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Abstract

Background: Ambient air pollution is associated with numerous adverse health outcomes, but the underlying
mechanisms are not well understood; epigenetic effects including altered DNA methylation could play a role. To
evaluate associations of long-term air pollution exposure with DNA methylation in blood, we conducted an epigenome-
wide association study in a Korean chronic obstructive pulmonary disease cohort (N = 100 including 60 cases) using
Illumina’s Infinium HumanMethylation450K Beadchip. Annual average concentrations of particulate matter ≤ 10 μm in
diameter (PM10) and nitrogen dioxide (NO2) were estimated at participants’ residential addresses using exposure
prediction models. We used robust linear regression to identify differentially methylated probes (DMPs) and two
different approaches, DMRcate and comb-p, to identify differentially methylated regions (DMRs).

Results: After multiple testing correction (false discovery rate < 0.05), there were 12 DMPs and 27 DMRs associated
with PM10 and 45 DMPs and 57 DMRs related to NO2. DMP cg06992688 (OTUB2) and several DMRs were associated
with both exposures. Eleven DMPs in relation to NO2 confirmed previous findings in Europeans; the remainder were
novel. Methylation levels of 39 DMPs were associated with expression levels of nearby genes in a separate dataset of
3075 individuals. Enriched networks were related to outcomes associated with air pollution including cardiovascular
and respiratory diseases as well as inflammatory and immune responses.

Conclusions: This study provides evidence that long-term ambient air pollution exposure impacts DNA methylation.
The differential methylation signals can serve as potential air pollution biomarkers. These results may help better
understand the influences of ambient air pollution on human health.
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Background
Exposure to ambient air pollution has well-documented
adverse effects on health outcomes, including cardiovas-
cular disease [1] and pulmonary function [2]. Oxidative
stress and inflammation have been suggested as under-
lying mechanisms but specific data supporting these
links are lacking. Despite mounting evidence of the
negative impacts of air pollution exposure on health out-
comes, the underlying mechanisms are not well
understood.
DNA methylation, an epigenetic modification that can

influence gene expression, has widely replicated
genome-wide associations with smoking [3]. While there
are fewer data, there is evidence that ambient air pollu-
tion influences methylation [4–7]. Most studies of
long-term air pollution exposure and methylation have
been conducted in Caucasian adult populations [5–7]
and evidence for replication of differentially methylated
probes (DMPs) across studies or different ethnic groups
is sparse.
We performed an epigenome-wide association study

(EWAS) to evaluate the relationship of long-term expos-
ure to particulate matter ≤ 10 μm in diameter (PM10)
and nitrogen dioxide (NO2) with blood DNA methyla-
tion in adults (N = 100) participating in a Korean chronic
obstructive pulmonary disease (COPD) cohort. We iden-
tified differentially methylated signals in relation to air
pollution exposure both at an individual C–phosphate–
G (CpG) probe level and at a regional level involving
several neighboring CpG probes (CpGs). We evaluated
whether methylation levels of our DMPs were associated
with expression levels of nearby transcripts in a large
independent dataset with matched gene expression and
DNA methylation in the same individuals, Biobank-
#based integrative omics studies (BIOS) consortium. We
also replicated findings from earlier EWASes in Euro-
pean populations, reporting a list of DMPs showing
similar associations in our Asian population.

Methods
Study population
For DNA methylation profiling, study participants (N = 100
including 60 individuals with COPD) were sampled from a
Korean COPD cohort [8]. Data and biologic specimens col-
lected at a baseline visit (between late August and early
November in 2012 and 2013) were used in this study. Blood
and urine samples as well as survey questionnaires were
obtained for all study participants who also underwent
physical examination for anthropometric measurements. A
trained nurse measured height and weight using the body
composition analyzer IOI 353 (Aarna Systems., Udaipur,
India). Body mass index (BMI) was calculated as weight
(kg) divided by height squared (m2). Information on
cigarette smoking status (never, former, and current) and

pack-years of smoking was obtained via questionnaires. We
calculated pack-years of smoking, for current and former
smokers, by multiplying the number of years smoked by
the number of cigarette packs smoked per day. Current
nonsmoking status was validated using urine cotinine levels
(nmol/L) measured by immunoassay (Immulite 2000 Xpi;
Siemens Healthcare Diagnostics, Tarrytown, NY, USA).
Workflow of this study can be found in Additional file 1:
Figure S1. The study protocol was approved by the Institu-
tional Review Board at Kangwon National University. We
obtained informed consent from all study participants.

Air pollution exposure at residential addresses
We estimated annual average concentrations of PM10

(μg/m3) and NO2 (ppb) at each residential address ob-
tained from the baseline survey using a national-scale
exposure prediction model [9]. Using air pollution regu-
latory monitoring data in 2010, the prediction model
estimated the annual average concentrations of the pol-
lutants in a universal kriging framework based on
geographic predictors and spatial correlation. Geo-
graphic predictors were estimated by hundreds of
geographic variables that represent pollution sources in-
cluding traffic, demographic characteristics, land use,
physical geography, transportation facilities, emissions,
vegetation, and altitude. To account for season in the
prediction model, we used several inclusion criteria for
monitoring sites: (1) having more than 75% (274 days) of
daily data, (2) having at least one daily measurement in
each of the 10 months, and (3) having no more than 45
consecutive days without daily measurements. Partici-
pants’ residential addresses at the baseline visit were
geocoded using GeoCoder-Xr software (Geoservice,
Seoul, South Korea).

DNA methylation profiling
DNA was extracted from blood samples collected at the
baseline visit. We obtained genome-wide methylation
profiles using the Infinium HumanMethylation450K
BeadChip (Illumina, Inc., San Diego, CA, USA). We
used a pipeline implemented in the chip analysis methy-
lation pipeline (ChAMP) R package [10] for signal
extraction and initial low-quality probe filtering, exclud-
ing probes having a detection p value > 0.01 in any
sample or a bead-count < 3 in 5% or more samples. Cor-
rection for probe design bias was done using Beta Mix-
ture Quantile dilation normalization [11]. Batch effects
were corrected using Combat [12] in the sva R package
[13]. To minimize false positive findings, we additionally
removed non-CpG probes and probes reported to be
non-specific [14, 15] or potentially influenced by nearby
single-nucleotide variants [14]. We provide probe filter-
ing steps in Additional file 2: Table S1. After excluding
probes on the X and Y chromosomes, the remaining
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402,508 CpGs were used for association analyses. To re-
duce the potential influence of extreme methylation out-
liers on association results, we removed methylation values
more extreme than Tukey’s outer fences [16] defined as
more than three times the interquartile range from the
25th and 75th percentiles of methylation values at each
probe, resulting in removal of 75,549 (0.19%) values across
all participants. To estimate cell-type proportions includ-
ing CD8+ T lymphocytes, CD4+ T lymphocytes, natural
killer cells, B cells, monocytes, and granulocytes, we
applied Houseman’s algorithm [17] with the Reinius refer-
ence panel [18] using the minfi R package [19].

Identification of differentially methylated probes
To evaluate associations of air pollution exposure with
DNA methylation, we used robust linear regression
models to decrease the influence of outlier methylation
values and heteroskedasticity on association results [20].
Annual average concentrations of a pollutant (PM10 or
NO2) were used as the predictor and the methylation beta
values were the response variable. A methylation beta
value is a ratio of methylated CpG probe intensity to total
probe intensity and ranges between 0 (unmethylated) and
1 (methylated). Covariates included were age (years), sex
(male, female), cigarette smoking (never, former, current),
pack-years of smoking, BMI (kg/m2), COPD status (cases,
noncases), and estimated cell-type proportions. For
genome-wide statistical significance, we set a threshold of
Benjamini-Hochberg false discovery rate (FDR) adjusted p
value < 0.05 unless otherwise noted. We also used p value
< 1.2E-07 (= 0.05/402,508) as a cutoff for statistically
significant associations after Bonferroni correction. We
used R version 3.0.2 for preprocessing methylation data
from raw data (.idat files) to methylation beta values and
R version 3.4.0 for association analyses and visualization
of differential methylation regions.

Identification of differentially methylated regions
In addition to association analyses at individual CpGs, we
applied two different methods to identify differential DNA
methylation at the regional level in relation to air pollution
exposure: DMRcate [21] and comb-p [22]. As the two
methods implement different algorithms to identify differ-
entially methylated regions (DMRs), we used both
methods to find significant DMRs while reducing false
positives. DMRcate uses a tunable kernel smoothing
process with differential methylation association signals,
whereas comb-p examines regional clustering of low p
values from irregularly spaced p values. We used the
“dmrcate” function in the DMRcate R package with input
files from the epigenome-wide association results: regres-
sion coefficients, standard deviations, and uncorrected p
values. Comb-p, a stand-alone software, was used with in-
put files containing uncorrected p values and information

on chromosomal locations (chromosome and physical
position). To define significant DMRs in our study, we
applied the following three criteria. First, more than one
CpG should reside within a DMR. Second, regional differ-
ential methylation signals can be calculated using neigh-
boring CpGs within 1000 base pairs (bp). Third, a region
must have multiple-testing corrected p value < 0.05 in
both methods: Benjamini-Hochberg FDR for DMRcate
and Sidak for comb-p. The use of FDR for DMRcate and
Sidak for comb-p was the default setting in the two
methods. As the minimum number of CpGs (N = 2) in a
region and the minimum length of a distance (N = 1000
nucleotides) were the defaults in DMRcate, we used the
same values for comb-p to harmonize results from the
two methods. As the two methods call DMRs based on as-
sociation results of neighboring probes, a significant DMR
does not necessarily overlap a significant differentially
methylated probe (DMP) in that region (Additional file 2:
Table S2 and S3). To visualize regions of differential
methylation, we used the coMET R package [23].

Biological implications of association results
Gene annotation for each CpG was done by using the man-
ufacturer’s annotation file [24]; the UCSC RefGene names
were obtained. For biological implications of our differential
methylation signals in relation to each pollutant (PM10 or
NO2), we explored curated variant annotations in the
GeneticsLand software (OmicSoft, QIAGEN, NC, USA)
and performed functional pathway analyses using the “Core
Analysis” of ingenuity pathway analysis (IPA; Ingenuity
Systems, QIAGEN, CA, USA) on genes annotated to DMPs
with an uncorrected p value < 1E-04 (an arbitrary cutoff for
suggestive association) or significant DMRs. To assess en-
richment of tissue- or cell type-specific signals, we analyzed
DMPs (FDR < 0.05) and probes having the minimum p
value in each DMR for overlap with DNase 1 hypersensitiv-
ity sites (DHSs) using the experimentally derived functional
element overlap analysis of ReGions from EWAS
(eFORGE, version 1.2) [25].

Replication look-up
To replicate our DMPs with results from previous
EWASes, we looked for evidence of our DMPs (FDR <
0.05) in the two published epigenome-wide studies of
PM10 and/or NO2 exposure in adults [6, 7]. Also, we ex-
amined whether DMPs reported in the two studies were
replicated in our study. Across the two studies, 5001 DMPs
were reported (FDR < 0.05): 9 for PM10 and 4992 for NO2.
Of these, 4671 were available for the look-up analysis in
our data after probe filtering: 9 for PM10 and 4662 for
NO2. We set the cutoff of an uncorrected p value < 0.05
for statistical significance for the look-up.
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Associations of methylation levels of DMPs with gene
expression levels of nearby transcripts: expression
quantitative trait methylation in the BIOS data
To evaluate associations between methylation levels of
DMPs and expression levels of nearby transcripts
(cis-eQTMs), we regressed the methylation M value, the
log2 ratio of methylated versus unmethylated probe inten-
sities, on gene expression, adjusting for age, sex, lympho-
cytes percentage, monocyte percentage, and RNA flow cell
number. The inflation of models was corrected using the
“bacon” method [26]. We mapped the expression quantita-
tive trait methylation (eQTMs) in a window of 250 kilo-
base pairs (kb) around the significant DMPs (FDR < 0.05).
For this analysis, we used a total of 3075 samples for which
both methylation and gene expression data were available
from 4 cohorts: Leiden Longevity Study, LifeLines Study,
Rotterdam Study, and Netherland Twin Study. We
analyzed each cohort separately and then meta-analyzed
the results using the inverse variance-weighted fixed-ef-
fects model using METAL software [27].

Results
The average age of the study participants was 73 years
(standard deviation, SD = 6) and 66% were male (Table 1).
There were 39 never, 30 former, and 31 current smokers.
The mean annual average concentration was 45.1 μg/m3

for PM10 and 13.1 ppb for NO2. The two air pollutants
were highly correlated (Spearman correlation coefficient =
0.74, p value < 2.2E-16).
We observed numerous DMPs in relation to the two

pollutants (FDR < 0.05): 11 for PM10 alone, 44 for NO2

alone, and 1 for both PM10 and NO2 (Tables 2 and 3).

Of these 56 DMPs, some showed statistical significance
after Bonferroni multiple testing correction: cg05454562
(WDR46), cg13999433 (AKNA), and cg11691844 (SYTL2)
associated with PM10 exposure (Table 2); cg05171937
(STK38L), cg26583725 (8541 bp apart from IRS2), and
cg06226567 (C20orf56) associated with NO2 exposure
(Table 3). The DMP cg06992688 (OTUB2) was positively
associated with both PM10 and NO2 (FDR < 0.05). Expos-
ure to the two pollutants was mostly positively associated
with DNA methylation: 92% (N = 11/12 CpGs) for PM10

and 71% (N = 32/45 CpGs) for NO2. In Additional file 1:
Figure S2, we provide Manhattan and quantile-quantile
plots for visual representation of the epigenome-wide
association results (Additional file 3). No systematic infla-
tion was observed in our results as genomic inflation fac-
tor (lambda) values were 0.83 for PM10 exposure and 1.07
for NO2 exposure.
We found numerous DMRs in relation to air pollution

exposure: 22 for PM10 alone, 52 for NO2 alone, and 5
for both PM10 and NO2 (Tables 4 and 5). The five DMRs
associated with both pollutants were chr6:30297174-
30297627 (TRIM39), chr6:31539539-31540750 (LTA),
chr8:19459672-19460243 (CSGALNACT1), chr17:8008
4554-80085082 (CCDC57), and chr20:45179157-
45179413 (C20orf123).
Although a DMR does not necessarily contain a DMP,

one DMR related to PM10 exposure chr8:28961315-
28961356 (KIF13B) contains a DMP—cg07023317. Four
DMRs associated with NO2 exposure contain a DMP:
cg02901136 in chr1:153347819-153348305 (S100A12),
cg11586857 in chr6:31539539-31540750 (LTA), cg153
52829 in chr14:105390602-105391263 (PLD4), and
cg04025675 in chr15:45670068-45671708 (GATM;
LOC145663). From each DMR method, the top two DMRs
based on multiple-testing corrected p values (FDR from
DMRcate) were visualized for regional association results
including annotation of regulatory genomic regions and
pairwise correlation of neighboring probes (Additional file 1:
Figure S3).
We identified biological networks enriched in our as-

sociation results based on genes to which either DMPs
(FDR < 0.05) or CpGs having the minimum p value
within the DMRs (FDR < 0.05 in DMRcate, Sidak ad-
justed p value < 0.05 in comb-p) were annotated: 138
for PM10 and 288 for NO2. The enriched networks in-
cluded inflammatory and immune responses and
cardiovascular, respiratory, and metabolic diseases
(Additional file 2: Table S4 and S5). Cancer,
hematological development, immunological and inflam-
matory diseases pathways overlap between PM10 and
NO2 related differential methylation signals (Additional
file 1: Figure S4. A). Of the genes associated with both
PM10 and NO2 exposure, several contribute to the
hematological, immunological, and inflammatory

Table 1 Descriptive characteristics of the study population

Characteristics The Korean COPDa cohort (N = 100)

Age, years 72.8 ± 6.3

Male 66 (66%)

Body mass index, kg/m2 22.9 ± 2.9

COPD, case 60 (60%)

Cigarette smoking

Never 39 (39%)

Former 30 (30%)

Current 31 (31%)

Pack-years

Former smoker 28.9 ± 19.6

Current smoker 35.7 ± 19.1

Annual average air pollution concentration at residential addresses

PM10, μg/m
3 45.1 ± 2.0

NO2, ppb 13.1 ± 1.4

N (%) or mean ± standard deviation reported
aChronic obstructive pulmonary disease
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networks: NLRC4, RPTOR, CUX1, S100A12, LTA, and
HLA-DMB (Additional file 1: Figure S4. B).
Using eFORGE [25], we found some enriched tissue- or

cell type-specific histone marks (H3K27me3, H3K36me3,
H3K4me3, H3K9me3, and H3K4me1) among the 132
probes associated with air pollution (PM10 or NO2) expos-
ure based on either FDR < 0.05 from the DMP analyses or
the minimum p value in the DMRs: 11 DMPs for PM10

exposure alone, 44 DMPs for NO2 exposure alone, 1 DMP
for both PM10 and NO2 exposure, 19 probes showing the
minimum p value in PM10 exposure related DMRs, 49
probes showing the minimum p value in NO2 exposure re-
lated DMRs, and 8 probes showing the minimum p value
in DMRs associated with both PM10 and NO2 exposure.
Enrichment of H3K4me1 in blood was observed for
differential methylation related to PM10 exposure
(Additional file 1: Figure S5). With respect to differential
methylation related to NO2 exposure, several histone
marks were enriched: H3K4me1, H3K27me3, H3K4me3,
and H3K9me3 in blood; H3K4me1 and H3K27me3 in
embryonic stem (ES) cell; and H3K4me1 in lung
(Additional file 1: Figure S6).
Several DMPs (FDR < 0.05) in our study were reported

to be associated with air pollution exposure in previous
genome-wide DNA methylation studies. Of the 27
DMPs associated with NO2 (FDR < 0.05) in our study, 11
were reported to be related to NO2 exposure with the
same direction of effects (Table 6) in the LifeLines
cohort [7]. The 12 DMPs related to PM10 (FDR < 0.05)
in our study were novel, meaning not reported to be

associated with this pollutant in either of the two earlier
studies [6, 7]. Notably, of the 4662 probes reported to be
associated with NO2 exposure in the 2 studies and also
available in our data, 26% (N = 1231) showed associa-
tions in our study of at least nominal significance
(uncorrected p value < 0.05) with the same direction of
effects (Additional file 2: Table S6).
From the analyses linking DNA methylation and gene

expression in the BIOS data, we observed correlations
of methylation levels of DMPs with gene expression
levels of nearby (spanning a 250 bp window) transcripts
(uncorrected p value < 0.05). Notably, of the 56 DMPs
(FDR < 0.05), 70% (N = 39) were significantly related to
gene expression of nearby transcripts (Additional file 2:
Table S7).

Discussion
To our knowledge, this is the first study of genome-wide
DNA methylation in relation to long-term ambient air
pollution exposure, both PM10 and NO2, in an Asian
population. We identified many differentially methylated
signals—both individual probes and regions—related to
long-term air pollution exposure in blood. We also repli-
cated, in our Asian population, findings from earlier
studies in European populations. Of our genome-wide
significant findings, some provide the first replication of
an earlier report from a European population [7] while
others are novel. Notably, methylation levels of many
DMPs were associated with gene expression levels of
nearby transcripts, providing a link between ambient air

Table 2 Differentially methylated CpGs in blood DNA in relation to PM10 exposure (FDR < 0.05), ordered by chromosomal location

Chra Gene (distance to geneb) Probe Positionc Coefd SEe Pf

1 NEGR1 cg07721244 72749275 0.004 0.001 1.6E-07

2 ARID5A cg04722215 97205147 − 0.006 0.001 1.4E-07

3 FOXL2 (− 81,364) cg21742790 138581702 0.005 0.001 8.6E-07

3 XXYLT1 (− 92,147) cg04252203 194696866 0.005 0.001 6.7E-07

6 WDR46 cg05454562g 33254447 0.006 0.001 4.3E-09

7 FAM20C (− 5283) cg16998831 187686 0.008 0.002 3.0E-07

8 KIF13B cg07023317 28961315 0.008 0.002 1.4E-06

9 AKNA cg13999433g 117156883 0.007 0.001 3.9E-08

11 SYTL2 cg11691844g 85460604 0.006 0.001 1.1E-07

14 OTUB2 cg06992688 94491958 0.008 0.002 1.0E-06

16 MIR5093 (11,6079) cg26964426 85455911 0.025 0.005 8.3E-07

18 NPC1 cg12709880 21163172 0.007 0.001 3.8E-07
aChromosome
bDistance to transcription start site of the mapped gene (base pair)
cPhysical position (base pair, National Center for Biotechnology Information human reference genome assembly Build 37.3)
dRegression coefficient from statistical model. Covariates age, sex, cigarette smoking status, pack-years of smoking, BMI, COPD status, and estimated cell-type
proportions were included in the model. The coefficient can be interpreted as the difference in DNA methylation per 1 μg/m3 PM10 exposure. For example,
cg07721244 showed 0.4% methylation increase per 1 μg/m3 PM10 exposure increase. Methylation values range 0–1
eStandard error of regression coefficient
fUncorrected p value
gStatistically significant after Bonferroni multiple-testing correction (1.2E-07)
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Table 3 Differentially methylated CpGs in blood DNA in relation to NO2 exposure (FDR < 0.05), ordered by chromosomal location

Chra Gene (distance to geneb) Probe Positionc Coefd SEe Pf

1 MAN1C1 (− 7282) cg16396978 25936677 0.008 0.002 3.9E-06

1 ERI3 cg13451048 44820073 0.007 0.001 8.6E-07

1 RPL5 cg02769668 93302925 − 0.003 0.001 3.3E-07

1 WARS2 (− 29,067) cg06764239 119544772 0.002 3.5E-04 4.3E-06

1 S100A12 cg02901136 153348305 0.012 0.002 2.7E-06

2 STON1 (169) cg23256664 48757477 − 0.001 3.0E-04 8.9E-07

2 NDUFB3 cg04865026 201936505 0.012 0.002 7.5E-07

2 PLEKHM3 cg09950920 208734940 0.013 0.003 2.7E-07

2 PIKFYVE cg19351166 209133632 0.008 0.002 5.5E-06

3 CTDSPL cg12386061 37906586 0.002 4.3E-04 5.5E-06

3 DCBLD2 (122,596) cg01188562 98637410 − 0.004 0.001 2.0E-06

3 AP2M1 cg17343451 183899704 0.009 0.002 3.3E-06

4 CPLX1 cg16649791 816968 − 0.014 0.003 1.0E-06

4 LINC01097 (− 3902) cg25913520 13524041 0.002 3.6E-04 2.8E-06

4 LOC641518 cg13775316 109093218 0.002 4.0E-04 6.2E-07

5 DAP (86217) cg23112301 10765559 − 0.005 0.001 3.8E-06

5 ZNF366 cg21770462 71803219 0.008 0.002 4.7E-06

5 ERAP1 (− 82,414) cg13625213 95915327 − 0.002 4.0E-04 3.4E-06

5 CDHR2 (− 2294) cg18194153 175967218 0.010 0.002 1.3E-07

6 LTA cg11586857 31540136 − 0.007 0.001 3.5E-06

8 PMP2 cg22796481 82353365 − 0.019 0.004 6.7E-07

8 OSR2 cg09607488 99963657 0.007 0.002 4.5E-06

9 RORB cg04130427 77113915 0.005 0.001 3.7E-06

10 ZNF438 cg10575075 31288634 0.014 0.003 2.0E-06

10 EMX2 cg02420850 119302157 0.002 4.0E-04 6.2E-07

11 TMEM138 cg03370752 61136373 0.010 0.002 5.5E-06

11 SORL1 cg17510957 121466629 0.011 0.002 5.1E-06

12 TEAD4 cg12902426 3068889 0.003 0.001 3.7E-06

12 STK38L cg05171937g 27396765 0.010 0.002 1.1E-08

12 DDX55 cg13559144 124086193 0.002 4.3E-04 3.0E-06

13 EDNRB cg23326536 78491199 − 0.003 0.001 1.7E-06

13 IRS2 (−8541) cg26583725g 110397643 − 0.001 2.3E-04 4.9E-08

14 ITPK1 cg05284742 93552128 0.009 0.002 4.1E-06

14 OTUB2 cg06992688 94491958 0.013 0.003 3.3E-06

14 PLD4 cg15352829 105391018 0.010 0.002 3.0E-06

15 LOC145663 cg04025675 45671028 0.005 0.001 6.3E-07

16 ZCCHC14 cg16727006 87470545 − 0.010 0.002 4.8E-06

17 EFCAB5 (− 2689) cg22888787 27950276 0.010 0.002 3.9E-07

17 CD300A (− 12,486) cg00227781 72450036 0.004 0.001 3.0E-06

19 LOC100128675 cg06642503 35597415 − 0.005 0.001 2.9E-06

19 ZNF347 cg15050103 53642858 − 0.008 0.002 3.7E-06

19 ZNF542 (− 28,810) cg06109293 56850658 0.020 0.004 1.9E-07
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pollution exposure-related differential methylation and
gene expression.
Some of our DMPs annotated to genetic loci reported in

published genome-wide association studies of various
health outcomes that have been related to air pollution ex-
posure. Differential methylation of cg11586857 related to
both pollutants annotated to LTA in which an earlier study
identified rs1799964 (p value = 3.3E-07) to be associated
with blood lipid levels [28]. Cg06992688 associated with
exposure to both air pollutants resides in OTUB2, a nearby
gene of three genetic variants related to lung function with
p values around 1.0E-04 [29]. In addition, cg05284742
related to NO2 exposure is located in ITPK1; this gene con-
tains rs2295394 (p value = 2.3E-16) associated with myocar-
dial infarction in Asian populations [30].
Knowledge-based pathway analyses and enrichment

analyses of epigenetic elements using publicly available
data provided biological implication of our study find-
ings. Enrichment of networks, such as inflammatory
and immune responses and cardiovascular, pulmonary
and metabolic diseases, in our results supports previous
findings of air pollution exposure and the identified dis-
ease associations. Several enriched histone marks in
relevant tissue and cell types (embryonic stem cell,
blood and lung) suggest additional biological relevance
of our differential methylation signals.
We found five studies examining associations of DNA

methylation, measured using Illumina’s Infinium 450K
array, with ambient air pollution exposure in either
children or adults [5–7, 31, 32]. Of the five, one re-
ported DMPs associated with short-term exposure to
particulate matter < 2.5 μm (PM2.5) [31]. Chi and col-
leagues [5] measured DNA methylation using the 450K
array but they analyzed only a subset of probes for
associations with PM2.5 and oxides of nitrogen (NOx).
Gruzieva and colleagues [32] found differential methy-
lation in children in relation to prenatal NO2 exposure.
The remaining two analyzed long-term exposure to
pollutants including both PM10 and NO2 for associa-
tions with genome-wide DNA methylation in adults [6,

7]. Notably, differential methylation signals in our study
provide the first replication of findings from the two
studies in European adults [6, 7], suggesting similar
relationships between ambient air pollution exposure
and DNA methylation between European and Asian
populations.
In this study, we adjusted for COPD status because it

may confound associations between air pollution expos-
ure and methylation. We also explored possible effect
measure modification by the disease status in a sensitiv-
ity analysis. Of the 45 CpGs related to NO2, three
(cg16649791, cg13559144, and cg23326536), showed an
interaction term that was nominally significant (Add-
itional file 2: Table S8); none of the 12 PM10-related
CpGs showed statistically significant interaction.
Our study has limitations and strengths. Limitations

include the lack of a replication population. However,
we were able to compare our findings against published
lists of DMPs at genome-wide significance from two
earlier studies in European populations [6, 7]. With
respect to the exposure assessment, we used exposure
values at residential addresses estimated from a
national-scale prediction model rather than an area-spe-
cific model which could not be developed because of the
limited number of monitoring sites (< 10) in the areas
where our study participants resided. However, in previ-
ous US studies, estimates of PM2.5 for specific areas
using national models showed association results com-
parable to those from area-specific models [33, 34].
Third, we used annual average concentrations estimated
for 2010 and participant addresses at baseline visits in
2012 without incorporating participants’ previous expos-
ure to air pollution. The year 2010 was used in the
model because of the increased number of available
monitoring sites and temporally aligned geographic data.
As spatial distribution of air pollution should be rela-
tively consistent over years in our study area with stable
environments, the impact of using temporally limited
exposure and address information on our methylation
analysis could be small. Lastly, we have a relatively small

Table 3 Differentially methylated CpGs in blood DNA in relation to NO2 exposure (FDR < 0.05), ordered by chromosomal location
(Continued)

Chra Gene (distance to geneb) Probe Positionc Coefd SEe Pf

20 NKX2-4 (− 3198) cg27650906 21372807 0.006 0.001 3.1E-07

20 C20orf56 cg06226567g 22559676 0.003 0.001 3.5E-08

21 MORC3 cg01261013 37691747 0.010 0.002 4.1E-06
aChromosome
bDistance to transcription start site of the mapped gene (base pair)
cPhysical position (base pair, National Center for Biotechnology Information human reference genome assembly Build 37.3)
dRegression coefficient from statistical model. Covariates age, sex, cigarette smoking status, pack-years of smoking, BMI, COPD status and estimated cell-type
proportions were included in the model. The coefficient can be interpreted as the difference in DNA methylation per 1 ppb NO2 exposure. For example,
cg16396978 showed 0.8% methylation increase per 1 ppb NO2 exposure increase. Methylation values range 0–1
eStandard error of regression coefficient
fUncorrected p value
gStatistically significant after Bonferroni multiple-testing correction (1.2E-07)
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sample size compared to earlier genome-wide methyla-
tion studies of air pollution exposure.
The study has a number of important strengths.

Participants reported residing in the same residential
areas for 50 years (SD = 21) on average. This high level
of residential stability improved our ability to estimate
associations with long-term air pollution exposure.
Further, we have included both PM10 and NO2 exposure
so that we can examine whether there are common or

unique differential methylation signals related to the two
pollutants. In addition, we followed up our DMPs by
examining relationships with gene expression and found
that a majority were related to gene expression, suggest-
ing functional importance of the associations. Further,
we conducted pathway analyses and enrichment analyses
of tissue- and cell-type specific histone marks to better
understand the biological implication of the differentially
methylated signals that we observed. Last, we identified

Table 4 Differentially methylated regions in blood DNA in relation to PM10 exposure (adjusted P < 0.05 both in DMRcate and
in comb-p)

Chra Gene (distance
to geneb)

DMRcate comb-p Minimum
PgStart (bpc) End (bp) FDRd #CpGse Start (bp) End (bp) Sidak Pf #CpGs

1 MIB2 1549615 1550031 0.020 5 (4) 0.009 0.009

2 NOL10 (−22,166) 10687583 10688726 9.4E-05 8 (5) 10687962 10688317 2.6E-05 5 (5) 2.5E-04

2 SNED1 241975035 241976244 0.006 6 (5) 241975756 0.015 4 (4) 0.005

3 IL20RB 136676672 136676846 0.007 2 (2) 0.011 2.5E-04

6 TRIM27 28874479 28875370 9.4E-05 7 (6) 28874754 7.3E-04 4 (4) 0.002

6 TRIM39 30297174 30297627 2.3E-08 11 (10) 1.1E-07 8.4E-04

6 LTA 31539539 31540750 1.3E-11 19 (13) 31540461 3.4E-06 18 (12) 4.8E-05

6 TREM1 41254471 41254997 0.018 4 (3) 41254433 0.012 5 (3) 1.7E-04

7 FOXK1 4752951 4753002 1.3E-04 3 (3) 7.2E-04 3.4E-04

8 CSGALNACT1 19459672 19460243 0.003 7 (4) 0.001 7.8E-04

8 PIWIL2 22131675 22133356 1.2E-04 15 (6) 22132563 0.027 13 (5) 3.8E-05

8 KIF13Bh 28961315 28961356 2.9E-04 3 (2) 0.003 1.4E-06

9 C9orf131 35042344 35042395 0.003 2 (2) 0.005 5.6E-05

10 CAMK1D 12648032 12648338 3.6E-02 3 (2) 12648526 0.011 4 (3) 0.002

10 C10orf105 73498624 73498766 0.003 3 (2) 0.032 2.7E-05

10 PTPRE 129794994 129795003 0.002 2 (2) 0.020 3.9E-05

15 FLJ42289 100890907 100891257 1.1E-04 5 (4) 100890963 0.014 4 (3) 8.8E-05

17 TNRC6C 76036514 76037562 7.3E-05 7 (7) 76037035 1.6E-05 6 (6) 0.001

17 CCDC57 80084554 80085082 1.3E-04 4 (4) 1.3E-05 4.3E-05

19 PRTN3 846117 846354 0.010 3 (3) 0.004 0.001

19 PRTN3 847943 848071 0.005 4 (4) 0.003 0.001

19 CALR 13053719 13054718 0.002 5 (4) 13054427 0.014 4 (3) 8.3E-05

19 FBXO17 39465821 39466757 0.002 8 (4) 0.004 6.6E-04

20 STK35 2085157 2085344 0.003 2 (2) 0.002 1.7E-05

20 SLPI 43882990 43883307 0.004 3 (3) 43883546 8.5E-04 4 (4) 9.7E-04

20 C20orf123 45179157 45179413 2.0E-04 6 (5) 1.4E-04 2.2E-04

21 C21orf81 15352848 15352983 0.013 2 (2) 0.012 4.7E-04

Blanked cells in “Start,” “End,” and “#CpGs” for comb-p represent the same information compared to results in DMRcate
aChromosome
bMinimum distance to transcription start site of the mapped gene (base pair)
cPhysical position (base pair, National Center for Biotechnology Information human reference genome assembly Build 37.3)
dBenjamini-Hochberg false discovery rate
eNumber of probes in the region (number of probes having uncorrected p value < 0.05)
fP of Sidak multiple-testing correction
gMinimum p value among uncorrected p-values of CpGs in each region. When either start or end positions were different between DMRs from the two DMR
approaches, we used results from DMRcate
hRegion including significant (FDR < 0.05) differentially methylated probes from our epigenome-wide association study
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Table 5 Differentially methylated regions in blood DNA in relation to NO2 exposure (adjusted p value < 0.05 both in DMRcate and
in comb-p)

Chra Gene (distance to
geneb)

DMRcate comb-p Minimum
PgStart (bpc) End (bp) FDRd #CpGse Start (bp) End (bp) Sidak Pf #CpGs

1 RUNX3 25291041 25291905 0.005 7 (4) 25291584 0.044 6 (3) 0.001

1 RPS6KA1 26855423 26855926 0.006 4 (3) 26855765 0.009 3 (3) 9.1E-04

1 TFAP2E 36038468 36039173 2.1E-04 8 (7) 36038701 3.3E-04 6 (6) 0.002

1 ARTN 44398868 44399894 5.6E-04 10 (6) 44399363 0.012 6 (4) 9.8E-04

1 S100A12h 153347819 153348305 2.8E-04 2 (2) 0.005 2.7E-06

1 S100A14 153589528 153590243 0.013 4 (2) 153589781 0.047 3 (2) 0.001

1 S100A13 153599479 153600156 0.001 7 (6) 6.6E-04 0.003

1 ATP8B2 154300117 154300241 6.9E-04 2 (2) 0.007 3.4E-05

1 LAX1 203733971 203734559 0.004 6 (4) 0.002 0.002

1 C1orf35 228291118 228291705 0.023 6 (5) 0.017 0.009

2 ALS2CR11 202483704 202484583 0.007 10 (5) 202484020 0.008 7 (5) 0.006

3 AMT 49459143 49460521 1.3E-06 10 (7) 49459855 8.3E-05 9 (7) 1.6E-04

3 PPM1L 160475035 160475336 0.002 5 (5) 0.003 0.002

3 B3GALNT1 160822268 160822911 0.001 8 (5) 160822711 0.031 5 (4) 0.003

5 MGAT4B 179230709 179231109 0.002 3 (2) 0.006 2.5E-04

5 OR2V1 (− 39,287) 180511822 180512070 0.012 2 (2) 0.020 7.8E-04

6 DUSP22 291687 292823 7.6E-04 9 (8) 291882 2.2E-04 8 (7) 0.005

6 TRIM39 30297174 30297627 1.5E-06 11 (9) 2.9E-05 6.7E-04

6 LTAh 31539539 31540750 1.9E-15 19 (11) 31540461 4.5E-07 18 (11) 3.5E-06

6 HLA-DMB 32904074 32905190 1.2E-05 9 (5) 32904621 0.001 5 (3) 8.7E-06

6 HLA-DPB2 33083989 33085470 2.5E-06 22 (12) 33084420 2.3E-04 21 (11) 0.006

6 TRAF3IP2 111887243 111887834 0.002 2 (2) 0.026 3.2E-04

6 MLLT4; C6orf124 168227843 168228706 0.001 3 (3) 168228374 0.004 2 (2) 6.4E-05

7 UNCX (− 5426) 1266180 1267228 8.2E-04 4 (4) 1266616 0.001 3 (3) 2.0E-04

7 EVX1 (− 2589) 27279101 27279575 0.009 3 (2) 0.044 1.8E-04

7 STEAP2 89840396 89841435 1.9E-05 13 (5) 89841214 0.004 12 (5) 2.1E-04

8 CSGALNACT1 19459672 19460243 2.3E-05 7 (5) 6.7E-05 1.4E-04

8 KIAA0146; CEBPD (−19) 48648112 48649767 7.6E-08 7 (7) 48648813 3.9E-09 6 (6) 7.4E-05

8 HEY1 80678770 80679314 0.002 4 (3) 80678925 0.026 2 (2) 4.4E-04

8 NDRG1 134307105 134307728 2.3E-05 3 (3) 134307597 7.4E-04 2 (2) 3.0E-05

10 HK1 71087924 71088038 0.009 2 (2) 0.038 2.0E-04

10 LRRC20 72141375 72141924 7.0E-06 5 (3) 72141625 0.007 4 (3) 1.2E-05

10 HTRA1 124254773 124254860 0.003 2 (2) 0.010 1.1E-04

11 IFITM3 (10863) 330536 331179 5.1E-04 5 (3) 0.001 1.2E-05

11 LMO2 33913187 33914088 9.3E-04 5 (4) 3.2E-04 7.2E-04

11 ME3 (− 9563) 86142104 86142587 5.1E-04 4 (3) 0.012 1.0E-04

13 PDX1 (− 1903) 28491326 28492265 0.006 8 (3) 28491409 28491975 0.035 6 (3) 0.001

13 PCDH20 61989203 61990025 6.0E-05 12 (8) 61989701 5.3E-04 8 (7) 6.7E-04

13 DAOA (−319,060) 105791890 105792346 0.023 3 (3) 0.024 0.003

14 DAD1 (−58,286) 22974144 22975521 0.007 6 (5) 22974951 0.029 5 (4) 1.2E-04

14 CTSG 25045625 25046121 0.013 3 (3) 0.008 0.002

14 PLD4h 105390602 105391263 0.002 3 (2) 105391018 0.007 2 (2) 3.0E-06
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Table 6 Look-up analysis of CpGs associated with NO2 exposure in the Korean COPD Cohort (FDR < 0.05) in a previous publication
from the LifeLines Cohort from the Netherlands

Chra Gene (distance
to geneb)

Probe The Korean COPD study The LifeLines cohort study [7]

Coefc (per 1 ppb NO2) ± SEd Pe Coef (per 10 μg/m3 NO2) ± SE P

1 MAN1C1 (− 7282) cg16396978 0.008 ± 0.002 3.9E-06 0.013 ± 0.004 5.4E-04

1 S100A12 cg02901136 0.012 ± 0.002 2.7E-06 0.027 ± 0.006 3.1E-05

2 PLEKHM3 cg09950920 0.013 ± 0.003 2.7E-07 0.024 ± 0.007 3.4E-04

3 AP2M1 cg17343451 0.009 ± 0.002 3.3E-06 0.020 ± 0.005 1.4E-05

5 ZNF366 cg21770462 0.008 ± 0.002 4.7E-06 0.015 ± 0.004 4.1E-05

10 ZNF438 cg10575075 0.014 ± 0.003 2.0E-06 0.026 ± 0.007 2.7E-04

11 TMEM138 cg03370752 0.010 ± 0.002 5.5E-06 0.028 ± 0.008 2.4E-04

11 SORL1 cg17510957 0.011 ± 0.002 5.1E-06 0.023 ± 0.007 4.7E-04

12 STK38L cg05171937 0.010 ± 0.002 1.1E-08 0.036 ± 0.009 4.0E-05

14 OTUB2 cg06992688 0.013 ± 0.003 3.3E-06 0.026 ± 0.007 1.4E-04

21 MORC3 cg01261013 0.010 ± 0.002 4.1E-06 0.023 ± 0.006 3.3E-04
aChromosome
bDistance to transcription start site of the mapped gene (base pair)
cRegression coefficient from statistical model
dStandard error of regression coefficient
eStatistical significance from statistical model

Table 5 Differentially methylated regions in blood DNA in relation to NO2 exposure (adjusted p value < 0.05 both in DMRcate and
in comb-p) (Continued)

Chra Gene (distance to
geneb)

DMRcate comb-p Minimum
PgStart (bpc) End (bp) FDRd #CpGse Start (bp) End (bp) Sidak Pf #CpGs

15 GATM; LOC145663h 45670068 45671708 8.3E-08 17 (7) 45670478 45671347 1.2E-04 14 (7) 6.4E-07

15 TNFAIP8L3 51387571 51387921 0.002 5 (5) 0.004 9.7E-04

15 FLJ42289 100890441 100891257 8.3E-07 9 (4) 100890907 1.0E-05 5 (4) 3.3E-05

16 TMEM8A; LOC100134368 432973 434356 1.3E-05 7 (4) 433439 433825 1.1E-04 5 (4) 1.2E-04

16 CLDN9 3062056 3062975 0.001 8 (6) 3062349 8.0E-04 7 (6) 0.005

17 ALOX12 6898738 6900356 6.9E-10 16 (12) 6899888 1.9E-08 15 (12) 0.001

17 WNK4 40932199 40932983 0.006 11 (6) 40932746 0.005 9 (6) 0.011

17 IGF2BP1 47091521 47092272 0.006 6 (5) 47091978 0.042 5 (4) 0.003

17 CCDC57 80084554 80085082 0.003 4 (4) 0.001 0.002

19 ELANE 855536 856107 4.5E-04 4 (4) 6.1E-05 2.8E-04

19 FBXO17 39465821 39467258 2.0E-04 9 (6) 39466757 6.1E-05 8 (6) 0.003

20 C20orf123 45179157 45179413 0.002 6 (5) 0.005 0.002

21 RUNX1 36259067 36259797 0.005 5 (4) 36259460 0.008 4 (4) 0.003

22 PARVG 44568337 44568812 0.024 9 (5) 0.043 0.006

22 PRR5 45125218 45126040 0.002 5 (4) 45125666 0.005 4 (3) 0.002

Blanked cells in “Start,” “End,” and “#CpGs” for comb-p represent the same information compared to results in DMRcate
aChromosome
bMinimum distance to transcription start site of the mapped gene (base pair)
cPhysical position (base pair, National Center for Biotechnology Information human reference genome assembly Build 37.3)
dBenjamini-Hochberg false discovery rate
eNumber of probes in the region (number of probes having uncorrected p value < 0.05)
fP of Sidak multiple-testing correction
gMinimum p value among uncorrected p-values of CpGs in the region. When either start or end positions were different between DMRs from the two DMR
approaches, we used results from DMRcate
hRegion including significant (FDR < 0.05) differentially methylated probes from our epigenome-wide association study
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DMRs by combining association signals at neighboring
CpGs using two different methods in addition to identi-
fying DMPs.

Conclusions
We identified differential DNA methylation signals in
blood associated with long-term ambient air pollution
exposure and linked differential methylation to differential
gene expression. Replication of many of our results from an
Asian population, in a European population, suggests simi-
lar influences of air pollution exposure across ancestry. Our
CpGs and regions showing differential methylation are
potential biomarkers for long-term ambient air pollution
exposure. These findings may better inform mechanisms
linking air pollution exposure to adverse health outcomes.
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