3 The effects of privacy budgets on MAPE. a The effects of privacy
budgets in uniform datasets. b The effects of privacy budgets in Zipf
datasets. c The effects of privacy budgets in the real dataset

Fang et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:65 Page 8 of 12
6.2 Experimental competitors
OLH is a better choice for our experiment as the com-
parison protocol because it gives near-optimal utility
when the communication bandwidth is reasonable. In
addition, we choose HCMS as another comparison
protocol, which reduces the communication overhead by
sending a single private bit at a time.

6.3 Experimental implementation
These protocols were implemented in Python 3.7 with
NumPy and xxhash libraries and were performed on a
PC with Intel Core i7-7700hq CPU and 16 GB RAM.
Each experiment was repeated ten times to reduce the
influence of contingency on the experimental results.

6.4 Experimental metrics
To analyze the utility of our protocol for different pa-
rameters and scenarios, we compare the error between
the true distribution and the estimated distribution for
frequency using the mean absolute percentage error
(MAPE). For each data value, we calculate the absolute
value between the estimated and true frequency, divide
the absolute value by the true frequency, then cumulate
these values and divide by the size of the data value do-
main. The definition of MAPE is as follows:

MAPE ¼

XjDj

i¼1

j yi−xi
yi

j

j D j � 100% ð6Þ

where |D| is the category attribute domain size, yi is
the real frequency of the i-th attribute value, and xi is
the estimated frequency of the i-th attribute value. The
smaller the MAPE value is, the closer the estimated dis-
tribution is to the real distribution, and the better the
data utility is.

7 Results and discussion
7.1 Effects of privacy budgets
We validate the effects of privacy budgets parameter ε
on the data utility of the LCS protocol through experi-
ments, select the HCMS and OLH protocols as the con-
trol group and select the uniform and Zipf synthetic
datasets, in which the classification attribute domain
value is 50.
For the uniform dataset, we select the number of hash

functions k = 128 and the size of the hash map length m
= 128 and verify the MAPE values of the three protocols
with the variation of the privacy budget ε. As shown in
Fig. 3 a, as the privacy budget ε increases, the MAPE
value of these three protocols decreases; that is, the data
utility increases when the privacy budget increases. The
data utility of the LCS protocol is significantly better
than that of HCMS and slightly lower than that of OLH

Fang et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:65 Page 9 of 12
when ε < 2.5 and higher than the other protocols when ε
> 2.5.
Then, we adjust the parameters of the upper group ex-

periments and verify the effects of the privacy budget ε
on the synthetic dataset satisfying the Zipf distribution;
we select k = 256 and m = 512, as shown in Fig. 3 b.
The data utility of LCS is superior to that of the HCMS
protocol throughout the experiments, and the data
Fig. 4 The effects of different data sizes. a The effects of data sizes in the u
utility of LCS is marginally lower than that of the OLH
protocol when ε > 3.
Next, we validate the effects of privacy budget ε on

utility in a real dataset and perform experiments on the
IPUMS dataset; we choose parameter k = 256 and m =
128. In Fig. 3 c, the experimental result shows that the
utility of the LCS protocol is higher than that of HCMS
and lower than that of OLH. It is verified that the
niform datasets. b The effects of data sizes in the Zipf datasets

Fang et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:65 Page 10 of 12
protocol is also feasible in practical applications, and the
utility is better than that of HCMS.
7.2 Effects of data sizes
The current LDP protocols exhibit dramatic changes in
data utility when collecting data of different sizes. To
verify the utility of the LCS protocol at different sizes of
data, we compare the LCS protocol with the HCMS and
OLH protocols with uniformly distributed synthetic data
while varying data sizes. The parameters are set to m =
128, k = 1024, and ε = 2. As shown in Fig. 4 a, when the
data size n is small, the OLH and HCMS protocols have
large errors, and the utility of these protocols is very
low, such as when n = 1000; thus, the HCMS and OLH
protocols are not usable. However, LCS still maintains
better data utility at different data sizes. Next, we verify
the utility variation under different data sizes in the syn-
thetic datasets satisfying the Zipf distribution, adjust the
parameter settings to k = 256, m = 512, and ε = 2 and
select the HCMS and OLH protocols for comparison. In
Fig. 4 b, HCMS and OLH are not available when the
Fig. 5 Frequency estimation observation. a Frequency estimation on Zipf d
data size is small, and the utility of LCS is better at vary-
ing experimental data sizes.

7.3 Frequency estimation
When the privacy budget parameter ε is small, too much
noise is added during the perturbation process, thereby
resulting in the estimated frequency being much lower
than the original frequency. We set up experiments to
observe the frequency estimation under different data-
sets. To clearly show the frequency distribution trend
and facilitate observation, we calculate the estimated fre-
quency of each attribute value and multiply the original
data amount to obtain a more accurate frequency esti-
mate. The parameters of LCS and HCMS are both set to
k = 128, m = 1024, and ε = 2; in addition, we choose the
Zipf synthetic dataset and the IPUMS dataset as experi-
mental datasets. The domain sizes are 15 and 25, re-
spectively. Figure 5 a shows that the estimated
frequencies of the LCS and OLH protocols are close to
the true value, and the overall fluctuation of the HCMS
protocol is big. Figure 5 b shows that all protocols have
fluctuations, but LCS has a small overall fluctuation.
ataset. b Frequency estimation on real dataset

Fig. 6 The effects of different domain size

Fang et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:65 Page 11 of 12
7.4 Effects of other parameters
The above experiments show that the values of the
parameters k and m have a definite impact on the final
result. To explore the effect of the parameters on the
performance of the protocol, we set up experiments with
different k and m values. The LCS protocol uses the
hash function to encode data, thereby creating hash col-
lisions. Due to the hash collisions, different values are
mapped to the same position under the same hash func-
tion, thereby decreasing estimation accuracy. When the
length of hash map m is small, and the size of the data
domain |D| is large, there will be larger errors. The fre-
quency of hash collisions can be reduced by increasing
the length of the hash map domain m; increasing the
length of the hash map domain, in turn, increases the
computational overhead.
When the LDP protocols process different datasets,

changes in the size of the data domain |D| also affect
the estimated frequency. We utilize different data do-
main sizes to generate uniformly distributed datasets,
and the protocol utility is tested under different domain
sizes; we select k = 256, m = 512, and ε = 2. As shown in
Fig. 6, the utility of the LCS protocol increases when the
data domain size increases, and the HCMS and OLH
protocols decrease when the data domain size increases.

7.5 Runtime
To verify the time complexity of the proposed protocol,
we record its runtime in seconds on the real dataset of
Table 1 Runtime in seconds under different dataset sizes

Dataset sizes\protocol LCS OLH HCMS

1.0E+06 44.81 77.04 283.38

3.0E+06 117.50 244.26 925.41

6.0E+06 274.05 513.27 1879.10
different sizes. We choose k = 256, m = 128, and ε = 2.
In Table 1, the experimental result shows that the LCS
protocol has a shorter runtime than OLH and HCMS in
different sizes of the real dataset. Therefore, we can con-
clude that the LCS protocol has a much lower time
complexity.

8 Conclusion
This paper focuses on human-centered computing in
cloud, edge, and fog analyzes the ε-local differential priv-
acy models without a trusted server. However, current
LDP protocols have deficiencies in low utility and strict
data size requirements. We propose the Laplace Count
Sketch protocol, which cannot only protect sensitive
data on the client side but also ensure high accuracy and
utility, and discuss the reasons for the deficiencies of
current LDP protocols. The experimental results show
that the proposed protocol has high utility, is suitable
for different sizes of datasets, and maintains its utility
under different distributions and data domain sizes. The
data dictionary for the datasets used in this paper is
known; however, the proposed protocol cannot handle
datasets with unknown data dictionaries. The next step
is to study how to solve these problems, achieve better
privacy protection, and protect sensitive data in human-
centered computing.

Abbreviations
DP: Differential privacy; LDP: Local differential privacy; GRR: Generalized
random response; OLH: Optimal local hash; RAPPOR: Randomized
aggregatable privacy-preserving ordinal response; HCMS: Hadamard count
mean sketch; LCS: Laplace count sketch; MAPE: Mean absolute percentage
error

Acknowledgements
Not applicable.

Authors’ contributions
All authors read and approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of
China (61572034), Major Science and Technology Projects in Anhui Province
(18030901025), Anhui Province University Natural Science Fund
(KJ2019A0109).

Availability of data and materials
The relevant analysis data used to support the findings of this study are
included in the article.

Competing interests
The authors declare that they have no competing interests.

Received: 22 December 2019 Accepted: 18 February 2020

References
1. L. Qi, Q. He, F. Chen, et al., Finding All You Need: Web APIs

Recommendation in Web of Things Through Keywords Search. IEEE Trans.
Comput. Soc. Syst. 6(5), 1063–1072 (2019)

2. X. Xu, Y. Li, T. Huang, et al., An energy-aware computation offloading
method for smart edge computing in wireless metropolitan area networks.
J. Net. Comput. Appl. 133, 75–85 (2019)

Fang et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:65 Page 12 of 12
3. X. Xu, Q. Liu, Y. Luo, et al., A computation offloading method over big data
for IoT-enabled cloud-edge computing. Future Generation Comput. Syst. 95,
522–533 (2019)

4. L. Qi, Y. Chen, Y. Yuan, et al., A QoS-aware virtual machine scheduling
method for energy conservation in cloud-based cyber-physical systems.
World Wide Web, 1–23 (2019). https://doi.org/10.1007/s11280-019-00684-y

5. Y. Zhang, G. Cui, S. Deng, et al., Efficient Query of Quality Correlation for
Service Composition. IEEE Trans.Serv. Comput. (2018). https://doi.org/10.
1109/TSC.2018.2830773

6. Y. Zhang, K. Wang, Q. He, et al., Covering-based Web Service Quality
Prediction via Neighborhood-aware Matrix Factorization. IEEE Trans. Serv.
Comput. (2019). https://doi.org/10.1109/TSC.2019.2891517

7. Y. Zhang, C. Yin, Q. Wu, et al., Location-Aware Deep Collaborative Filtering
for Service Recommendation. IEEE Transactions on Systems, Man, and
Cybernetics. Systems (2019). https://doi.org/10.1109/TSMC.2019.2931723

8. X. Xu, Q. Liu, X. Zhang, et al., A blockchain-powered crowdsourcing method
with privacy preservation in mobile environment. IEEE Trans. Comput. Soc.
Syst. 6(6), 1407–1419 (2019). https://doi.org/10.1109/TCSS.2019.2909137

9. L. Qi, X. Zhang, W. Dou, et al., A two-stage locality-sensitive hashing based
approach for privacy-preserving mobile service recommendation in cross-
platform edge environment. Future Generation Comp. Syst. 88, 636–643 (2018)

10. C. Dwork, F. McSherry, K. Nissim, et al., in Theory of Cryptography
Conference. Calibrating noise to sensitivity in private data analysis, 265–284
(Springer, 2006)

11. S. Ruggles, C. Fitch, D. Magnuson, et al., Differential privacy and census data:
implications for social and economic research. AEA Pap Proc. 109, 403–408
(2019). https://doi.org/10.1257/pandp.20191107

12. Facebook’s privacy problems: a roundup, https://www.theguardian.com/
technology/2018/dec/14/facebook-privacy-problems-roundup. Accessed 10
Oct 2019.

13. ‘The Snappening’ Is Real: 90,000 Private Photos and 9,000 Hacked
Snapchat Videos Leak Online, https://www.thedailybeast.com/the-
snappening-is-real-90000-private-photos-and-9000-hacked-snapchat-
videos-leak-online?ref=scroll. Accessed 10 Oct 2019.

14. N. Wang, X. Xiao, Y. Yang, et al., Collecting and Analyzing Multidimensional
Data with Local Differential Privacy. 2019 IEEE 35th Int. Conf. Data Eng
(ICDE), 638–649. IEEE (2019)

15. Ú. Erlingsson, V. Pihur, A. Korolova, Rappor: Randomized Aggregatable
Privacy-Preserving Ordinal Response. Proc. 2014 ACM SIGSAC Conf. Comput.
Commun Secur - CCS '14, 1054–1067 (2014)

16. Differential Privacy Team, Apple, Learning with Privacy at Scale. (2016)
17. M.E. Gursoy, A. Tamersoy, S. Truex, et al., Secure and Utility-Aware Data

Collection with Condensed Local Differential Privacy. arXiv preprint arXiv
1905, 06361 (2019)

18. G. Cormode, S. Muthukrishnan, An improved data stream summary: the
count-min sketch and its applications. J. Algorithms 55(1), 58–75 (2005).
https://doi.org/10.1016/j.jalgor.2003.12.001

19. G. Fanti, V. Pihur, Ú. Erlingsson, Building a RAPPOR with the unknown:
Privacy-preserving learning of associations and data dictionaries. Proc.
Privacy Enhancing Technol. 2016(3), 41–61 (2016). https://doi.org/10.1515/
popets-2016-0015

20. B. Ding, J. Kulkarni, S. Yekhanin, Collecting telemetry data privately. Adv.
Neural Inf. Process. Syst., 3571–3580 (2017)

21. T. Wang, B. Ding, J. Zhou, et al., Answering Multi-Dimensional Analytical
Queries under Local Differential Privacy. Proc. 2019 Int. Conf. Manage. Data -
SIGMOD '19, 159–176 (2019)

22. T. Wang, J. Blocki, N. Li, et al., Locally differentially private protocols for
frequency estimation. In, 26th USENIX Secur. Symp., 729–745 (2017)

23. J. Acharya, Z. Sun, H. Zhang, Hadamard response: Estimating distributions
privately, efficiently, and with little communication. arXiv preprint arXiv
1802, 04705 (2018)

24. M. Joseph, A. Roth, J. Ullman, et al., Local differential privacy for evolving
data. In, Adv. Neural Inf. Process. Syst., 2375–2384 (2018)

25. T. Wang, Z. Li, N. Li, et al., Consistent and accurate frequency oracles under
local differential privacy. arXiv preprint arXiv 1905, 08320 (2019)

26. L. Qi, X. Zhang, S. Li, et al., Spatial-temporal data-driven service
recommendation with privacy-preservation. Inform. Sci. 515, 91–102 (2019).
https://doi.org/10.1016/j.ins.2019.11.021

27. X. Xu, Y. Xue, L. Qi, et al., An edge computing-enabled computation
offloading method with privacy preservation for internet of connected
vehicles. Future Generation Comput. Syst. 96, 89–100 (2019)
28. R. Bassily, A. Smith, Local, private, efficient protocols for succinct histograms.
In, Proc. Forty-seventh Annu. ACM Symp. Theory Comput., 127–135. ACM
(2015)

29. X. Ren, C.-M. Yu, W. Yu, et al., LoPub: High-Dimensional Crowdsourced Data
Publication with Local Differential Privacy. IEEE Trans. Inform. Forensics
Secur. 13(9), 2151–2166 (2018)

30. T. Wang, M. Xu, B. Ding, et al., Practical and Robust Privacy Amplification
with Multi-Party Differential Privacy. arXiv preprint arXiv 1908, 11515 (2019)

31. X. Gu, M. Li, Y. Cheng, et al., PCKV: Locally Differentially Private Correlated
Key-Value Data Collection with Optimized Utility. arXiv preprint arXiv 1911,
12834 (2019)

32. K. Nissim, S. Raskhodnikova, A. Smith, Smooth sensitivity and sampling in
private data analysis. In, Proc. Thirty-ninth Annu. ACM Symp Theory
Comput., 75–84. ACM (2007)

33. Y. Wang, X. Wu, D. Hu, in EDBT/ICDT Workshops. Using Randomized
Response for Differential Privacy Preserving Data Collection, 1558–2016 (2016).

34. A. Roth, C. Dwork, The algorithmic foundations of differential privacy.
Foundations and Trends® in. Theor. Comput. Sci. 9(3-4), 211–407 (2014).
https://doi.org/10.1561/0400000042

35. S.L. Warner, Randomized response: a survey technique for eliminating
evasive answer bias. J. Am. Stat. Assoc. 60(309), 63–69 (1965). https://doi.
org/10.1080/01621459.1965.10480775

36. S.F. Steven Ruggles, Ronald Goeken, Josiah Grover, Erin Meyer, Jose Pacas and
Matthew Sobek.: IPUMS USA: Version 9.0 (IPUMS, Minneapolis, MN, 2019)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1007/s11280-019-00684-y
https://doi.org/10.1109/TSC.2018.2830773
https://doi.org/10.1109/TSC.2018.2830773
https://doi.org/10.1109/TSC.2019.2891517
https://doi.org/10.1109/TSMC.2019.2931723
https://doi.org/10.1109/TCSS.2019.2909137
https://doi.org/10.1257/pandp.20191107
https://www.theguardian.com/technology/2018/dec/14/facebook-privacy-problems-roundup
https://www.theguardian.com/technology/2018/dec/14/facebook-privacy-problems-roundup
https://www.thedailybeast.com/the-snappening-is-real-90000-private-photos-and-9000-hacked-snapchat-videos-leak-online?ref=scroll
https://www.thedailybeast.com/the-snappening-is-real-90000-private-photos-and-9000-hacked-snapchat-videos-leak-online?ref=scroll
https://www.thedailybeast.com/the-snappening-is-real-90000-private-photos-and-9000-hacked-snapchat-videos-leak-online?ref=scroll
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1515/popets-2016-0015
https://doi.org/10.1515/popets-2016-0015
https://doi.org/10.1016/j.ins.2019.11.021
https://doi.org/10.1561/0400000042
https://doi.org/10.1080/01621459.1965.10480775
https://doi.org/10.1080/01621459.1965.10480775

	Abstract
	Introduction
	Related works
	Preliminary
	Differential privacy
	Local differential privacy
	Sensitivity and Laplace mechanism
	System structure

	Problem setting
	Analyzing current methods
	Generalized random response (GRR)
	Optimal local hash (OLH)
	Randomized aggregatable privacy-preserving ordinal response (RAPPOR)
	Hadamard Count Mean Sketch (HCMS)
	Deficiencies of current protocols

	Design method to address deficiencies

	Methods
	Client-side algorithm design
	Server-side algorithm design
	Privacy and utility analysis

	Experimental section
	Experimental datasets
	Experimental competitors
	Experimental implementation
	Experimental metrics

	Results and discussion
	Effects of privacy budgets
	Effects of data sizes
	Frequency estimation
	Effects of other parameters
	Runtime

	Conclusion
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher’s Note

