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Abstract

In recent years, much attention has been focused on difference co-array perspective in DOA estimation field due to
its ability to increase the degrees of freedom and to detect more sources than sensors. In this article, a fractional
difference co-array perspective (FrDCA) is proposed by vectorizing structured second-order statistics matrices instead
of conventional zero-lag covariance matrix. As a result, not only conventional virtual sensors but also the fractional
ones can be utilized to further increase the degrees of freedom. In a sense, the proposed perspective can be viewed
as an extended structured model to generate virtual sensors. Then, as a case study, four DOA estimation algorithms
for wideband signal based on the FrDCA perspective are specifically presented. The fractional virtual sensors can be
generated by dividing the wideband signal into many sub-band signals. Accordingly, the degree of freedom and the
maximum number of resolvable sources are increased. The corresponding numerical simulation results validate the
advantages and the effectiveness of the proposed perspective.
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1 Introduction
Direction of arrival (DOA) estimation is a critical problem
in phased-array radar signal processing field [1]. Con-
ventional DOA estimation methods (e.g., MUSIC [2] and
ESPRIT [3]) were mainly based on the overdetermined
uniform linear array (ULA) model (more sensors than
sources). To detect more sources than sensors and max-
imize the spatial resolution, some non-uniform linear
arrays (NLAs) were introduced into radar society, dating
back to minimum redundancy arrays (MRAs) [4] or mini-
mum hole arrays (MHAs) [5]. Many important advantages
were validated in works [6–8] by forming augmented
covariance matrices. Recently, due to the fact that second-
order statistics (SOS) allowed us to gain more degrees of
freedom (DOFs), several virtual co-array concepts based
on SOS were proposed. Originally, the virtual array con-
cept was used in multi-input multi-output (MIMO) radar
system [9] through an active sensing scenario. Specifi-
cally, the MIMO radar could generate a group of sum
co-arrays (SCA) that increase DOFs from O(N + M)
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to O(NM). A similar but not identical difference co-
array (DCA) concept was proposed in [10], which could
also generate virtual array and increase DOFs from O(N)

to O(N2) in a completely passive scenario by using a new
NLA geometry called nested array. Following this notion,
some new geometries were further developed such as co-
prime array [11], generalized co-prime array [12], super
nested array [13, 14], and dynamic array [15]. In [16, 17],
the authors utilizedmultiple frequencies to fill the missing
co-array elements, thereby enabling the co-prime array
to effectively utilize all of the offered DOFs. In [18], the
authors combined the DCA and the SCA and then pro-
posed difference co-array of the sum co-array (DCSC),
which offered a significant enhancement in the DOFs in
active sensing scenario. In addition, a more general con-
cept called compressive covariance sensing (CCS) was
proposed in [19] by focusing on the reconstruction of the
SOS matrix from sub-Nyquist samples.
The aforementioned DCA-based models were limited

in narrowband signal case. Therefore, P. Pal, the founder
of the DCA model, proposed an auto-focusing based
method in [20] to extend the co-array concept into wide-
band signal case. However, the subspace information of
many sub-bands has not been fully utilized due to the
auto-focusing technique, and the maximum number of
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resolvable sources was limited by the number of consec-
utive integral lags in the co-array. In this article, as an
extension, the fractional difference co-array (FrDCA) per-
spective is proposed by introducing two fractional factors,
which can generate either fractional difference sensor
position or conventional integral difference ones. Such
an extension would bring some advantages for the wide-
band signal DOA estimation: the sub-bands with different
center frequencies would be converted into a set of sig-
nal received from the fractional virtual sensors. Then, one
could choose any element positions of interest to perform
DOA estimation. As a result, the degree of freedom and
the maximum number of resolvable sources are increased.
The article is organized as follows. In Section 2, the

FrDCA model is proposed. Section 3 provides the wide-
band DOA estimation models by using FrDCA. Numer-
ical simulation results are provided in Section 4. Then,
Section 5 concludes this paper. Notations: we use
lower-case bold characters to denote vectors (e.g. a),
upper-case bold characters for matrices (e.g. A), and
upper-case outline letters for set (e.g. A). For a matrix
A, the symbols A∗,AT , and AH denote the complex
conjugation, transpose, and conjugate transpose respec-
tively. diag{A} denotes a column vector consisting of the
main diagonal elements of matrix A. diag{a} denotes a
diagonal matrix that uses the elements of vector a as its
diagonal elements. vec{A} denotes vectorization operator.
The symbol � and ⊗ denote the Khatri-Rao product

and Kronecker product, respectively. |A| denotes the car-
dinality of set A, which is a measure of the number of
elements of the set A.

2 Fractional difference co-array
2.1 Array signal model
Consider a NLA with M sensors at locations
L = {l1, l2, . . . , lM} in units of half a minimal wave-
length (denoted as d0). Assume that D far-field sources sk
impinge to the array from directions θk , k = 1, 2, · · · ,D.
Choosing an assumed sensor located at the origin of
coordinates as the reference, the received data of the pth
sensor can be expressed as:

xp(t) =
∑D

k=1
sk

(
t − lp�k

) + np (t) (1)

where �k = d0 sin(θk)/c, np(t) is the uncorrelated addi-
tive Gaussian white noise of the pth sensor.
Based on array output model (1), assume that one can

obtain an M×M generalized SOS matrix GXX, which can
be a covariance matrix (CM) or some time-frequency SOS
matrices, such as cyclic correlation matrix (CCM) [21], in
different cases.

GXX = AL(μ1f , θ)�AH
L

(μ2f , θ) + W (2)

where μ1 and μ2 are two fractional factors; W is
the total effect of noise, interfere and cross terms;

and AL(f , θ) denotes the array manifold, which depends
upon three parameters: the array formulation L, the cen-
ter frequency f , and the impinging DOAs θ :1

AL(f , θ) = [
aL(f , θ1), aL(f , θ2), · · · , aL(f , θD)

]

aL(f , θk) = [
al1(f , θk), · · · , alM (f , θk)

]T

alp(f , θk) = ej2π flp�k

(3)

where aL(f , θk) denotes the steering vector of array L cor-
responding to the direction of θk . Here, it should be noted
that � is a D×D diagonal matrix. The motivation behind
this diagonal form will be soon made clearly.
Then, we would introduce a basic property of vector-

ization operation that will be useful in the sequel. For a
diagonal matrix B,

vec {ABC} =
(
CT⊗A

)
vec {B}

=
(
CT�A

)
diag {B}

(4)

One can refer to Theorem 2 of [22] for detailed proof.
Based on (4), Gxx can be vectorized into (5):

y = vec{GXX}
= (

A∗
L
(μ1f , θ)�AL(μ2 f , θ)

)
diag {�}+vec {W}

= Â(f , θ)p + w
(5)

where p = diag {�},w = vec {W}, and Â(f , θ) =(
A∗
L
(μ2 f , θ) � AL(μ1 f , θ)

)
. We will further analyze the

term Â(f , θ) by choosing two elements (e.g. pth, qth):

alp(μ1 f , θk)a∗
lq(μ2 f , θk) = ej2πμ1 flp�k e−j2πμ2 flq�k

= ej2π f (μ1lp−μ2lq)�k

= acp,q(f , θ)

(6)

where cp,q = μ1lp−μ2lq. Let us form all the elements into
a matrix form as (7):

A∗
L
(μ2 f , θ)�AL(μ1 f , θ) = A∗

μ2L(f , θ)�Aμ1L(f , θ)

⇒ Aμ1L−μ2L(f , θ)

(7)

One can get the following two conclusions from
Eqs. (5)∼(7).
Firstly, for an array/co-array signal model, a scaled

change in the center frequency can be equivalent to a same
scaled change in the element positions. This concept is the
basic transformation strategy to perform DOA estimation
of wideband signal in Section 3.2.
Secondly, the left items of (7) can be viewed as an aug-

mented manifold of a virtual array with sensors located at
D,D = μ1L − μ2L. Compared to Â(f , θ),Aμ1L−μ2L(f , θ)

only includes all the distinct rows of Â(f , θ); therefore,
one can obtain Aμ1L−μ2L(f , θ) = ŜÂ(f , θ), where Ŝ is a
|D| × |L|2 dimensional selection matrix.
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2.2 Fractional difference co-array perspective
According to the above data model, we then propose the
perspective and definition of FrDCA.

Definition 1 [Fractional difference co-array]: Let us
consider an array consisting of M sensors at positions
A,A = {a1, a2, ..., aN }, and then, for two given fractional
factors μ1 and μ2, the fractional difference co-array is
defined as the array consisting of a set of sensors at posi-
tions D(μ1,μ2):

D(μ1,μ2) � μ1A − μ2A

� {ci,j = μ1ai − μ2aj, ∀1 ≤ i, j ≤ M} (8)

For any two physical sensors at locations {ai, aj}, Fig. 1
shows three kinds of co-arrays. Obviously, for any two
physical sensors, their DCA and SCA are uniquely
defined, while the FrDCA is dependent on μ1 and μ2. As
we know, any two numbers μ1 and μ2 can be expressed as
μ1 = α + β and μ2 = α − β . Therefore, three situations
are analyzed and compared according to different α and β :

1. α 	= 0,β 	= 0. For any pair-wise element positions,
ci,j and cj,i, one can obtain:

ci,j = β(ai + aj) + α(ai − aj)
cj,i = β(ai + aj) − α(ai − aj)

(9)

Equation (9) indicates that ci,j and cj,i are
symmetrical with respect to the β(ai + aj)-dot. Since
the (ai + aj) for different index i, j is varied, the
FrDCA geometry is asymmetrical in this case.

2. α 	= 0,β = 0; The pair-wise element positions can be
expressed as ci,j = α(ai − aj) = −cj,i, which indicates
that the FrDCA geometry is symmetrical with
respect to the fixed zero-dot. Furthermore, if α = 1,
then ci,j = (ai − aj) = −cj,i. The FrDCA becomes a
conventional DCA proposed in [10]. For a given α,
the corresponding FrDCA is a α-scaled conventional
DCA, D(α,α) = αD(1, 1). Combing with (7), given a

Fig. 1 The comparison of three kinds of co-arrays: the difference
co-array, the sum co-array, and the fractional difference co-array

reference frequency f and an operation frequency fk ,
then one can obtain a α-scaled FrDCA D(αk ,αk),
where αk = fk/f . As a result, any desired virtual
sensor position can be generated by choosing an
appropriate operation frequency fk . In a sense, such
FrDCA generated by multi-frequencies operation has
been utilized in [16, 17] to fill the missing co-array
elements, thereby enabling the co-prime array to
effectively utilize all of the offered DOFs.

3. β 	= 0,α = 0; The pair-wise element positions can be
expressed as ci,j = β(ai + aj) = cj,i, which indicates
that the redundancy of any virtual sensor position is
no less than two. Furthermore, if β = 1, then
ci,j = (ai + aj) = cj,i. The FrDCA becomes a SCA.
For a given β , it is easy to find that the corresponding
FrDCA is a β-scaled SCA, D(β ,−β) = βD(1,−1).

3 DOA estimation by using FrDCA
3.1 Review of narrowband signal based DCAmodel
The conventional DCA perspective was proposed in [10].
Assume that the impinging source in (1) can be view as a
narrowband uncorrelated model; hence, the array output
can be expressed as

X(t) = AL(f , θ)s(t) + n(t) (10)

where f denotes the center frequency and s(t) and n(t) are
the source vector and noise vector, respectively. By collect-
ing N snapshots, the covariance matrix can be estimated
by (11)

Rxx � E{XXH} ≈ 1
N

N∑

t=1
X(t)X(t)H

= AL(f , θ)RssAH
L

(f , θ) + σ 2IM

(11)

where IM denotes an M × M identity matrix, Rss the
estimated covariance matrix of source signal, which is a
diagonal matrix. It is entirely suited to the model in (2)
with μ1 = μ2 = 1.

y = vec{Rxx}
= (

A∗
L
(f , θ) � AL(f , θ)

)
p + σ 2vec {IM}

= ADCA(f , θ)p + σ 21M

(12)

where 1M = vec {IM} ,p = diag {Rss} and the corre-
sponding DCA can be expressed as D(1, 1) = {li − lj,
1 ≤ i, j ≤ M}.
After obtaining the virtual array signal model in (12),

all the impinging DOAs can be estimated by using the
spatial smoothing MUSIC algorithm or the compres-
sive sensing (CS) algorithm, which have been discussed
in [10–14].
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3.2 Wideband signal-based FrDCAmodel
In practice, some wideband signal applications, such as
the spread spectrum communication and ultrawideband
radar system, have been increasing recently. DOA esti-
mation for such a wideband signal is also required. For a
wideband signal, the envelope is distinct at different sen-
sors; therefore, the array outputs cannot be simply formed
into a matrix form as (10). The received signal from
each sensor can be divided intom independent sub-bands
with different center frequencies by performing discrete
Fourier transform (DFT). Assume that their center fre-
quencies are denoted as {f1, f2, ...fm}. Then, by choosing a
center frequency fc as a reference, the ith frequency can be
normalized as fi = αifc, where αi is a fractional ratio. For
a given array structure L, the ith sub-band signal can be
denoted as

Xi = AL(fi, θ)Si + Wi (13)

where i = 1, 2, · · · ,m; fi, Si, and Wi denote the center
frequency, source vector, and noise vector of the ith sub-
band signal, respectively. Then, the covariance matrix can
be formed by (14)

Rxx(fi) =AL(fi, θ)Rss(fi)AH
L

(fi, θ)+σ 2
niIM

=AL(αifc, θ)Rss(fi)AH
L

(αifc, θ)+σ 2
niIM

(14)

where Rss(fi) is a diagonal matrix under the assumption
of uncorrelated sources for each frequency fi,Rss(fi) =
diag

{[
δ2si,1 δ2si,1 · · · δ2si,D

]}
, δ2si ,k is the power of kth

source at ith sub-band. All the signal power can be esti-
mated by averaging the diagonal elements of Rss(fi) :

δ̄2(fi) = 1
M

M∑

i=1
[Rss(fi)]i,i (15)

Unlike the case of narrowband single frequency, Eq. (14)
would be vectorized into (16) combing with an operation
of signal power adjustment:

y(fi) = vec{Rxx(fi)/δ̄2(fi)}
= (A∗

L
(αi fc, θ)�AL(αi fc, θ))pi + γnivec {IM}

= Âi(fc, θ)pi + γni1M ∈ C
M2×1

(16)

where pi = diag{Rss(fi)/δ̄2(fi)} = [
γsi,1 · · · γsi,D

]T ,
γsi,k = δ2si,k/δ̄

2(fi). Compared to the signal power δ2si,k , γsi,k
is a ratio, which indicates the level of the kth signal power
to the level of total received signal power (including noise
power) in the ith sub-band.
Based on the model in (16), the corresponding FrDCA

can be Di(αi,αi). Due to the redundancy of the co-array,
|Di(αi,αi)| ≤ M(M − 1), one can average the repeated

rows and reduce the M2 dimensional model in (16) into a
|Di| dimensional model in (17):

yDi(fi) = ADi(fc, θ)pi + γnieDi

= [
ADi(fc, θ) eDi

] [
pi
γni

]
∈ C

|Di|×1

= ÂDi(fc, θ)p̂i

(17)

where eDi =
[
01× |Di|−1

2
1 01× |Di|−1

2

]T
; ÂDi(fc, θ) =

[
ADi(fc, θ) eDi

]
behaves like an augmented array manifold

containing a virtual array manifold matrix ÂDi(fc, θ); and
a noise-related vector eDi ; p̂i = [

pTi γni
]T behaves like an

equivalent input signal, which is only dependent on the
proportion of each signal power.
The reduced model in (17) is a complex valued signal

model generated by averaging the element of covariance
matrix. As we know, for the covariance matrix, Rxx(i, j) =
Rxx(j, i)∗. Therefore, if we let the elements of set Di to be
listed in an ascending order, one can separate the real and
imaginary parts of yDi(fi) by making use of the conjugate
symmetry of covariance matrix :

�(yDi)=
yDi+J|Di|yDi

2
= I|Di|+J|Di|

2
ÂDi(fc, θ)p̂i

�(yDi)=
yDi−J|Di|yDi

2j
= I|Di|−J|Di|

2j
ÂDi(fc, θ)p̂i

(18)

where J|Di| denotes a |Di| × |Di| dimensional exchange
matrix. For the model (18), there are two important
remarks.
Firstly, we focus on ÂDi . Based on the definition

of Di(αi,αi) in (8), one can obtain that the elements in
Di(αi,αi) are pair-wise, ci,j = −cj,i, which leads that the
corresponding steering vectors are conjugate, aci,j = a∗

cj,i .
Therefore, ÂDi + J|Di|ÂDi is the real-valued matrix, while
ÂDi − J|Di|ÂDi is the imaginary valued matrix.
Secondly, we focus on �(yDi) and �(yDi). The elements

of these two real-valued vectors are symmetric charac-
ter sequences, respectively. Therefore, one can construct a
real-valued signalmodel as (19) by selecting the first |Di|+1

2
rows of �(yDi) and the first |Di|−1

2 rows of �(yDi)

z(fi)=
[
SR�(yDi)

SI�(yDi)

]
=

[SR+SRJ|Di|
2

SI−SIJ|Di|
2j

]
ÂDi (fc, θ)

︸ ︷︷ ︸
BDi (fc,θ)

p̂i

= BDi(fc, θ)p̂i ∈ R
|Di|×1

(19)

where SR and SI are selection matrices for the real and
imaginary parts, respectively:

SR =[ I |Di|+1
2

0 |Di|+1
2 × |Di|−1

2
]∈ R

|Di |+1
2 ×|Di|

SI =[ I |Di|−1
2

0 |Di|−1
2 × |Di|+1

2
]∈ R

|Di |−1
2 ×|Di|

(20)
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Based on this real-valued signal model in (20), the out-
put signals z(fi) corresponding to different frequencies
share the same spatial support. Therefore, without loss of
generality, joint sparse recovery (joint CS) techniques can
be applied for DOA estimation:

Z1 = ∣∣ z(f1)T z(f2)T · · · z(fm)T
∣∣T

=

∣∣∣∣∣∣∣

BD1(fc, θ) · · · 0
...

. . .
...

0 · · · BDm(fc, θ)

∣∣∣∣∣∣∣
︸ ︷︷ ︸

�1(fc,θ)

∣∣∣∣∣∣∣

p̂1
...

p̂m

∣∣∣∣∣∣∣

= �1(fc, θ)p̃1 ∈ R
L1×1

(21)

where L1 = m|D1|, p̃1 =[ p̂T1 p̂T2 · · · p̂Tm]T ,�1(fc, θ) is a
block diagonal matrix. (21) is a joint sparse DOA recon-
struction model without considering signal properties.
If the ratio of each signal power can be independent of

frequency fi, p̂i = p̄1, i = 1, 2, ...,m, all the vectorized sig-
nals in (16) can be directly stacked into a longer virtual
signal in (22) and an augmented FrDCA in (23):

Z1 = ∣∣ z(f1)T z(f2)T · · · z(fm)T
∣∣T

= ∣∣ BD1(fc, θ)T · · · BDm(fc, θ)T
∣∣T p̄1

= �1(fc, θ)p̄1 ∈ R
L1×1

(22)

where �1(fc, θ) behaves like a L1 × D dimensional sam-
pling matrix and Z1 and p̄1 denotes input signal and
output signal, respectively.

D1 =
m⋃

i=1
{Di(αi,αi)} =

m⋃

i=1
{αiL − αiL} (23)

3.3 Sparse DOA recovery algorithm
After obtaining the array model in (21) and (22), DOA
estimation can be performed mainly based on two
methodologies: compressive sensing (CS) and subspace
fitting (SSF).
Choosing the CS methodology, by dividing the region of

interest into a finite grid θ̂ , where θ̂ = {θ̂1, θ̂2, · · · , θ̂Q}, one
could establish an augmented array manifold ADi(fc, θ̂ )

and further build the corresponding over-complete dic-
tionaries �i(fc, θ̂ ) and � i(fc, θ̂ ). Equation (21) can be
rewritten as (24)

Z1 = �1(fc, θ̂ )p̃1(θ̂) ∈ R
L1×1 (24)

where �1(fc, θ̂ ) ∈ R
L1×m(Q+1) and p̃1(θ̂) ∈ R

m(Q+1)×1 .
Since Q  D, the signal p̂i is a D sparse vector in this set-
ting. Then, the general objective function for this problem
is (25)

min
∥∥∥p̃◦

1(θ̂)

∥∥∥
1

subject to
∥∥∥Z1 − �1(fc, θ̂ )p̃1(θ̂)

∥∥∥
2

≤ ε
(25)

where p̃◦
1(θ̂) = ∑m−1

�=0 ‖p̃1((Q+1)�+1 : (Q + 1)�+Q)‖1
and ε denotes the error tolerance of noise dependence.
Similarly, (22) also can be rewritten as (26)

Z1 = �1(fc, θ̂ )p̄1(θ̂) ∈ R
L1×1 (26)

where �1(fc, θ̂ ) ∈ R
L1×(Q+1) and p̄1(θ̂) ∈ R

(Q+1)×1. The
general objective function for this problem is (27)

min
∥∥∥p̄1(θ̂)

∥∥∥
1

subject to
∥∥∥Z1 − �1(fc, θ̂ )p̄1(θ̂)

∥∥∥
2

≤ ε
(27)

To solve this problem, LASSO [23] is an effective algo-
rithm. The objective function can be expressed as

p̄1 = min
p̄1

1
2
‖Z1 − �1(fc, θ̂ )p̄1(θ̂)‖2 + η‖p̄1(θ̂)‖1 (28)

where η is the penalty parameter of data dependence.
In the model (24) and (26), Z1 is influenced by noise

power γn,i. In order to avoid estimating noise power,
one can remove all the zero-lag entities. As a result,
the noise vector eDi in (17) can be removed accord-
ingly. This operation would reduce one dimension of
the over-complete dictionaries and slightly decrease the
computation complexity.
If choosing the SSF methodology, which requires a set

of uniformly distributed sensors, one could select and
construct a virtual ULA U,

U = {−Lu, −Lu+1, · · · , Lu−1, Lu} (29)

Strictly speaking2, U should be a subset of D1 so that
the corresponding virtual signal Yu received by the ULA
U can be exactly selected from Y1,

Yu = SuY1 = A
U
(f , θ)p̄1 ∈ C

(2Lu+1)×1 (30)

where Y1 =
[
yT
D1
, · · · , yT

Dm

]T
and Su is a (2Lu + 1) × L1

dimensional selection matrix. In this setting, (30) behaves
like a fully coherent ULA signal model; therefore, MUSIC
algorithm combined with a rank restoringmethod [24, 25]
can be applied to obtain a spatial spectra P(θ̃),

P(θ̃) = 1
||a

U
(θ̃ , f )HUn||2

(31)

where Un is the eigenvector of noise space, which can be
estimated by performing eigenvalue decomposition of the
rank restored covariance matrix.

3.4 Related remarks
In this paper, we start from providing a new FrDCA con-
cept. Compared to the prior proposed DCA concept, the
position of virtual sensor can be generated from not only
the conventional consecutive integral co-sensors but also
the fractional ones. Therefore, in a sense, it can be viewed
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as an extended or generalized virtual co-array concept.
This relationship is intuitively illustrated in Fig. 1. Then,
by using FrDCA perspective, the virtual co-array can be
extended into the wideband signal case. A wideband signal
can be divided into several narrow sub-bands (with differ-
ent center frequencies ), which can be further transformed
into a group of signals (with a fixed center frequency)
received from a virtual array.
On the wideband co-array model: to solve the prob-

lem of wideband signal DOA estimation, generally, the
signal would be divided into many sub-bands with dif-
ferent center frequencies. Therefore, how to combine
such multi-frequency sub-bands is the central problem.
The authors in [20] combined the signal subspaces at
different frequencies into one joint subspace at the cho-
sen frequency by introducing an auto-focusing matrix.
Combing with the sparse array configuration, theoreti-
cally, more wideband sources than physical sensors can
be resolved. However, the subspace information of many
sub-bands was not been fully utilized due to the auto-
focusing technique, which just cast all the subspaces into
a joint one with a desired center frequency. By using
the proposed FrDCA concept, all the sub-bands can be
fully utilized to generate virtual sensors and to increase
the DOF capacity. Therefore, the proposed algorithm
can resolve more wideband sources than sensors (even
than the DCA-based uniformly virtual co-sensors). These
advantages would be validated in the following simulation
section.
On the sparse recovery model: in this paper, by uti-

lizing the conjugated-symmetrical property of the virtual
signal model, we establish a real-valued sparse recovery
model. Therefore, compared to the prior proposed com-
plex valued sparse recovery model in [17, 18, 20, 26], the
computation complexity is reduced.
The author in [16, 17] proposed a multi-frequency co-

prime array concept. This technique requires to actively
transmit/receive some narrowband signals with different
frequencies in different time slots, so that the covari-
ance matrices of the received signals can exactly fill the
missed holes in the co-array, as a result, the DOF capacity
of co-array can be enhanced accordingly. In this active-
like scheme, the center frequencies and time slots must
be pre-planed before transmitting the certain waveforms.
The proposed algorithm just requires to receive a wide-
band signal, which behaves more like a passive scheme.
As a result, no such pre-planed time slot is required and
the center frequencies can be accordingly chosen/adjusted
after receiving the wideband signal. In addition, the prior
multi-frequency technique only make use of the posi-
tion of integral virtual sensor. For the proposed tech-
nique, all the positions including fractional ones can be
directly presented and utilized. One can select any sen-
sors of interest by adjusting a particular center frequency.

Therefore, the FrDCA concept provide a more flexible
strategy.
How to properly select the center frequency fk? For a

given physical array L and a wideband signal, whose fre-
quency spectrum of interest can cover from fmin to fmax,
one can uniquely determine D(1, 1) = L − L. Then, if
one requires a sensor located at ck , all the potential fac-
tors αk are given by ck ∈ αkD(1, 1),αk ∈ ck

D(1,1) . Take the
corresponding center frequency fk and the bandwidth of
sub-band k into consideration, the constrain condition
can be expressed as fmin ≤ αkf0 ± 0.5k ≤ fmax. In prac-
tice, using the most adjacent sensor to fill this position is
the best choice, which can result in the least frequency
offset.

4 Numerical experiments
In this section, we conduct some numerical experiments
by using MATLAB. To solve the (joint) CS problem, we
use CVX toolbox, a package for specifying and solving
convex programs [27, 28].

4.1 FrDCA-based MUSIC algorithm
In the first experiment, considering a NLA with sensors
located at L = {0, 1, 4, 10, 12, 17}λ

2 (where λ is the
minimal wavelength of signal) and assuming that D Lin-
ear Frequency Modulated (LFM) sources with 10-MHz
bandwidth and 20-MHz center frequency uniformly
distributed in space from −52◦ to 52◦, all the LFM
sources have random initial phases and different initial
frequencies in order to prevent coherence. Four thousand
samples are collected at the sampling rate of 80 MHz
for 50 μs. The SNR is 15 dB. The frequency spectrum
of interest is from 15 to 25 MHz. Firstly, we focus on
the conventional difference co-array D(1, 1) = L − L.
The positions of the virtual sensors and the correspond-
ing redundancy are illustrated in Fig. 2a. Obviously, its
consecutive lags are from −13 to 13. There are holes at
positions ±14 and ±15. The aforementioned analyses
have pointed out that D(αk ,αk) is the αk-scaled D(1, 1).
Therefore, in order to fill the holes at positions ±14,
there are many potential choices for αk , such as 14

17 ,
14
16 ,

14
13 ,

and so on. Combing all the holes into consideration,
we divide the wideband signal into the following eight
sub-bands with αk being { 1416 , 1516 , 1616 , 1816 , 1916 , 2016 , 2216 }. The
corresponding center frequencies can be αkf0 , where
f0 is the reference center frequency. All the selected
center frequencies should be within the frequency
spectrum of interest, 15 MHz ≤ αkf0 ≤ 25 MHz.
Under this constraint, we can chose f0 = 18 MHz.
The corresponding center frequency fk =
{15.75, 16.875, 18.00, 20.25, 21.375, 22.50, 23.625, 24.75}
MHz. Figure 2b shows all the positions of the virtual
sensors in eight kinds of FrDCAs. In addition, in order to
make the sub-bands satisfy narrowband requirement, the
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a

b

Fig. 2 The positions of virtual sensors. a The conventional DCA D(1, 1) and the corresponding redundancy and b FrDCA D(αk ,αk) for different
sub-band signals, where the selected uniformly distributed sensors U are marked with red face color

bandwidth of each sub-band should be much less than the
center frequency fk . Therefore, we chose the bandwidth
as 0.6 MHz.
For DOA estimation based on MUSIC algorithm,

we can select a set of consecutive and uniformly dis-
tributed lags, as presented by the symbol � with red
face color in Fig. 2b. The virtual ULA can be U =
{−22,−21, · · · , 21, 22}. Compared to the conventional
DCA, the one-side aperture of virtual array is increased
from 13 to 22. It validates that, by using the FrDCA con-
cept, the wideband signal received from an array can be
divided into a set of narrowband signal received from a
larger aperture array with enhanced DOF capacity.
In the first experiment, consider nine uncorrelated LFM

sources impinging to the array from the direction θ , θ =
{−52◦, − 39◦, · · · , 39◦, 52◦} , and make a comparison
with the auto-focusing based MUSIC algorithm in [20].
For auto-focusing-based MUSIC algorithm, in order to
make fully use of all the virtual sensor, the correlation
elements corresponding to the holes are assigned with
zero. In this case, the virtual aperture can be increased
to 17 other than 13. The MUSIC spectra of 30 indepen-
dent trials for two kinds of algorithm are illustrated in
Fig. 3. It shows that all the nine sources can be detected

by two algorithms. However, making a further compari-
son between the peaks of the spectra, the peaks on the
FrDCA-based MUSIC spectra are much sharper, which
means that the estimated results are more accurate and
precise.
In the second experiment, increase the number of

sources to 14, θ = {−52◦, − 46◦, · · · , 46◦, 52◦}. The
MUSIC spectra of 30 independent trials are illustrated
in Fig. 4. It shows that the auto-focusing-based MUSIC
algorithm cannot work in such a multi-source condi-
tion, while the FrDCA-based algorithm can clearly and
correctly detect all the 14 sources.

4.2 FrDCA-based CS algorithm
In this section, we test the FrDCA-based CS algo-
rithm. Compared to the MUSIC algorithm, it does
not require the consecutive lags. Therefore, we chose
αk and f0 as follows: f0 = 16 MHz, αk =
{ 15.316 , 1616 ,

18
16 ,

19
16 ,

20
16 ,

21
16 ,

22
16 ,

23
16 ,

24
16 ,

24.7
16 }. The other parame-

ters are set as they are before. In this setting, a much larger
virtual aperture is obtained.
In the third experiment, consider nine uncorrelated

LFM sources and DOA estimation performed based on
the two proposed sparse model in (25) and (28), where a
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a

b

Fig. 3 The spectra of two algorithms: a the auto-focusing-based MUSIC and b the FrDCA-based MUSIC by using a six-element NLA from an
environment containing nine wideband signals

grid interval of �θ̂ = 0.25◦ and the penalty parameter of
η = 0.55 are used. The normalized spectra of 30 indepen-
dent trials for two kinds of CS algorithms are illustrated
in Fig. 5. By using CVX toolbox to solve the two models
at the same platform, based on the run-time information

of CVX, the total CPU time for CS model in (28) is 0.51 s,
while 7.34 s for joint CS model in (25). Then, a further
comparison on the spectra shows that, generally, the two
algorithms can resolve all the sources clearly and correctly
with some sharp peaks. Specifically, the joint CS algorithm

a

b

Fig. 4 The spectra of two algorithms: a the auto-focusing-based MUSIC b the FrDCA-based MUSIC algorithms by using a six-element NLA from an
environment containing 14 wideband signals
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a

b

Fig. 5 The normalized spectra of two algorithms: a the FrDCA-based CS and b the FrDCA-based joint CS by using a six-element NLA from an
environment containing nine wideband signals

relatively outperforms the CS model because the former
takes the signal power fluctuation into full consideration.
There are some low-level background noise, as shown in
the spectra of CS algorithm, which are mainly generated
by the power approximation.

In the fourth experiment, increase the number of
sources to 14. The normalized spectra of 30 independent
trials are illustrated in Fig. 6. It shows that the per-
formance of FrDCA-based joint CS algorithm is greatly
reduced. Many false peaks are presented in the spectra

a

b

Fig. 6 The normalized spectra of two algorithms: a the FrDCA-based CS b the FrDCA-based joint CS by using six-element NLA from environment
containing 14 wideband signals
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because the joint CS model does not possess enough DOF
capacity to resolve so many sources. However, the CS
algorithm can still maintain a good performance due to
the increased DOF capacity.

4.3 RMSE
In this section, the performance of DOA estimation is
compared via Monte Carlo trials. Hence, we define the
average root-mean-square error (RMSE) of the estimated
DOAs from 100 Monte Carlo trials as:

RMSE =
√√√√ 1

100D

100∑

n=1

D∑

k=1
(θ̃k(n) − θk)

2 (32)

where θ̃k(n) is the estimation of θk for the nth trial. We
compare how the SNR affects the DOA estimation.
The performances of four kinds of algorithms as a func-

tion of the input SNR or the number of snapshots are
quantified by the RMSE of 100 independent trials in the
aforementioned two simulation conditions (D = 9, 14).
The other parameters are set as they are before. The
RMSEs corresponding to different SNR for four kinds
of algorithms are illustrated in Figs. 7 and 8, respec-
tively. It is observed that three kinds of FrDCA-based
algorithms generally outperform the auto-focusing-based
MUSIC algorithm in all the conditions. The FrDCA-based
joint CS algorithm achieves the best performance when
the number of impinging source is 9, while its perfor-
mance is reduced when the number of impinging source
is increased to 14. The FrDCA-based MUSIC and CS
algorithm is efficient and robust for the multi-source con-
dition, especially when SNR ≥ 0 dB. However, their
performances are greatly reduced when SNR < 0 dB.
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Fig. 7 The comparison of RMSEs corresponding to different SNR for
four kinds of algorithms by using six-element array from an
environment containing nine wideband signals
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Fig. 8 The comparison of RMSEs corresponding to different SNR for
four kinds of algorithms by using six-element array from an
environment containing 14 wideband signals

The RMSEs corresponding to different number of snap-
shots are illustrated in Fig. 9. It is observed that the
proposed FrDCA-based algorithms have already estab-
lished a clear superiority. As the number of snapshots
decreased, the signal power ( variance matrix ) estimation
error are accordantly increased. Such estimation errors,
which could be viewed as power fluctuation, would be
spread in the FrDCA-based CS/MUSICmodel. Therefore,
their performance are greatly reduced in small number of
snapshots compared to the joint CS algorithm.

4.4 The case of power fluctuation
In this section, we focus on the case of power fluctua-
tion; assume that 9 LFM sources with 2-MHz bandwidth
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Fig. 9 The comparison of RMSEs corresponding to different number
of snapshots for four kinds of algorithms by using six-element array
from an environment containing 14 wideband signals
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and fck MHz center frequency are uniformly distributed in
space from −52◦ to 52◦, where fck = {16, 17, 18, · · · , 24}.
In this setting, the signal power is significantly fluctuant
and the FrDAC-based CS and MUSIC algorithms fail to
work. We test the FrDCA-based joint CS algorithms by
dividing the wideband signal into nine sub-bands based on
the following parameter: fk = {16, 17, · · · , 24} MHz, f0 =
20MHz, the bandwidth of all the sub-bands is 1MHz. The
normalized spectra of 30 independent trials are illustrated
in Fig. 10. It shows that the joint CS algorithm can success-
fully resolve all sources in such a case of power fluctuation.
The sharp peaks in the spectra indicate that the effective-
ness of the algorithm and the measurement accuracy and
precision are favorable.

5 Conclusions
Following the DCA perspective, we propose a FrDCA
perspective by vectorizing structured SOS matrices. In a
sense, it can be viewed as an extended structured model
to generate virtual sensors including not only the conven-
tional virtual sensors but also fractional ones. In practice,
three DOA estimation algorithms for wideband signal
based on proposed FrDCA are specifically presented. A
wideband signal can be divided into several sub-band
signals with different center frequencies. Then, by using
FrDCA perspective, these sub-band signals can be fur-
ther transformed into a group of virtual array signal with
a fixed reference center frequency. In addition, by using
the wideband signal to increase DOF capacity, more wide-
band sources than sensors (even more than virtual co-
sensors) can be resolved. In the end, the corresponding
numerical simulation results validate the advantages and

Fig. 10 The spectra of the FrDCA-based joint CS algorithm by using a
six-element NLA from environment containing nine wideband signals
of power fluctuation

the effectiveness of the proposed perspective through the
performance comparisons with the existing algorithm.

Endnotes
1 In the sequel, by analogy,ADi(μ1f , θ) denotes the array

manifold with the center frequency being μ1f and the
array formulation being Di.

2 To fully make use all the virtual sensors, a small num-
ber of correlation elements corresponding to the holes can
be assigned with zero. In this setting, U � D1 and the
performance may be marginally improved.
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