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Abstract

Meteorological cloud platforms (MCP) are gradually replacing the traditional meteorological information systems to
provide information analysis services such as weather forecasting, disaster warning, and scientific research. However,
the explosive growth of meteorological data resources has brought new challenges to the placement and
management of big data in MCP. On the one hand, managers of MCP need to save energy to achieve cost savings. On
the other hand, users need shorter data access time to improve user’s experience. Hence, a big data placement
method in MCP is proposed in this paper to deal with challenges above. First, the resource utilization, the data access
time, and the energy consumption in MCP with the fat-tree topology are analyzed. Then, a corresponding data
placement method, using the improved non-dominated sorting genetic algorithm III (NSGA-III), is designed to
optimize the resource usage, energy saving, and efficient data access. Finally, extensive experimental evaluations
validate the efficiency and effectiveness of our proposed method.
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1 Introduction
The meteorological information system is a system which
is used to store and analyze a number of the meteorolog-
ical professional work via some certain relationships [1].
Meteorological information system requires that meteo-
rological information be stored in the form of computer
software system [2]. The service it provides covers from
data collection, retrieval to processing, analysis, and pre-
diction, including forecasters’ understanding of computer
weather products, decisions, and visual submission of
forecast conclusions, to form a complete system workflow
[3]. It can effectively analyze meteorological conditions
and carry out meteorological forecasting and disaster
warning, which are closely related to people’s production
activities and daily life [4].
However, with the daily growth rate of 12 TB, the tra-

ditional meteorological information system has been dif-
ficult to deal with the explosive growth of meteorological
data resources [5, 6]. The construction of meteorological
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cloud platform (MCP) supported by big data is imminent.
MCP has irreplaceable advantages in business, service,
scientific research, and government affairs [7]. Its data
resources have the characteristics of complete data, high
quality, and fast usage [8] . Relying on the public cloud
platform, it can provide personalized services such as big
data analysis [9].
When it comes to MCP, cloud computing technology

can be well applied to such scenarios. Cloud comput-
ing is a style of computing in which dynamically scalable
and often virtualized resources are provided as a service
over the Internet [10]. Cloud computing has the charac-
teristics of super-large-scale virtualization, high reliability,
and so on [11, 12]. It can process these massive meteoro-
logical resource data in a timely and batch manner [13].
By accessing meteorological information through parallel
network, users’ requests for meteorological analysis tasks
can be processed efficiently [14, 15].
Nevertheless, when facing with the mountains of the

meteorological information, it contributes to the prob-
lem that the data management of MCP becomes difficult
[16]. On the one hand, the energy consumption of MCP
is greatly increased in order to execute the meteorological
task requests, which results in a great cost for the man-
agers of the MCP [17]. On the other hand, how to solve
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the task requests accurately and timely is another problem
of the MCP, which is closely related to the Quality of Ser-
vice [18]. Hence, theMCP needs a data placement method
that takes into account both energy consumption and data
access time [19].
Although the energy-efficient data placement methods

of the meteorological information system have been stud-
ied in many researches, few of them took the resource
utilization of MCP, the data access time of the mete-
orological tasks, and the energy consumption of MCP
into consideration. With the observation above, it is
still a challenge to realize the big data placement in
MCP. In view of this challenge, a big data placement
method in MCP, named DPMM, is proposed in this
paper.
The main contributions of this paper are listed as fol-

lows:
(1) Analyze the resource utilization, the data access

time, and the energy consumption model in MCP and for-
mulate themulti-objective problem of the data placement.
(2) Employ improved non-dominated sorting genetic

algorithm III (NSGA-III) to improve the resource utiliza-
tion of MCP and reduce the data access time of the tasks
and the energy consumption in MCP.
(3) Conduct adequate experimental evaluation and

comparison analysis to validate the efficiency and effec-
tiveness of our proposed method DPMM.
The rest of this paper is organized as follows. In

Section 2, the model of MCP which employed the fat-tree
topology is built. In Section 3, formalized concepts, sys-
tematic models with the resource utilization, data access
time, and the energy consumption which are taken into
account, and the multi-objective problem are presented.
The proposed data placement in MCP is detailed in
Section 4. Section 5 illustrates the comparison analysis
and performance evaluation. The related work is summa-
rized in Section 6, and Section 7 concludes this paper with
the future work presented.

2 Meteorological cloud platform over big data
In order to place the big data in the MCP, the structure
of the MCP should be figured out. Nowadays, the meteo-
rological information system includes the meteorological
database, the meteorological application library, and the
meteorological graphic image database [6]. The meteo-
rological database is the basis of meteorological engi-
neering, including a huge number of meteorological data.
It is mainly responsible for the retrieval of meteorolog-
ical information. The meteorological application library
mainly carries out mathematical analysis for meteoro-
logical elements. In addition, the meteorological graphic
image database is responsible for the visual expression and
display of meteorological information. Since the acquisition
of meteorological data is mainly carried out in meteoro-
logical databases, this paper will discuss the distribution of
big data on the basis of meteorological databases. Figure 1
releases a framework of theMCP in China, which includes
a proprietary cloud and a public cloud, and the data
processing mainly occurs in the proprietary cloud.
In meteorological cloud platforms, meteorological data

are distributed on thousands of physical machines. When
a computational task arrives at a physical machine, it
may require a variety of meteorological data at different
locations for computation. Therefore, this paper uses fat-
tree topology structure to construct the meteorological
database of MCP [20].
The advantages of the fat-tree structure are obvi-

ous. First of all, its bandwidth division increases with
the expansion of network scale which can provide
high throughput transmission service for MCP. In addi-
tion, it can provide communication between different
pods. Moreover, there are many parallel paths between
source and destination nodes, the fault-tolerant perfor-
mance of the network is guaranteed, and there will be
no single point of failure in general. Besides, the fat-
tree structure achieves timely load handling through
multiple links at the core layer, avoiding network hot
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Data synchronization

Fig. 1 A Framework of the meteorological cloud platform
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spots, and avoids overload by reasonable shunting within
the pod.
The structure of the fat-tree is mainly composed of three

layers of switches which are the core switch, the aggre-
gation switch, and the edge switch, and the edge switch
is connected with the physical machine. From our former
research [21], it can be seen that in the fat-tree topology,
every two aggregation switches and two edge switches
form a pod. If we figure out the number of pods, the
whole network topology is clear. Assuming that the num-
ber of the pods in MCP is p, then the number of physical
machines that each pod can connect to is (p/2)2, and the
number of edge switches and aggregate switches in each
pod is p/2; there are (p/2)2 core switches in the whole
topology. The number of ports per switch in the network
is p, thus the topology can be connected to p3/4 physical
machines in total.

3 Resourcemodel of MCP
In this section, we construct a resource model of MCP in
big data environment based on the fat-tree network topol-
ogy structure and establish the multi-objective problem of
big data distribution in MCP [22].

3.1 System resource model
In this paper, we focus on a big data-oriented MCP
that provides flexible resources for storing meteorologi-
cal data. Suppose that there areN meteorological datasets
in the current MCP that need to be placed on the phys-
ical machines, denoted as D = {d1, d2, . . . , dN }, and M
tasks have arrived at theMCP to be performed, denoted as
T = {t1, t2, . . . , tM}. A task may require multiple meteoro-
logical datasets to perform, and a meteorological dataset
may also be accessed by multiple tasks. Since the num-
ber of pods is p in the MCP, thus there are p3/4 physical
machines provided to place the datasets and the tasks.
Assuming W is the total number of physical machines,
W = p3/4, then the physical machines in the MCP can
be represented by PM = {pm1, pm2, . . . , pmW }. Hence,
set X = {x1, x2, . . . , xN } be the collection of the placement
strategy for each meteorological dataset, and each place-
ment strategy xn ∈ PM(1 ≤ n ≤ N). Similarly, set Y =
{y1, y2, . . . , yM} be the collection of the placement loca-
tion of each task set, and each placement location ym ∈
PM(1 ≤ m ≤ M). Therefore, this paper will solve the
placement strategy X of meteorological dataset according
to the known task placement strategy Y. Meteorological
data refers to information elements or numerical analy-
sis results collected or processed by all possible means of
observation, detection, and telemetry, which come from
the Earth’s atmosphere and its adjacent layers and are
related to the law of atmospheric state change.
According to the types of data in meteorological infor-

mation system, meteorological data can be divided into

two categories which are the meteorological data and
industrial social data [6]. Meteorological data, includ-
ing atmospheric data and surface data, are the main
data resources for studying and forecasting meteorologi-
cal information, and their data volume is relatively large,
while industrial social data mainly include geographic
information, national economy and other data, which
provide assistance for the analysis of meteorological infor-
mation. Because the industrial social data play a restrictive
and auxiliary role in meteorological analysis, the indus-
trial social data should be placed on the physical machine
where the task set is requested, which means xn = ym.
Using binary flag ξn to represent if dn is the industrial
social data, thus

ξn =
{
0, dn is industrial social data,
1, Otherwise. (1)

3.2 Resource utilization model
In MCP, task sets and datasets are managed by virtual
machines placed on physical machines. The resources
required by datasets and task sets and the capacity of
physical machines can be expressed by the number of vir-
tual machine instances. Suppose cw be the capacity of the
wth physical machine pmw.
Resource utilization is an important metric to manage

the utilization of MCP resources. According to the place-
ment strategy X of meteorological datasets, the resource
utilization of each physical machine can be obtained
by detecting the resource utilization of virtual machine
instances. Suppose uw(X) be the resource utilization of
the wth physical machine under the placement strategy X,
which can be calculated by

uw(X) = 1
cw

N∑
n=1

θn · In,w(X), (2)

where θn represents the resource demand of meteorolog-
ical dataset dn, and In,w(X) is the binary flag to judge
whether dn is placed on pmw, thus

In,w(X) =
{
1, if w = xn,
0, Otherwise. (3)

Then, the overall resource utilization of MCP refers to
the usage status of all occupied physical machines. Sup-
pose λ(X) be the number of employed physical machines,
which can be calculated by

λ(X) =
W∑
w=1

Fw(X), (4)

where Fw(X) is the binary flag to judge whether pmw is
employed, thus

Fw(X) =
{
1, pmw is empolyed,
0, Otherwise. (5)
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Then, the average resource utilization of the MCP can be
obtained by using the following formula

U(X) = 1
λ(X)

W∑
w=1

uw(X). (6)

3.3 Access timemodel
In the MCP, the task set needs to be implemented by the
meteorological dataset deployed on the physical machine.
Hence, when considering the big data distribution strat-
egy of meteorological cloud platform, it is necessary to
consider the data access time of task set accessing meteo-
rological dataset.
Suppose lm,n is the binary flag to judge whether tm needs

to access dn, thus

lm,n =
{
1, tm needs to accessdn,
0, Otherwise. (7)

Suppose gm,n is the access frequency of tm access to dn in
a task execution cycle R, then the total access frequency
K in a period of execution cycle can be calculated by the
following formula

K =
M∑

m=1

N∑
n=1

lm,n · gm,n. (8)

In the fat-tree topology, the number of exchanges occur-
ring in data transmission is closely related to the distribu-
tion of datasets and task sets. Suppose ES(pm) be the edge
switch connected to the physical machines and Pod(pm)

represents the pod of this edge switch. Then, the num-
ber of exchanges in data transmission can be divided into
four cases, respectively: (1) tm and dn are placed on the
same physical machine, which means xn = ym. (2) tm and
dn are placed on the different physical machines but con-
nected to the same edge switch, which means xn �= ym,
ES(xn) = ES(ym). (3) The physical machines of tm and
dn belongs to different edge switches but the same pod,
which means ES(xn) �= ES(ym), Pod(xn) = Pod(ym). (4)
The physical machines of tm and dn belong to different
pods, which means Pod(xn) �= Pod(ym). Based on the
analysis above, the access time tm,n(X) of tm to access dn
once can be calculated by

tm,n(X) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, xn = ym,
2 ρn
bPE · lm,n, xn �= ym, ES(xn) = ES(ym),

(2 ρn
bPE + 2 ρn

bEA )·lm,n, ES(xn) �=ES(ym) Pod(xn)=Pod(ym),
(2 ρn

bPE + 2 ρn
bEA + 2 ρn

bAC ) · lm,n, Pod(xn) �= Pod(ym).

(9)

where ρn represents the data volume of dn and bPE rep-
resents the bandwidth between physical machines and
edge switches; similarly, bEA represents the bandwidth
between edge switches and aggregation switches and bAC
represents the bandwidth between aggregation switches

and the core switches. Then, the average data access time
T(X) of the MCP can be calculated using the following
formula

T(X) = 1
K

N∑
n=1

M∑
m=1

tm,n(X) · gm,n · ξn. (10)

3.4 Energy consumption model
In this paper, we focus on the energy consumption of
physical machines, virtual machines, and switches in the
process of data layout. First of all, all physical machines
consume a certain amount of energy to run. We call
this energy consumption the basic energy consumption of
physical machines, which can be calculated as

BE(X) =
W∑
w=1

R · αw · Fw(X), (11)

where αw is the basic energy rate of pmw.
Virtual machine also consumes a certain amount of

energy. Its energy consumption can be divided into two
situations. If the virtual machine instance is occupied by
datasets, it will consume more energy. We call this energy
consumption as active virtual machine energy consump-
tion, which can be calculated according to the following
formula

AEVM(X) =
W∑
w=1

N∑
n=1

θn · In,w(X) · R · η, (12)

where η is the active energy rate of the virtual machines.
And the virtual machine instances that are not occu-
pied by meteorological datasets will consume less energy,
which we call it the idle virtual machine consumption,
denoted as IE, can be calculated by

IEVM(X) =
W∑
w=1

(cw −
N∑

n=1
θn · In,w(X)) · R · τ , (13)

where τ is the idle energy rate of the virtual machines.
Therefore, the virtual machine consumption in theMCP

can be expressed as

VE(X) = AEVM(X) + IEVM(X). (14)

In addition, the energy consumption of switches due to
data transmission needs to be considered. In the fat-tree
topology model, the total number of switches is 5/4p2, in
addition, the number of switches passed by tm to access
dn, denoted as δm,n(X), can be calculated by

δm,n(X) =

⎧⎪⎪⎨
⎪⎪⎩

0, xn = ym,
1, xn �= ym, ES(xn) = ES(ym),
3, ES(xn) �= ES(ym), Pod(xn) = Pod(ym),
5, Pod(xn) �= Pod(ym).

(15)
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Hence, the energy consumption of the switches SE can
be calculated by

SE(X) =5
4
p2 · R · β

+
M∑

m=1

N∑
n=1

lm,n · gm,n(X) · tm,n(X) · ξn · δm,n(X)·γ ,

(16)

where β is the basic energy rate of the switches and γ is
the working energy rate of the switches.
Therefore, the overall energy consumption of meteoro-

logical cloud platform can be calculated by

E(X) = BE(X) + VE(X) + SE(X). (17)

3.5 Problem formulation
The focus of our research is to solve the problem of big
data placement in the environment of MCP. On the basis
of known task set placement strategy, we optimize the
placement strategy of meteorological dataset in order to
improve resource utilization, reduce data access time and
energy consumption.
After the above analysis, the multi-objective problem in

this paper can be expressed as

maxU(X), minT(X), minE(X). (18)

s.t.xn = {1, 2, . . . ,W }, (19)

N∑
n=1

θn · In,m(X) ≤ cw. (20)

4 A big data placement method inMCP
In this section, a data placement method in MCP is
proposed. Compared with the other data placement,
NSGA-III is widely applied in could platform because
of its advantages in finding the optimal solution in the

feasible solution accurately and timely, which is used to
MCP in this paper [23, 24]. First, the placement strategies
for meteorological data sets are encoded and fitness func-
tions are given for the optimization problem. Second, the
fast non-dominated sorting approach and the crowded-
comparison operation are used in selection. Then, the
crossover and mutation operation of traditional genetic
algorithm (GA) are adopted. Finally, the overview of our
method is described in detail.

4.1 Data placement based on NSGA-III
A data placement strategy in MCP is proposed in this
subsection. The data placement problem is defined as
a multi-objective optimization problem. NSGA-III is an
accurate and robust method for addressing the optimiza-
tion problem with multiple objectives. Here, NSGA-III is
adopted to solve the multi-objective optimization prob-
lem presented in [18].
Firstly, we encode for the physical machines and then

give the fitness function and constraints for the multi-
objective optimization problem. In addition, we gener-
ate new chromosomes using the crossover and muta-
tion operations. At last, we pick out the chromosomes
of the next generation, using usual domination principle
and reference-point-based selection. The overview of the
multi-objective data placement is elaborated.

4.1.1 Encoding
In this section, we encode for the physical machines
and meteorological datasets are placed to the physical
machines, as is presented in Section 3. In the genetic algo-
rithm (GA), a gene represents the data placement strategy
of a dataset and the genes compromise a chromosome,
representing the placement strategies of all the meteoro-
logical datasets. The physical machines are encoded as
1, 2, . . . ,W .
Figure 2 illustrates an encoding instance for placement

of the datasets with N meteorological datasets. In this

3 1 W ... 2

d1 d2 d3 ... dN

1 2 3

... ...

w W... ...
Fig. 2 An encoding instance ofW physical machines for Nmeteorological datasets
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example, the chromosome is encoded in an array of W
integers (1, 2, . . . ,W ).

4.1.2 Fitness functions and constraints
The fitness functions are adopted to evaluate the solutions
generated by the chromosomes. In GA, each chromosome
is an individual and represents a solution of the optimiza-
tion problem. The fitness functions in this paper includes
three categories: the average resource utilization, the data
access time, and the energy consumption, presented in [6],
[10], and [17] respectively. The resource utilization should
be maximized and the data access time and the energy
consumption must be minimized, and we aim to achieve a
balance among those three objectives.

4.1.3 Initialization
In this subsection, the parameters of GA are determined,
including the population size S, the maximum itera-
tion I, the crossover possibility pc, and the mutation
possibility pm.
Each chromosome represents the placement strategies

of all the meteorological datasets, which is denoted as Xi
= (x1, x2, . . . , xN )(i = 1, 2, . . . , S). Each gene in the chro-
mosome stands for the placement strategy of a dataset.

4.1.4 Crossover andmutation
In the crossover phase, we conduct the single-point
crossover operation on two chromosomes to generate
two new individuals. Figure 3 illustrates an example of
crossover operation for two chromosomes with W genes
respectively. In this example, a crossover point is deter-
mined in advance and then the genes of two chromosomes
are swapped around the point. Thus, two new chromo-
somes are created.
The mutation operation is conducted to modify the

genes in chromosomes to create new chromosomes with
the hope of higher fitness values. An example of muta-
tion operation of a chromosome with N genes is shown in
Fig. 4. Each gene in the chromosome is changed with the
equal possibility pm.

4.2 Selection for the next generation
We select the chromosomes for the next generation in the
selection phase with higher fitness values. We encode for

the physical machines and each chromosome represents
all the data placement strategies of the meteorological
datasets. As is discussed above, the number of fitness
functions for each chromosome is 3, i.e., the resource
utilization, the data access time, and the energy con-
sumption. After crossover and mutation operations are
conducted, S chromosomes are generated and the size of
population becomes 2S. We aim at select S chromosomes
for the next generation.
Firstly, the three objectives are evaluated according to

[6], [10], and [17]. Then, usual domination principle is
conducted to sort the 2S solutions using the three fitness
values to generate some non-dominated fronts. Suppose
that there are n non-dominated fronts, and the datasets in
the first front have the most optimal fitness values.
We select one chromosome at random from the first

front to the nth fronts every time until S chromosomes
have been picked out. Assume the last chosen solution is
in the f th front and the number of the selected chromo-
somes in the f th front is s. If the number of solutions in
the f th non-dominated front is s, that is all the individu-
als in the f th front are selected, then the selection phase
finishes.
However, if part of the chromosomes in the f th front

are chosen, then further selection is required to determine
the chromosomes in the f th front going into the next
chromosomes.
In further selection, the three fitness functions of each

individual in the generation are normalized. The max-
imization of the resource utilization, the minimization
of the data access time, and the energy consumption
for the population are represented as U∗(X),T∗(X), and
E∗(X) respectively. We search U∗(X),T∗(X), and E∗(X)

in the population firstly. Then the fitness functions are
updated as

⎧⎨
⎩
U ′(X) = U(X) − U∗(X),
T ′(X) = T(X) − T∗(X),
E′(X) = E(X) − E∗(X).

(21)

Um,Tm, and Em represent the extreme values of the
average resource utilization, the data access time, and the
energy consumption respectively which are calculated by

...3 4 2 ... 1

2 ... 1

3 4

1 13 2... 2

2

W

W

X1

X2

X1

X2

x1

x1 x1

x1x2

x2 x2

x2x3

x3 x3

x3...

... ...

...xN

xN xN

xN

Fig. 3 An example of crossover operation
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1 3 2 ... 4

1 3 ... 4WX1

X2

x1

x1

x2

x2

x3

x3

...

...

xN

xN

Fig. 4 An example of mutation operation

⎧⎪⎨
⎪⎩
Um = max U ′(X)

WU
,

Tm = max T ′(X)
WT

,
Em = max E′(X)

WE
,

(22)

whereWU ,WT , andWE are the weight vectors to the three
functions.
Assume each fitness function as an axis and the inter-

cepts of each axis can be determined according to the
three extreme values, denoted as ρU , ρT , and ρE respec-
tively. Then, the fitness functions are normalized by

=

⎧⎪⎨
⎪⎩
U ′′(X) = U ′(X)

ρU
,

T ′′(X) = T ′(X)
ρT

,
E′′(X) = E′(X)

ρE
.

(23)

After normalization, the fitness values of the resource
utilization, the data access time, and the energy consump-
tion are between zero and one. The normalized solutions
are scattered in the hyperplane composed by the three fit-
ness axes. Each solution of the individual in the population
is corresponding to a triple.
Divide each axis into g subsections, and then, the num-

ber of the reference points, denoted as ζ , is calculated by

ζ = Cg+2
g . (24)

ζ is approximately equal to S to guarantee each individual
associate with a reference point. Then, we associate the
normalized solutions with the reference points.
We sort the solutions in the f th non-dominated front,

using the number of the associated reference points.
Assume the solutions in the f th front are sorted into d lev-
els and the reference points in the first level represents the
maximum reference points. Each time selects one solution
randomly from the first level until the n individuals have
been selected.

4.3 Solution evaluation using SAW andMCDM
The proposed strategy aims at achieving a trade-off
in optimizing the average resource utilization, the data
access time of the tasks, and the energy consumption of
MCP. In each population, there are N chromosomes and
each chromosome xn represents a hybrid data placement
ofN meteorological datasets. In addition, dynamic sched-
ule of datasets is considered and, to select relatively bet-
ter schedule solution of each placement strategy, simple
additive weighting (SAW) and multiple criteria decision
making (MCDM) are employed.
The resource utilization is a positive criterion, i.e., the

higher the resource utilization is, the better the solution
becomes. Oppositely, the data access time and the energy
consumption are the negative criterion. We normalize the
resource utilization in the nth placement strategy as

UV (Un) =
{

U(xn)−Umin

Umax−Umin ,Umax − Umin �= 0,
1,Umax − Umin= 0,

(25)

where Umax and Umin represent the maximum and mini-
mum fitness for resource utilization in the nth placement
strategy. Similarly, the time consumption of nth placement
strategy is normalized as

UV (Tn) =
{

Tmax−T(xn)
Tmax−Tmin ,Tmax − Tmin �= 0,
1,Tmax − Tmin= 0,

(26)

where Tmax and Tmin represent the maximum and min-
imum fitness for data access time in the nth placement
strategy. And the energy consumption of nth placement
strategy is normalized as

UV (En) =
{

Emax−E(xn)
Emax−Emin ,Emax − Emin �= 0,
1,Emax − Emin= 0,

(27)

where Emax and Emin represent the maximum and mini-
mum fitness for energy consumption in the nth placement
strategy. In addition, to calculate the utility value of each
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solution, the weight of each objective function requires
determination.
In this paper, we do an overall consideration of three

objectives for each strategy. The utility value of the nth
placement strategy is calculated by

UV (xn) = UV (Un)·κU +UV (Tn)·κT +UV (En)·κE , (28)
where UV (xn) represents the utility value of the nth
placement strategy and κU , κT , and κE represent the
weight of the resource utilization, the data access time,
and the energy consumption respectively. Therefore, for
each chromosome in the population, we have calculated
the utility value of the same schedule. The formalized
optimization problem given in (18) can be represent by

Nmax
n=1

UV (xn) (29)

s.t.xn = {1, 2, . . . ,W }, (30)

N∑
n=1

θn · In,m(X) ≤ cw, (31)

κU , κT , κE ∈[ 0, 1] , (32)

κU + κT + κE = 1. (33)
The solution selection strategy is elaborated in

Algorithm 1. We select the maximum and minimum
value of the three objections (Lines 1-6). Then the utility
values of the three objections and the solutions are evalu-
ated (Lines 7-12). The maximum utility value of solution
is selected (Line 13). Finally, the solution with maximum
utility value is output.

Algorithm 1 Solution evaluation
Require: κU , κT , κE , X
Ensure: UV

n=1
while n ≤ N do

3: Evaluate the fitness functions by (6), (10) and (17)
n=n+1

end while
6: Select the maximum and minimumU(X), T(X), E(X)

N=1
while n ≤ N do

9: Evaluate the utility value of U(X), T(X), E(X) in
(25-27)

Evaluate the utility value of n-th placement strat-
egy in (28)

n=n+1
12: end while

Select the maximum utility value UV
return UV

4.4 Method overview
In this paper, we aim to optimize the resource utilization,
reduce the data access time, and decrease the energy con-
sumption, which is determined as a multi-objective opti-
mization problem. The NSGA-III is adopted to achieve
the global optimal data placement strategy. First, we
encode for the physical machines and each gene rep-
resents the data placement strategy for a meteorologi-
cal dataset. Then, the fitness functions and constraints
of the multi-objective optimization problem are elabo-
rated. Crossover and mutation operations are conducted
to generate new chromosomes and usual domination
principle and reference-point-based selection in NSGA-
III are adopted to select the individuals going into the next
generation.
The overview of the proposed method is elaborated in

Algorithm 2. We input the tasks, the physical machines,
and the placement strategy of the tasks. The algorithm
starts with the first iteration, and for each iteration, we
conduct the crossover and mutation operation to gener-
ate new solutions (Line 3). Then, we evaluate the fitness
functions of each chromosomes and obtain the placement
routing (Lines 5). We conduct the selection, including the
non-dominant sorting, the primary selection, and the fur-
ther selection (Lines 7-13). When the algorithm reaches

Algorithm 2 Data Placement method in MCP
Require: PM, T, Y, X.
Ensure: X∗

i=1
while i ≤ I do

3: Crossover and mutation operation
for the individuals in the population do

Evaluate the fitness functions by (6), (10) and
(17)

6: end for
Non-dominant sorting the individuals
Primarily select the solutions from the first front

9: if part of solutions in the f -th front are selected
then

Normalize the solutions by (21-23)
Generate the reference points with the con-

straints (24)
12: Associate the reference points with the nor-

malized solutions of f -th front
Select the solutions with the maximum associ-

ated reference points
end if

15: i = i + 1
end while
Evaluate the solutions in the last iteration according
to Algorithm 1

18: return X∗
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the maximum iteration, we evaluate the solutions by SAW
andMCDM (Line 17). Finally, the optimal data placement
methods are output.

5 Experimental evaluation
In this section, a set of complex simulations and exper-
iments are performed to evaluate the performance of
the proposed DPMM. We first introduced the simula-
tion setup with the simulation parameter settings and the
statement of the comparative data placement. Then, the
influence of different task scales on the performance of the
resource utilization, the data access time, and the energy
consumption of the compared method and our proposed
DPMM is evaluated.

5.1 Simulation setup
In our simulation, six datasets with different scales of the
tasks are applied for our experiments, and the number of
datasets is set to 200, 400, 600, 800, 1000, and 1200 and
the industrial social datasets is set to 50, 100, 150, 200,
250, and 300 in each scale of the meteorological datasets.
The specified parameter settings in this experiment are
illustrated in Table 1 [25].
To conduct the comparison analysis, we employ some

other basic data placement method besides our DPMM.
The comparative methods are briefly expounded as fol-
lows:

• Benchmark: In this method, the meteorological
datasets are placed in the order of the physical machines.
When the former physical machine is full, the datasets left
are placed on the next physical machine. This process is
repeated until all datasets have been placed.

• First fit decreasing in MCP (FFD-M): The meteoro-
logical datasets are sorted in descending order according
to the dataset requests first. Then, the sorted datasets are

Table 1 Parameter settings

Parameter description Value

The number of tasksM 40

The time of running period R 24 h

The number of physical machinesW 2000

The baseline energy consumption rate of
wth physical machine αw

342 W

The active energy consumption rate for
each virtual machine η

37 W

The bandwidth between severs and edge
switches bSE

50 M

The bandwidth between switches in the
fat-tree topology bEA and bAC

100 M

The idle energy consumption rate for each
switch β

100 W

The active energy consumption rate for
each switch γ

150 W

placed on the physical machines. If the left resources of
current physical machine are insufficient for the resource
requirement of a dataset, the dataset is placed on the
physical machine with enough resource. This process is
repeated until all datasets have been placed.

• Best fit decreasing inMCP (BFD-M): Themeteorolog-
ical datasets and the physical machines are both sorted in
descending order according to the dataset request and the
space of physical machines first. Then, the sorted datasets
are placed on the sorted physical machines. If the left
resources of the physical machine are insufficient for the
resource requirement of the dataset, the dataset is placed
on the physical machine with enough resource next to
this physical machine in optimal principle. This process is
repeated until all datasets have been placed.
The data placement methods are implemented on a

personal computer with Intel Core i7-4720HQ 3.60 GHz
processors and 4 GB RAM.

5.2 Performance evaluation of DPMM
The proposed DPMM is intended to achieve a trade-off
with optimizing the resource utilization while reducing
the data access time and the energy consumption.We con-
ducted 50 experiments in the case of convergence for each
dataset scale, and multiple sets of results are obtained.
Figure 5 shows the comparison of the utility value of the

solutions generated by DPMM at different dataset scales.
It is illustrated that when the dataset scale is 200, 400, 600,
800, 1000, and 1200, solutions generated by DPMM are
3, 2, 3, 4, 3, and 3 respectively. For the solutions gener-
ated by DPMM, we attempt to obtain the most balanced
data placement strategy by judging the utility value given
in [28]. After statistics and analysis, the solution with the
maximum utility value is considered as the most balanced
strategy. For instance, in Fig. 5a, the final selected strategy
is solution 3 because it achieves the highest utility value.

5.3 Comparison analysis
In this subsection, the comparisons of Benchmark, FFD-
M, BFD-M, and DPMM with the same experimental con-
text are analyzed in detail. The resource utilization, the
data access time, and the energy consumption are the
main metrics for evaluating the performance of the data
placement method. The corresponding results are shown
in Figs. 6, 7, and 8.
(1) Comparison of resource utilization: After placing

all the meteorological datasets on the physical machines
via the data placement methods, the occupation of the
VM instances is achieved. Figure 6 shows the comparison
of the resource utilization in MCP of Benchmark, FFD-
M, BFD-M, and DPMM at different dataset scales. The
resource utilization is calculated according to the num-
ber of employed physical machines and the employed
VM instances in each physical machine. Fewer employed
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a b c

d e f
Fig. 5 Comparison of the utility value of the solutions generated by DPMM at different data scales. a Number of datasets = 200. b Number of
datasets = 400. c Number of datasets = 600. d Number of datasets = 800. e Number of datasets = 1000. f Number of datasets = 1200

physical machines with more occupied VM instances con-
tribute to a higher resource utilization. It is intuitive from
Fig. 6 that our proposed method DPMM achieves higher
and stable resource utilization. That is, DPMM reduces
the number of unemployed VM instances and wastes less
resources than other data placement method.
(2) Comparison of data access time: Fig. 7 shows the

comparison of the data access time of the meteorologi-
cal tasks of Benchmark, FFD-M, BFD-M, and DPMM at
different dataset scales. In this paper, we try to realize a
balance between the resource utilization, the data access
time and the energy consumption; however, in order to
improve the resource utilization and reduce the energy

consumption, the meteorological datasets may place on
the physical machine which may be far from the tasks.
It is illustrated from Fig. 7 that the data access time of
our proposed method DPMM is a little more than the
other data placement method, which means our proposed
method may sacrifice some data access time to optimize
the resource utilization and the energy consumption.
(3) Comparison of energy consumption: As the energy

consumption is the sign of the cost the MCP needs to
give out, it becomes the most important metrics that the
manager of the MCP concerned. Figure 8 shows the com-
parison of energy consumption in MCP of Benchmark,
FFD-M, BFD-M, and DPMM at different dataset scales.
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When the number of the datasets is small, the difference
of the energy consumption for those four data placement
methods are not obvious, but with the increase of the
dataset scales, the energy consumption of DPMM is bet-
ter than the other data placement method, which means
that our proposed method DPMMmay well be applied in
the big data environment like MCP.

6 Related work
In recent years, with the rapid growth of meteorological
data resources, people are actively seeking to replace the
traditional meteorological information system platform,
and the MCP has attracted extensive attention because
of its high-efficiency computing ability for large data
[26, 27]. Pokric et al. [6] presents the environmental mon-
itoring solution ekoNET, developed for a real-time mon-
itoring of air pollution and other atmospheric condition

parameters such as temperature, air pressure, and humid-
ity. In [28], Sawant et al. addresses above issues through
the adaptation of a framework based on Open Geospa-
tial Consortium standards for Sensor Web Enablement.
Padarian et al. in [29] explores the feasibility of using this
platform for digital soil mapping by presenting two soil
mapping examples over the contiguous USA.
However, with the increasing amount of data, the prob-

lem of data placement in meteorological cloud data center
is becoming more and more serious [30, 31]. Traditional
data placement method cannot meet the basic require-
ments of query and analysis of massive data. A new data
placement method for big data needs to be applied to
MCP immediately [32]. The data placement method has
been widely researched in many studies [33]. In [34], Yu
and Pan proposed an associated data placement scheme,
which improves the co-location of associated data and the
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localized data serving while ensuring the balance between
nodes. In [35], Paiva et al. addressed the problem of self-
tuning the data placement in replicated key-value stores
to automatically optimize replica placement in a way
that leverages locality patterns in data accesses, such that
internode communication is minimized.
In the study of data placement methods, a large num-

ber of methods such as operations research are applied
to optimize them [36, 37]. And a large number of studies
such as [38–41] and [42] are carried out. Compared with
these methods, genetic algorithms have more rapid and
accurate characteristics, and better adapt to the require-
ments of data placement in big data environment. Many
studies focus on genetic algorithms [43].
In [44], Jean-Luc et al. compared genetic algorithm to a

pure random optimization approach and their optimiza-
tion efficiencies are analyzed. In [45], Kadri and Boctor
addressed the resource-constrained project scheduling
problem with transfer times and the experiment, con-
ducted on a large number of instances, shows that the
proposed algorithm performs better than several solution
methods previously published. In [46], a set-based Pareto
dominance relation was then defined to modify the fast
non-dominated sorting approach in NSGA-II.
However, with the observation above, few studies have

been conducted about the data placement in MCP facing
with the big data. In this paper, we employed one of the
genetic algorithm NSGA-III to optimize the resource uti-
lization, the data access time, and the energy consumption
in MCP.

7 Conclusion and future work
The existing works of meteorological data placement in
MCP have not combined the energy consumption and the
data access time together. In this paper, a big data place-
ment method in MCP is proposed. We construct as sys-
tematic model of the resource utilization, the data access
time, and the energy consumption in MCP. The proposed
method is designed to improve the average resource uti-
lization in MCP and access performance while reducing
the energy consumption using the NSGA-III. Through
adequate experimental evaluation and comparison anal-
ysis, the efficiency and effectiveness of our proposed
method are validated.
For future work, we will adjust and extend our method

to implement the meteorological data placement in exact
physical environment. Accordingly, the data access time
should also be reduced than the result of this paper in
future.
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