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Abstract

Mobile crowd sensing (MCS) is a novel emerging paradigm that leverages sensor-equipped smart mobile
terminals (e.g., smartphones, tablets, and intelligent wearable devices) to collect information. Compared with
traditional data collection methods, such as construct wireless sensor network infrastructures, MCS has
advantages of lower data collection costs, easier system maintenance, and better scalability. However, the
limited capabilities make a mobile crowd terminal only support limited data types, which may result in a
failure of supporting high-dimension data collection tasks. This paper proposed a task allocation algorithm to
solve the problem of high-dimensional data collection in mobile crowd sensing network. The low-cost and
balance-participating algorithm (LCBPA) aims to reduce the data collection cost and improve the equality of
node participation by trading-off between them. The LCBPA performs in two stages: in the first stage, it
divides the high-dimensional data into fine-grained and smaller dimensional data, that is, dividing an m-
dimension data collection task into k sub-task by K-means, where (k < m). In the second stage, it assigns
different nodes with different sensing capability to perform sub-tasks. Simulation results show that the
proposed method can improve the task completion ratio, minimizing the cost of data collection.

Keywords: Task allocation, Mobile crowd sensing, High-dimensional data collection

1 Introduction
1.1 Background
The term mobile crowd sensing (MCS) has been
coined by Ganti et al. [1] in 2011, which introduced a
new data collection method by leveraging mobile ter-
minals such as smart phones. Compared with trad-
itional data collection technologies, MSC has some
unique characteristics. First, the mobile devices have
more computing, communication, and storage capabil-
ity than mote-class sensors. Second, by leveraging the
mobility of the mobile terminal users, the deployment
cost of specialized sensing infrastructure for large-
scale data collection applications would be largely re-
duced. Currently, MSC has been widely used in many
applications, including environmental monitoring [2],

transportation [3], social behavior analysis [4], health-
care [5], and others [6–9], which demonstrates that
MCS is a useful solution for large-scale data collec-
tion applications. In general, the MCS process always
consists of four steps: assigning sensing tasks to mo-
bile terminals, executing the task on the mobile ter-
minals, collecting, and processing sensed results from
the crowd [10–14]. Obviously, assigning sensing tasks
to mobile terminals is the primary issue to deal with
the following steps, which is also the main issue in
this paper.

1.2 Related work
Recently, a lot of efforts have been focused on task allo-
cation [15–17] and generally can be divided into two
categories: rule-based task allocation method [18–20]
and map-based task allocation method [21–24]. The
rule-based task allocation mainly allocates task according
to each node’s sensing capability, such as position and
power of perception. By dividing node characteristics
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into different task groups, the system assigns the corre-
sponding task to each task group. In Ref [18], a task as-
signment algorithm dual task assigner (DTA) has been
designed. The DTA has leveraged learn weights to evalu-
ate the sensing capability of participations for each task,
and the server allocates tasks according to the sensing
capability level to maximize the benefit. Angelopoulos
et al. [19] have selected appropriate users by selecting
the optimal characteristics of nodes (quotation and qual-
ity) to allocate tasks, achieving the equalization between
cost and task completion ratio. Shibo et al. [20] have
considered the number of mobile nodes, the number of
tasks and the task completion time, and proposed the
optimal scheduling algorithm for each user in the dis-
patching area to reduce the sensing cost. Secondly, map-
based task allocation method has been used to combine
the geographical locations to task types to build a task
map, and participations can obtain the content and loca-
tion of a task by downloading the task map. When par-
ticipations arrive in a specific task location, they can
form a task group by self-organizing, and coordinate
with each other to accomplish the sensing task. Dang
et al. [21] have proposed the map-based mobile sensing
task allocation framework named Zoom for the first
time. Based on Zoom, Huy et al. [22] have studied the
assignment of pixel values in the task map, and proposed
a scalable reuse method for task map pixel values. In Ref
[23], a raster-vector mixed task distribution method for
mobile crowd sensing system has been proposed, which
raster the sensing area first, and encodes the task infor-
mation to improve the information utilization and re-
duce the data redundancy. A vector task map has also
been proposed in Ref [24], which can substantially re-
duce the amount of data in the task map by gradually
distributing the sensing tasks.
In summary, the above methods for task allocation

always believe that the mobile terminals can handle
all types of required data. They seldom take into con-
sideration the fact that a sensing node needs to carry
out a data sensing task that beyond to its sensing
capability. For example, to construct a radio environ-
ment map to monitor the wireless resource, the appli-
cation requires more than twenty types of data: data
collection time, GPS information, and the device
identification, and some 2G/3G/4G/Wi-Fi network
data. Usually, few nodes can collect all types of the
data because of their limited sensing capability, and
most of the nodes can perform a fraction of types of
the sensing data. The problem is that the sensing
node with lower sensing capability compared with
high-dimensional data is difficult, and we defined it
as high-dimension data sensing problem. In this situ-
ation, the first efficient step is to divide the high-
dimension data sensing task into multiple lower

dimensional tasks. The second step is to assign differ-
ent sub-tasks to nodes with different sensing capabil-
ity, and the optimal goal is to minimize the total
cost, as well as improving the task completion ratio.

1.3 Methods and contributions
This paper proposes an efficient data collection mechan-
ism based on two-stage task allocation named low-cost
and balance-participating algorithm (LCBPA), and the
contributions are as follows:

� We design a two-stage task allocation algorithm
LCBPA for high-dimensional data collection in MCS
network. In the first stage, in order to divide a high
m-dimension data collection task into k-multiple
sub-tasks with lower dimensional data, we leverage
the K-means method to make partition based on the
similarity of sub-tasks. In the second stage, we allo-
cate multiple nodes with different sensing capability
with one or more sub-tasks based on certain optimal
conditions.

� To minimize the total sensing cost and avoid some
nodes to be allocated with too many sub-tasks while
some nodes have only few sub-tasks, we introduce
the equality parameter λi to adjust the node partici-
pation probability to prevent the inequality problem
stated above. We also make our node selection pol-
icy by trading-off between minimizing the total cost
and maximizing the equality λi through the weight
parameter α.

� We also analyze the influence of the variation of
sub-task number k and trade-off weight parameter
α to the task completion ratio, total sensing cost,
and node sub-task degree distribution in different
scale of networks. Simulation results show that,
compared with non-task-division methods, our
LCBPA can reduce the total cost, and it can also
make a more even sub-task degree distribution
among sensing nodes.

The rest of this paper is organized as follows: System
model and task allocation problem are discussed in Sec-
tion 2. The detailed design of our proposed LCBPA algo-
rithms is discussed in Section 3. The performance of our
algorithm is evaluated in Section 4. Section 5 illustrates
the conclusions and our future work.

2 Problem description and challenges
2.1 Problem description
As shown in Fig. 1, there is a sensing task which refers
to m-dimension data collection, and there are N sensing
nodes in a minimum sensing unit. It would be difficult
for a node with limited sensing capability to finish m-
dimension data collection in a particular place, for the
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node can only handle partial types of data sensing. In
order to deal with the high-dimensional data collection,
it needs to divide the high-dimensional data collection
task into k sub-task with lower data dimension to reduce
the load of a sensing node. For each sub-task, it corre-
sponds to a sensing group with number C sensing nodes.
The problem of task allocation is transformed into divid-
ing the m-dimension data sensing task into k sub-tasks,
and then for each sub-task, choosing enough sensing
nodes to form a sensing group to finish the data
collection.
For simplicity, we make assumptions as follows:

first, the data types contained in each sub-task will
not overlap and the sum of all sub-tasks’ dimension
is m; second, each sub-task requires the same mini-
mum number of sensing nodes as C; third, in each
group, the node number C can cover the whole sens-
ing unit, and we will not consider the location of a
node. As is shown in Fig. 1, we assume that all the
sensing nodes in each group will cover the minimum
sensing area.

2.2 Challenges in task allocation
We propose a task partition model to solve the problem
of the high-dimensional data when we collecting data
from a single node. Through this method, the data di-
mension is reduced, and multiple sensing nodes that
work together can accomplish high-dimensional data
collection tasks. Challenges for this high-dimensional
data collection are as follows:

(1) How to improve the task completion ratio. In
conventional methods, one node has to sense all
types of required data, and this may beyond its
sensing capability, which will reduce the task
completion ratio. In the MCS, by dividing a

high-dimensional data into lower dimensions, a
node only needs to collect partial types in all of
the data types.

(2) How to minimize the total sensing cost as much as
possible. For a large-scale complex sensing task, it
requires a significant number of nodes to collect
data, and the cost of data collection is enormous for
large-scale tasks. It needs to select nodes for a suit-
able sub-task to minimize the cost of data collection
under the premise of guaranteeing the task
completion.

(3) How to equalize the participation probability of
each node, that is to say, avoiding that some
nodes join in a significant number of sub-tasks
while others only join in very few sub-tasks. The
current task allocation methods are always aim-
ing to select the node that can minimize the
total cost, which may result in the fact that some
nodes may be overloaded to deal with a great
number of sub-tasks, while some nodes only per-
form small number of sub-tasks. It is difficult to
minimize the whole cost of the system while
making sub-tasks distributed among participants
evenly.

3 The proposed algorithm of LCBPA
3.1 Model definition
Assuming that a system requires mobile nodes (mobile
terminals) to finish an m-dimension data collection task,
and for simplicity, one dimension corresponds to one
data type. The required data type set is A, which is a
matrix with m rows and N columns. Let A = {G1,G2,⋯,
Gm} A = {G1,G2,…,Gm}, and each Gi denotes a data type
in the m-dimension data task collection. For each vector
Gi, the element gij represents that the data type Gi can
be collected by node j, and j is the node number, (j ∈ (1,

Fig. 1 Groups cooperatively complete the dimensions data sensing
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N)). If gij = 1, it means that the ith dimensional data can
be collected by the node j, else gij = 0.

A ¼

g11 ⋯ g1N
⋱

⋮ gji ⋮
⋱

gm1 ⋯ gmN

2
66664

3
77775 ð1Þ

The divided sub-task set is S, and S = {s1, s2,…, sk},
where k is the number of sub-task. For ∀si, ( 1 ≤ i ≤ k ),
we assume that the data types contained in each sub-
task are not overlapped and the sum of all sub-tasks’ di-
mension is m.
Each node corresponds to a triple ψi = {i, Ti,Vi}, where

i is the node number, and i ∈ (1,N). Ti is the task which
can be sensed by user i, which is a k-dimension vector.
For each element tij in Ti, if tij = 0, it means that the
node i does not have the capability to sense the data
type required in the sub-task sj, while, if tij = 1, it means
that node i can perform the sub-task sj. Vi is the cost of
the sensing task, which is also a k dimensional vector.
For each element vij, the value is the cost of node i for
sensing sub-task sj.
The total cost for a mobile crowd sensing system to

finish the data collection task is

W ¼
XN
i¼1

Xk
j¼1

tijvij ð2Þ

The goal of our system is to find a matrix T∗, which
will minimize W, that is

T� ¼

t�11 ⋯ t�1k
⋱

⋮ t�ij ⋮
⋱

t�N1 ⋯ t�Nk

2
66664

3
77775 ð3Þ

minW ¼
Xk
i¼1

XN
j¼1

t�ijvij ð4Þ

The trade-off between minimizing the total cost and λi
is performed as follows:

pij ¼ tij � f wj−vij
w j � r j−1

� �þ α � 1
r j
; if j ¼ 1:

wJ−vij
w j � r j−1

� �þ α � 1
r j
� λi; if j≥2:

ð5Þ

Here, α denotes weight factor (0 ≤ α ≤ 1), which can be
used to make the trade-off between cost constraints and
node participation on the probability of node selection
[25]. Let wj denote the total quoted price that all the

nodes can sense Gj, then wj ¼
PN

i¼1vij . Let rj denote the

number of nodes that can perform sub-task, and r j
¼PN

i¼1tij.
As stated above, in order to avoid some nodes joining

in too many sub-tasks while others only join in few sub-
tasks, we introduce the adjustment coefficient λi [26].
When a node has already been selected in the previous
sub-task allocation rounds, this parameter may reduce
the probability that a node being selected. When we se-
lect a node to participate in a sub-task, the system will
make a trade-off between the total cost and the adjust-
ment coefficient λi. We compute λi by Eq. (6):

λi ¼ f 1; if j ¼ 1:Yj−1
h¼1

1−

P j−1
h¼1tih � rhPN
i¼1

PN
j¼1tij

 !
; if j≥2: ð6Þ

where tih represents whether the node i was assigned
with the sub-task sh, and tih = 1 means that the node i is
assigned to sub-task h, else tih = 0. rh denotes the node
number that can perform the sub-task sh, which can be
computed by Eq. (7):

rh ¼
XN

i¼1
tih ð7Þ

3.2 The two-stage task allocation algorithm of LCBPA
The detail steps for the system to select sensing nodes
are divided into two stages:
Stage one: Dividing an m-dimensional data collection

task into k sub-tasks by K-means method. According to
the sensing capability attributes (the data type a node
can sense) of each node, we need to divided the whole
sensing task into k sub-tasks. Here, we choose the K-
means algorithm, which is a classical algorithm to solve
the clustering problem, and it is simple and fast. When
processing large data sets, the k-means algorithm main-
tains scalability and efficiency. The general processes are
as follows: First, chose k data types from data type set A
as the initial clusters center randomly. Second, for the
remaining data types in A, assign them to the nearest k
initial clusters according to the distance D. When calcu-
lating the cluster center of each new cluster, keep re-
peating the process until the standard measure function
D is converged.
The standard measure function D for converging clus-

ters is

D ¼ min
Xk
i¼1

X
X∈si

dist Gi;Gj
� � ð8Þ

where the distance D is computed by the Euclidean dis-
tance dij from Gi and Gj. The shorter the distance be-
tween them, the higher similarity between those two
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data types, and the higher probability those two data
types will be divided into the same sub-task.

dist Gi;Gj
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
Gi−Gj
� �2r

ð9Þ

The correspondent algorithm for the first stage is as
follows:

However, dividing the whole sensing task into k sub-
tasks is only a basic step in our proposal, we need fur-
ther to adjust the mapping between participating nodes
and sub-tasks by other considerations, such as minimiz-
ing the total cost and avoiding a node being assigned too
many sub-tasks in the following step.
Stage two: Assigning different nodes with different

sensing capability to a suitable sub-task by the trade-off
between minimizing the total cost and node participa-
tion equality. After the first data type clustering stage,
the system will allocate node to each sub-task. For each

sub-task sj ∈ S, it will judge whether a node can perform
the sub-task and calculate the adjustment factor λi ac-
cording to formula 6. It will also calculate the probability
pij to decide whether a node can be selected in a sub-
task by Eq. 5. The system will sort the probabilities pij of
all the nodes from high to low, and select the top-C
nodes for sub-task sj. The correspondent algorithm for
the second stage is stated in algorithm 2:

4 Results and discussion
4.1 Simulation setting
In this section, we will evaluate the performance of our
proposed LCBPA scheme by simulation. Our simulation
environment is Ubuntu 14.04. We compare the perform-
ance of our LCBPA with non-task-division (NTD)
method, which is the method that nodes participate
high-dimension data collection directly. The simulation
parameters are set as follows: the sensing area is 600 ×
600 m2, and the sensing radius of each node is 25 m.
The network size (sensing node number) varies from 50
to 500, the data dimension is 50, and the sub-task num-
ber ranges from 10 to 50, and the trade-off weight par-
ameter α varies from 0.1 to 0.9, the minimum node
number required in a minimum sensing unit is 50.
We analyze the performance of the LCBPA algorithm

in the following parameters: (1) Task completion ratio η;
(2) The total cost of data collection W; (3) The equality

Zhou et al. EURASIP Journal on Wireless Communications and Networking        (2019) 2019:281 Page 5 of 11



of node participation ui. The parameters η and ui are de-
fined as follows:

(1) The task completion ratio η is defined as the
number of the whole m-dimension tasks that can
be completed, that is

η ¼ B
C

ð10Þ

where

B ¼ f min
1≤ j≤ k

XN
i¼1

tij; if min
1≤ j≤ k

Xn
i¼1

tij < C;

C; if min
1≤ j≤ k

XN
i¼1

tij≥C;

ð11Þ

(2) μi denotes the participation equality of node i,
which is the percentage of the total number of sub-
tasks assigned to each node:

μi ¼
1
k
�
Xk

j¼1
tij ð12Þ

4.2 Simulation results
4.2.1 Comparison of task completion ratio
Figure 2 shows the comparison of the task completion
ratio of our LCBPA with NTD method under different
network scale. In this scenario, the number of sub-task
is 20, and α = 0.5. The simulation shows our LCBPA has
a higher task completion ratio, and the ratio increases as
the network node number increases, which is because
the node number for participating each sub-task is
increased.
Figure 3 shows the comparison of the task completion

ratio of our LCBPA with various sub-task number k var-
ies from 10 to 50 under different network scale. The re-
sult in Fig. 3 shows that the task completion rate is
increasing as a high-dimensional task is divided into
more sub-tasks. Under the same network scale condi-
tion, the task completion ratio is increased when k is in-
creased, which may be because the more detailed the
division of the high-dimension task, the higher probabil-
ity a node is assigned to the right sub-task, improving
task completion ratio.
Figure 4 shows the comparison of the task completion

ratio of our LCBPA with the weight parameter α varying
from 0.1 to 0.9 under a different network scale. The re-
sult in Fig. 4 shows that the five lines are overlapped,
which means that the task completion rate remains un-
changed with different value of α. It may because that
the total number of nodes that need to perform a sub-
task is more than C, which makes no difference on the
task completion ratio.

Fig. 2 Task completion ratio comparison of LCBPA and NTD under different network scale when k = 20, α = 0.5
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4.2.2 Comparison of the total cost
Figure 5 shows the comparison of the total cost of data
sensing in our LCBPA with NTD method under different
network scale. In this scenario, the number of sub-task
is 20, and α = 0.5. The simulation result shows that our
LCBPA has a lower total cost, and the total cost in-
creases as the network scale is extended, which may be
because the participating node number for each sub-task
is increased.

Figure 6 shows the comparison of the total cost of our
LCBPA with different sub-task number k varying from 10
to 50 under different network scale. The result in Fig. 6
shows that as the size of the network increases, the total
cost also increases. Under the same network scale, the lar-
ger the number of the sub-task k, the lower the total cost
of the system, which may be because more sub-task k
makes different nodes being assigned to more different
suitable sub-tasks, saving some unnecessary cost.

Fig. 3 Task completion ratio comparison of LCBPA with different sub-task number k, when α = 0.5 under different network scale

Fig. 4 Task completion ratio comparison of LCBPA with different α varying from 0.1 to 0.9 when k = 20 under different network scale

Zhou et al. EURASIP Journal on Wireless Communications and Networking        (2019) 2019:281 Page 7 of 11



Figure 7 demonstrations the comparison of the total
cost of our LCBPA at different network with trade-off
weight parameter α varying from 0.1 to 0.9 and at k = 20.
The result in Fig. 7 shows that the total cost is increased
as the network scale is higher. Under the same network
scale, the larger the number of the sub-task, the higher
the total cost of the system because a large α value may

take less consideration of minimizing the total cost, im-
proving the total cost.

4.2.3 Comparison of the node participation equality under
a different network scale
Figure 8 shows the comparison of the node participation
equality of our LCBPA with NTD method under the

Fig. 5 Total cost comparison of LCBPA and NTD when k = 20, α = 0.5 under different network scale

Fig. 6 Total cost comparison of LCBPA with different sub-task number k, when α = 0.5under different network scale

Zhou et al. EURASIP Journal on Wireless Communications and Networking        (2019) 2019:281 Page 8 of 11



same network scale. In this scenario, the sub-task num-
ber is 20, and α = 0.5. The simulation shows that in our
LCBPA, a larger proportion of nodes are allocated with a
smaller proportion of sub-tasks, and the proportion of
nodes to perform more sub-tasks are significantly
reduced.
Figure 9 shows the comparison of the node participa-

tion equality of LCBPA with the sub-task number k vary-
ing from 10 to 50 under same network scale. The result

in Fig. 9 shows that the node participation becomes
more concentrated when a high-dimensional task is di-
vided into more sub-tasks. It means that the proportion
of nodes performing too many tasks will be reduced, and
most of the nodes are assigned to an average amount of
sub-tasks.
Figure 10 shows the comparison of the node participa-

tion equality of our LCBPA with different trade-off
weight parameter α which varies from 0.1 to 0.9.

Fig. 7 Total cost of LCBPA with different trade-off parameter α when k = 20 under different network scale

Fig. 8 Comparison of node participation equality of LCBPA and NTD when k = 20, the nodes number α = 0.5, N = 300
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Figure 10 shows that the participation of nodes become
more concentrated as α increased, which means that the
proportion of nodes performing too many tasks will be
reduced as α is increased, and most of the nodes are
assigned to an average amount of sub-tasks.

5 Conclusion
This paper proposes a high-dimension data collection al-
gorithm LCBPA for mobile crowd sensing network. In

particular, we introduce the two-stage operation scheme
to deal with the problem that a node with lower sensing
capability confronted with the higher dimensional col-
lection data. To evaluate our proposed scheme, we for-
mulate the evaluation parameters, and we also calculate
the task completion ratio, the total cost of the data, and
the node participation equality. As a result, our scheme
can effectively work when the network scale varies from
50 to 500, and the sub-task number k varies from 10 to

Fig. 9 Comparison of node participation equality of LCBPA with different sub-task number k when α = 0.5, N =300

Fig. 10 Comparison of node participation equality of LCBPA with different trade-off parameter α when k = 20, N = 500
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50, with trade-off weight parameter α varying from 0.1
to 0.9. However, there are also some limitations of our
proposed schemes: (1) we only simulated our proposed
method by simulations, not in the real sensing activities;
(2) Our method can reduce the sensing cost and diffi-
culty, while it is only works based on the assumption
that each dimension of the data can be collected inde-
pendently, which means that there is no correlation be-
tween different dimensions of the data, which may be
not always the case. (3) When assigning each sensing
task to different nodes, we do not consider the location
and mobility of a node. (4) In practical, the value of the
data will be elapsed as the time passed, which is also not
considered in our proposed method. In the future work,
we will evaluate hardware-based experiments, and take
the node mobility and location into consideration, and
we will also consider the data value as one of the factors
in task allocation.
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