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On the transmission dynamics of Buruli 
ulcer in Ghana: Insights through a mathematical 
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Abstract 

Background: Mycobacterium ulcerans is know to cause the Buruli ulcer. The association between the ulcer and 
environmental exposure has been documented. However, the epidemiology of the ulcer is not well understood. A 
hypothesised transmission involves humans being bitten by the water bugs that prey on mollusks, snails and young 
fishes.

Methods: In this paper, a model for the transmission of Mycobacterium ulcerans to humans in the presence of a pre-
ventive strategy is proposed and analysed. The model equilibria are determined and conditions for the existence of 
the equilibria established. The model analysis is carried out in terms of the reproduction number R0. The disease free 
equilibrium is found to be locally asymptotically stable for R0 < 1. The model is fitted to data from Ghana.

Results: The model is found to exhibit a backward bifurcation and the endemic equilibrium point is globally stable 
when R0 > 1. Sensitivity analysis showed that the Buruli ulcer epidemic is highly influenced by the shedding and 
clearance rates of Mycobacterium ulcerans in the environment. The model is found to fit reasonably well to data from 
Ghana and projections on the future of the Buruli ulcer epidemic are also made.

Conclusions: The model reasonably fitted data from Ghana. The fitting process showed data that appeared to have 
reached a steady state and projections showed that the epidemic levels will remain the same for the projected time. 
The implications of the results to policy and future management of the disease are discussed.

Keywords: Buruli ulcer, Transmission dynamics, Basic reproduction number, Sensitivity analysis, Stability

© 2015 Nyabadza and Bonyah. This article is distributed under the terms of the Creative Commons Attribution 4.0 International 
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any 
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Buruli ulcer is caused by pathogenic bacterium where 
infection often leads to extensive destruction of skin and 
soft tissue through the formation of large ulcers usu-
ally on the legs or arms [28]. It is a devastating disease 
caused by Mycobacterium ulcerans. The ulcer is fast 
becoming a debilitating affliction in many countries [3]. 
It is named after a region called Buruli, near the Nile 
River in Uganda, where in 1961 the first large number of 
cases was reported. In Africa, close to 30,000 cases were 
reported between 2005 and 2010 [29]. Cote d’Ivoire, with 
the highest incidence, reported 2533 cases in 2010 [27]. 

This disease has dramatically emerged in several west 
African countries, such as Ghana, Cote d’Ivoire, Benin, 
and Togo in recent years [26].

The transmission mode of the ulcer is not well under-
stood, however residence near an aquatic environment 
has been identified as a risk factor for the ulcer in Africa 
[6, 16, 25]. Transmission is thus likely to occur through 
contact with the environment [20]. Recent studies in West 
Africa have implicated aquatic bugs as transmission vec-
tors for the ulcer [18, 24]. An attractive hypothesis for a 
possible mode of transmission to humans was proposed 
by Portaels et al. [22]: water-filtering hosts (fish, mollusks) 
concentrate the Mycobacterium ulcerans bacteria present 
in water or mud and discharge them again to this environ-
ment, where they are then ingested by aquatic predators 
such as beetles and water bugs. These insects, in turn, 
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may transmit the disease to humans by biting [18]. Per-
son to person transmission is less likely. Aquatic bugs are 
insects found throughout temperate and tropical envi-
ronments with abundant freshwater. They prey, accord-
ing to their size, on mollusks, snails, young fishes, and 
the adults and larvae of other insects that they capture 
with their raptorial front legs and bite with their rostrum. 
These insects can inflict painful bites on humans as well. 
In Ghana, where Buruli ulcer is endemic, the water bugs 
are present in swamps and rivers, where human activities 
such as farming, fishing, and bathing take place [18].

Research on Buruli ulcer has focused mainly on the 
socio-cultural aspects of the disease. The research recom-
mends the need for Information, Education and Commu-
nication (IEC) intervention strategies, to encourage early 
case detection and treatment with the assumption that 
once people gain knowledge they will take the appropri-
ate action to access treatment early [2]. IEC is defined as 
an approach which attempts to change or reinforce a set 
of behaviours to a targeted group regarding a problem. 
The IEC strategy is preventive in that it has a potential of 
enhancing control of the ulcer [5]. It is also important to 
note that Buruli ulcer is treatable with antibiotics. A com-
bination of rifampin and streptomycin administered daily 
for 8 weeks has the potential to eliminate Mycobacterium 
ulcerans bacilli and promote healing without relapse.

Mathematical models have been used to model the 
transmission of many diseases globally. Many advances in 
the management of diseases have been born from math-
ematical modeling [11, 12, 14, 15]. Mathematical models 
can evaluate actual or potential control measures in the 
absence of experiments, see for instance [19]. To the best 
of our knowledge very few mathematical models have 
been formulated to analyse the transmission dynamics 
of Mycobacterium ulcerans. This could be largely due to 
the elusive epidemiology of the Buruli ulcer. Aidoo and 
Osei [3] proposed a mathematical model of the SIR-type 
in an endeavour to explain the transmission of Myco-
bacterium ulcerans and its dependence on arsenic. In 
this paper, we propose a model which takes into account 
the human population, water bugs as vectors and fish as 
potential reservoirs of Mycobacterium ulcerans follow-
ing the transmission dynamics described in [8]. In addi-
tion we include the preventive control measures in a bid 
to capture the IEC strategy. Our main aim is to study the 
dynamics of the Buruli ulcer in the presence of a preven-
tive control strategy, while emphasizing the role of the 
vector (water bugs) and fish and their interaction with 
the environment. The model is then validated using data 
from Ghana. This is crucial in informing policy and sug-
gesting strategies for the control of the disease.

This paper is arranged as follows; in “Methods”, we 
formulate and establish the basic properties of the 

model. We also determine the steady states and ana-
lysed their stability. The results of this paper are given in 
“Results”. Parameter estimation, sensitivity analysis and 
the numerical results on the behavior of the model are 
also presented in this section. The paper is concluded in 
“Discussion”.

Methods
Model formulation
We consider a constant human population NH (t), the 
vector population of water bugs NV (t) and the fish pop-
ulation NF (t) at any time t. The total human population 
is divided into three epidemiological subclasses of those 
that are susceptible SH (t), the infected IH (t) and the 
recovered who are still immune RH (t). Total population 
of vector (water bug) at any time t is divided into two sub-
classes to susceptible water bugs SV (t) and those that are 
infectious and can transmit the Buruli ulcer to humans, 
IV (t). The total population reservoir of small fish is also 
divided into two compartments of susceptible fish SF (t) 
and infected fish IF (t). We also consider the role of the 
environment by introducing a compartment U,   repre-
senting the density of Mycobacterium ulcerans in the 
environment. We make the following basic assumptions:

  • Mycobacterium ulcerans are transferred only from 
vector ( water bug) to the humans.

  • There is homogeneity of human, water bug and fish 
populations’ interactions.

  • Infected humans recover and are temporarily 
immune, but lose immunity.

  • Fish are preyed on by the water bugs.
  • Unlike some bacterial infections such as leprosy 

(caused by Mycobacterium leprae) and tuberculosis 
(caused by Mycobacterium tuberculosis), which are 
characterized by person-to-person contact transmis-
sion, it is hypothesized that Mycobacterium ulcerans 
is acquired through environmental contact and direct 
person-to-person transmission is rare [20].

  • Susceptible host (human population) can be infected 
through biting by an infectious vector (water bug). 
We represent the effective biting rate that an infec-
tious vector has to susceptible host as βH and 
the incidence of new infections transmitted by 
water bugs is expressed by standard incidence rate 

βH
SHIV

NH
. One can interpret βH as a function of 

the biting frequency of the infected water bugs on 
humans, density of infectious water bugs per human, 
the probability that a bite will result in an infection 
and the efficacy of the IEC strategy. In particular we 
can set βH = (1− ǫ)ταβ∗

H , where ǫ ∈ (0, 1) is the 
efficacy of the IEC strategy, τ the number of water 
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bugs per human host, α the biting frequency (the bit-
ing rate of humans by a single water bug) and β∗

H the 
probability that a bite by an infected vector to a sus-
ceptible human will produce an infection.

  • Susceptible water bugs are infected at a rate βV
SV IF

NV
 

through predation of infected fish and ηvβV
SVU

K
 

representing other sources in the environment. Here 

ηV  differentiates the infectivity potential of the fish 
from that of the environment.

  • Assuming fish prey on infected water bugs, sus-

ceptible fish are infected at a rate βF
SF IV

NF
 through 

predation of infected fish and ηFβF
SFU

K
 represent-

ing infection through the environment. Here ηF is 
a modification parameter that models the relative 
infectivity of fish from that of the environment.

  • The vector population and the fish populations are 
assumed to be constant. The growth functions are 
respectively given by g(NV ) and g(NF ), where 

It is important to note that other types of functions 
can be chosen as growth functions. In this work we 
however assume that the growth functions are linear.

  • There is a proposed hypothesis that environmen-
tal mycobacteria in the bottoms of swamps may be 
mechanically concentrated by small water-filtering 
organisms such as microphagous fish, snails, mos-
quito larvae, small crustaceans, and protozoa [8]. We 
assume that fish increase the environmental con-
centrations of Mycobacterium ulcerans at a rate σF . 
Humans are are assumed not to shed any bacteria 
into the environment.

  • Aquatic bugs release bacteria into the environment at 
a rate σV .

  • The model does not include a potential route of 
direct contact with the bacterium in water.

  • The birth rate of the human population is directly 
proportional to the size of the human population.

  • The recovery of infected individuals is assumed to 
occur both spontaneously and through treatment. 
Research has shown that localized lesions may spon-
taneously heal but, without treatment, most cases of 
Buruli ulcer result in physical deformities that often 
lead to physiological abnormalities and stigmas [4].

We now describe briefly, the transmission dynamics of 
Buruli ulcer:

g(NV ) = µVNV and g(NF ) = µFNF .

New susceptibles enter the population at a rate of 
µHNH . Buruli ulcer sufferers do not recover with per-
manent immunity, they loose immunity at a rate θ and 
become susceptible again. Susceptibles and infected 
through interaction with infected water bugs, with infec-
tion driven by water bugs biting susceptible humans. 
Once infected, individuals are allowed to recover either 
spontaneously or through antibiotic treatment at a rate 
γ . In this model, the human population is assumed to 
be constant over the modeling time with the birth and 
death rates being equal. The compartment SV  tracks the 
changes in the susceptible water bugs population that are 
recruited at a rate µVNV . The infection of water bugs is 
driven by two processes: their interaction infected fish and 
with the environment. The natural mortality of the water 
bugs occurs at a rate µV . Similarly, the compartment SF 
tracks the changes in the susceptible fish population that 
are recruited at a rate µFNF. The infection of fish is also 
driven by two processes: their interaction infected water 
bugs and with the environment. Fish’s natural mortality 
rate is µF . The growth of Mycobacterium ulcerans in the 
environment is driven by their shedding by infected water 
bugs and fish into the environment. They are assumed 
to die naturally at a rate µE . The possible interrelations 
between humans, the water bug and fish are represented 
by the schematic diagram below (Fig. 1).

The descriptions of the parameters that describe the 
flow rates between compartments are given in Table 1.

The dynamics of the ulcer can be described by the fol-
lowing set of nonlinear differential equations:

We assume that all the model parameters are positive and 
the initial conditions of the model system (1) are given by

(1)

dSH

dt
= µHNH + θRH − βH

SHIV

NH

− µHSH ,

dIH

dt
= βH

SHIV

NH

− (µH + γ )IH ,

dRH

dt
= γ IH − (µH + θ)RH ,

dSV

dt
= µVNV − βV

SV IF

NV

− ηV βV
SVU

K
− µV SV ,

dIV

dt
= βV

SV IF

NV

+ ηV βV
SVU

K
− µV IV ,

dSF

dt
= µFNF − βF

SF IV

NF

− ηFβF
SFU

K
− µFSF ,

dIF

dt
= βF

SF IV

NF

+ ηFβF
SFU

K
− µF IF ,

dU

dt
= σF IF + σV IV − µEU .
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We arbitrarily scale the time t by the quantity 1
µV

 by let-
ting τ = µV t and introduce the following dimensionless 
parameters;

SH (0) = SH0 > 0, IH (0) = IH0 ≥ 0,RH (0) = RH0 = 0,

SV (0) = SV 0 > 0,

IV (0) = IV 0 ≥ 0, SF (0) = SF0 > 0,

IF (0) = IF0 ≥ 0 and U(0) = U0 > 0.

τ = µV t, βh =

βH

µV

, µh =

µH

µV

, θh =

θ

µV

, γh =

γ

µV

,

m1 =
NH

NV

, m2 =
NF

NV

,

m3 =
1

m2

, m4 =

NF

K
, m5 =

NV

K
, µf =

µF

µV

, βf =
βF

µV

,

σf =
σF

µV

, σv =
σV

µV

, βv =
βV

µV

and µe =

µE

µV

.

Fig. 1 Proposed transmission dynamics of the Buruli ulcer among humans, fish, water bugs and the environment (U)

Table 1 Description of parameters used in the model

Symbol Description

βH The effective contact rate between the vector and susceptible 
humans

βV The effective contact rate between fish and susceptible vectors

βF The effective contact rate between the susceptible fish and Myco-
bacterium ulcerans

γ The recovery rate of infected humans

θ The rate of loss of immunity of recovered humans

µH Natural mortality rate/birth rate of the human population

µV Natural mortality rate of the vector population

µF Natural mortality rate of the fish population

rV The growth rate of the vector population

rF The growth rate of the fish population

K The environmental carrying capacity of the bacteria population

σF Rate of shedding of Mycobacterium ulcerans into the environment 
by fish

σV Rate of shedding of Mycobacterium ulcerans into the environment 
by the water bugs

µE Rate at which Mycobacterium ulcerans are cleared from the environ-
ment
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can be non dimensionalised bySo, system (1)  setting

The forces of infection for humans, water bugs and fish 
are respectively

Given that the total number of bites made by the water 
bugs must equal the number of bites received by the 
humans, m1 is a constant, see [9]. Similarly m2 is constant 
and so is m3. We also note that since NF and NV  are con-
stants, m4 and m5 are constants.

Given that sh + ih + rh = 1, sv + iv = 1, sf + if = 1 
and 0 ≤ u ≤ 1, system (1) can be reduced to the following 
system of equations by conveniently maintaining the cap-
italised subscripts so that we can still respectively write 
sh, ih, iv , if  and u as SH , IH , IV , IF and U .

Basic properties
Feasible region
Note that 

dU

dτ
= m4σf IF +m5σvIV − µeU ≤ m4σf

+m5σv − µeU . Through integration we obtain 

U ≤
m4σf +m5σv

µe
. The feasible region (the region where 

the model makes biological sense) for the system (2) is in 

R
5
+ and is represented by the set

where the basic properties of local existence, uniqueness 
and continuity of solutions are valid for the Lipschitzian 

sh =

SH

NH

, ih =

IH

NH

, rh =

RH

NH

, iv =
IV

NV

,

sf =
SF

NF

, if =
IF

NF

and u =

U

K
.

�H = βhm1iv , �V = βvm2if + ηV βvu,

�F = βf m3iv + ηFβf u.

(2)

dSH

dτ
= (µh + θh)(1− SH )− θhIH − �HSH ,

dIH

dτ
= �HSH − (µh + γh)IH ,

dIV

dτ
= �V (1− IV )− µvIV ,

dIF

dτ
= �F (1− IF )− µf IF ,

dU

dτ
= m4σf IF +m5σvIV − µeU .



















































































� =
{

(SH , IH , IV , IF ,U) ∈ R
5
+|0 ≤ SH + IH ≤ 1,

0 ≤ IV ≤ 1, 0 ≤ IF ≤ 1, 0 ≤ U ≤
m4σf +m5σv

µe

}

,

system (2). The populations described in this model are 
assumed to be constant over the modelling time. The 
solutions of system (2) starting in � remain in � for all 
t > 0. Thus , � is positively invariant and it is sufficient to 
consider solutions in �.

Positivity of solutions
We desire to show that for any non-negative initial con-
ditions of system (2), say (SH0, IH0, IV 0, IF0,U0), the solu-
tions remain non-negative for all τ ∈ [0,∞). We prove 
that all the state variables remain non-negative and the 
solutions of the system (2) with positive initial conditions 
will remain positive for all τ > 0. We thus state the fol-
lowing lemma.

Lemma 1 Given that the initial conditions of system (2) 
are positive, the solutions SH (τ ), IH (τ ), IV (τ ), IF (τ ) and 
U(τ ) are non-negative for all τ > 0.

Proof Assume that

Thus τ̂ > 0, and it follows directly from the first equation 
of the system (2) that

We thus have

Since the exponential function is always positive and 
SH0 = SH (0) > 0, the solution SH (τ ) will thus be always 
positive.

From the second equation of (2),

Similarly, it can be shown that IV (τ ) > 0, IF (τ ) > 0 and 
U(τ ) > 0 for all τ > 0, and this completes the proof.  �

Steady states analysis
The disease free equilibrium
In this section, we solve for the equilibrium points by set-
ting the right hand side of system (2) to zero. This direct 
calculation shows that system (2) always has a disease 
free equilibrium point

We have the following result on the local stability of the 
disease free equilibrium.

τ̂ = sup {τ > 0 : SH > 0, IH > 0, IV > 0, IF > 0,U > 0} ∈ (0, τ ].

dSH

dτ
≥ −(θh + �H )SH .

dSH

dt
≥ SH0 exp

[

−θht +
∫ τ

0

�H (ς)dς

]

.

dIH

dτ
≥ −(µh + γh)IH ,

⇒ IH ≥ IH0e
−(µh+γh)τ > 0.

E0 = (1, 0, 0, 0, 0).
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Theorem  1 The disease free equilibrium E0 whenever 
it exists, is locally asymptotically stable if R0 < 1 and 
unstable otherwise.

Proof The Jacobian matrix of system (2) at the equilib-
rium point E0 is given by

It can be seen that the eigenvalues of JE0 are 
−(µh + θh), − (µh + γh) and the solution of the charac-
teristic polynomial

where

for

The solutions of P(ϑ) = 0 have negative real parts only if 
R0 < 1 following the use of the Routh Hurwitz Criterion. 
We can thus conclude that the disease free equilibrium is 
locally asymptotically stable whenever R0 < 1.  �

We note that R0 is the model system (2)’s reproduction 
number and does not depend on the human population 
size. The model reproduction number is a sum of three 
terms. The terms R1

0 and R2
0 represent the contribution of 

fish and water bugs respectively to the infection dynam-
ics. The term R3

0, which is not very common in many epi-
demiological models, shows the combined contribution 
of the water bugs, fish and their shedding of Mycobac-
terium ulcerans into the environment. So, the infection 
is driven by the water bugs, fish and the density of the 
bacterium in the environment. The model reproduc-
tion number increases linearly with the shedding rates 
of the Mycobacterium ulcerans into the environment by 
fish and water bugs and the effective contact rates βf  and 
βv . It decreases with increasing removal rates of the fish 
and Mycobacterium ulcerans. So the control of the ulcer 
depends largely on environmental management.

JE0
=













−(µh + θh) − θh −m1βh 0 0

0 − (µh + γh) m1βh 0 0

0 0 − 1 m2βv ηvβv
0 0 m3βf − µf ηf βf
0 0 m5σv m4σf − µe













.

P(ϑ) = ϑ3 + a2ϑ
2 + a1ϑ + µeµf (1−R0) = 0,

a2 = 1+ µe + µf ,

a1 = µe + µf + µeµf − (βf βv +m4ηf σf βf +m5ηvσvβv) and

R0 = R
1
0 + R

2
0 + R

3
0,

R
1
0 =

m4ηf σf βf

µeµf

, R
2
0 =

m5ηvσvβv

µe

and

R
3
0 = βf βv

(

µe +m3m4ηvσf +m2m5ηf σv

µeµf

)

.

The endemic equilibrium
The endemic equilibrium is much more tedious to obtain. 
Given that �∗H = βhm1I

∗
V , from the first and second equa-

tions of system (2) we have

where A = m1βh(µh + θh + γh)

(µh + γh)(µh + θh)
.

The last equation of system (2) can be written as

We thus have

where ϑ3 = βf (m3 + ϑ2ηf ), ϑ4 = ϑ1βf ηf , ϑ5 = ϑ2ηvβv and 
ϑ6 = βv(m2 + ϑ1ηv).

From the third and fourth equations of system (2)we 
have

Substituting (3) into (4) we obtain I∗V = 0 and the cubic 
equation

where

Note that

Given that

the turning points of equation (5) are given by

S∗H = 1

1+AI∗V
and I∗H = m1βhI

∗
V

(µh + γh)(1+AI∗V )
,

U∗ = ϑ1I
∗
F + ϑ2I

∗
V , where ϑ1 =

m4σf

µe
and ϑ2 =

m5σv

µe
.

�
∗
F = ϑ3I

∗
V + ϑ4I

and
F �

∗
V = ϑ5I

∗
V + ϑ6I

∗
F ,

(3)I∗F = I∗V [1− ϑ5(1− I∗V )]
ϑ6(1− I∗V )

,

(4)I∗V =
I∗F [µf − ϑ4(1− I∗F )]

ϑ3(1− I∗F )
.

(5)f (I∗V ) = a3I
∗
V
3 + a2I

∗
V
2 + a1I

∗
V + a0 = 0,

a0 =
βf µf

µe

(

µem2 +m4ηvσf
)

[R0 − 1],

a1 = ϑ4ϑ5(1+ ϑ6)+ ϑ5(ϑ4 + ϑ3ϑ6)+ ϑ3ϑ5ϑ6

− [ϑ3ϑ6(1+ ϑ6)+ ϑ5(ϑ4ϑ5 + µf ϑ6)+ ϑ4ϑ
2
5 ],

a2 = (1+ ϑ6)(ϑ4 + ϑ3ϑ6)+ ϑ5(ϑ4ϑ5 + µf ϑ6)

+ ϑ6(ϑ3ϑ6 + µf ϑ5)− [2ϑ4ϑ5(1+ ϑ6)+ ϑ6(ϑ3ϑ5 + µf )],

a3 = −
m5βf ηvσvβ

2
v

µ2
e

(

(µem2 +m4ηvσf )m3 +m2m5ηf σv
)

< 0.

a0

{

> 0 if R0 > 1
< 0 if R0 < 1.

(6)f ′(I∗V ) = 3a3(I
∗
V )

2 + 2a2�
∗
1 + a1,
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The discriminant of solutions (7) is △ = a22 − 3a1a3. We 
now focus on the sign of the discriminant.

If △ < 0, then f (I∗V ) has no real turning points, which 
implies that f (I∗V ) is a strictly monotonic function. The 
sign of f ′(�∗1) is crucial in determining the monotonicity. 
Through completing the square, equation (6) can be writ-
ten as

Clearly if △ < 0, then 3a1a3 − a22 > 0. Since a3 < 0, then 
f ′(I∗V ) < 0. Thus f (I∗V ) is a strictly monotone decreas-
ing function. Note that limI∗V→∓∞ f (I∗V ) = ±∞. For 
f (0) = a0 < 0, the polynomial f (I∗V ) has no positive real 
roots for R0 < 1,. However, if f (0) = a0 > 0 it has only 
one positive real root for R0 > 1, and consequently only 
one endemic equilibrium.

If △ = 0, then f ′(I∗V ) has only one real root with mul-
tiplicity two. This implies that (I∗V )1 = (I∗V )

2 = − a2
3a3

 and 
that f ′(I∗V ) < 0. Thus the polynomial f (I∗V ) is a decreas-
ing function. Given that f ′′(I∗V )(− a2

3a3
) = 0, the turning 

point is a point of inflexion for f (I∗V ). The polynomial 
f (I∗V ) has only one endemic equilibrium.

For △ > 0, we consider two cases; a1 < 0 and a1 > 0 . 
If a1 < 0, then a1a3 > 0. This means that 

√
△ < a2. Irre-

spective of the sign of a2, f ′(I∗V ) has two real positive 
and distinct roots. This implies that (5) has two posi-
tive turning points. If f (0) = a0 > 0 i.e R0 > 1 then, 
f (I∗V ) has at least one positive real root, and hence at 
least one endemic equilibrium. On the other hand, if 
f (0) = a0 < 0 then, f (I∗V ) has at most two positive real 
roots when R0 < 1, and hence at most two endemic 
equilibria.

If a1 > 0, then a1a3 < 0, which implies that 
√
△ > a2 . 

For a2 > 0, f ′(I∗V ) has two real roots of opposite signs. 
Since f (0) = a0 > 0 for R0 > 1, then, f (I∗V ) has one pos-
itive root. For a2 < 0, f ′(I∗V ) has two negative real roots. 
Since f (0) = a0 < 0 for R0 < 1, then, f (I∗V ) has no posi-
tive real roots, and consequently no endemic equilibria.

Furthermore, we can use the Descartes’ Rule of Signs 
[7] to explore the existence of endemic equilibrium (or 
equilibria) for R0 < 1. We note the possible existence of 
backward bifurcation. The theorem below summarises 
the existence of endemic equilibria of the model system 
(2).

(7)(I∗V )
1,2 =

−a2 ±
√

a22 − 3a1a3

3a3
.

(8)

f ′(I∗V ) = 3a3

[

(

I∗V + a2

3a3

)2

+ 1

9a23
(3a1a3 − a22)

]

.

Theorem 2 The model system (2) has

1 a unique endemic equilibrium point if R0 > 1.
2 has two endemic equilibria for Rc

0 < R0 < 1 where 
R

c
0 is the critical threshold below which no endemic 

equilibrium exists.

Remark The evaluation of Rc
0 depends on the signs of 

a2 and a1 and the sign of the discriminant. The compu-
tations are algebraically involving and long and are not 
included here. Since the model system (2) possesses two 
endemic equilibria when Rc

0 < R0 < 1, the model exhib-
its backward bifurcation for R0 < 1.

The consequence of the above remark is that bringing 
R0 below unity is not sufficient to eradicate the disease. 
For eradication, R0 must be brought below the critical 
value Rc

0.

Global stability of the endemic equilibrium

Theorem 3 The endemic equilibrium point E1 of system 
(2), is globally asymptotically stable.

Proof The global stability of the endemic equilibrium, 
can be determined by constructing a Lyapunov function 
V(t) such that

The corresponding time derivative of V(t) is given by

At the endemic equilibrium, we have the following 
relations

(9)

V(t) = SH − S
∗
H − S

∗
H ln

SH

S
∗
H

+ A

(

IH − I
∗
H − I

∗
H ln

IH

I
∗
H

)

+ B

(

IV − I
∗
V − I

∗
V ln

IV

I
∗
V

)

+ C

(

IF − I
∗
F
− I

∗
F
ln

IF

I
∗
F

)

+ D

(

U −U
∗ − U

∗
ln

U

U∗

)

.

(10)

V̇ =
(

1− S∗H
SH

)

ṠH + A

(

1− I∗H
IH

)

İH + B

(

1− I∗V
IV

)

İV

+ C

(

1− I∗F
IF

)

İF + D

(

1− U∗

U

)

U̇ .

(11)

µh + θh = (µh + θh)S
∗
H + θhI

∗
H +m1βhS

∗
HI

∗
V ,

µh + γh = m1βh
S∗H I∗V
I∗H

,

1 = m2βv
(

1− I∗V
) I∗F
I∗V

+ ηvβv
(

1− I∗V
)

U∗
I∗V

,

µf = m3βf
(

1− I∗F
)

I∗V
I∗F

+ ηf βf
(

1− I∗F
)

U∗
I∗F
,

µe = m4σf
I∗F
U∗ +m5σv

I∗V
U∗ .
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Evaluating the components of the time derivative of the 
Lyapunov function using the relations (11) we have

Let

Substituting (13) into (12), we obtain

where

Next, we choose A, B, C and D so that none of the vari-
able terms of H are positive. It is important to group 
together the terms in H that involve the same state vari-
able terms, as well as grouping all of the constant terms 
together. So we can show that H < 0 by expanding (15), 
writing out the constant term and the coefficients of the 
variable terms such as v,w, x, y, z, 1v ,

w
v ,

x
v and so on. The 

only variable terms that appear with positive coefficients 
are x, y and z. We thus choose the Lyapunov coefficients 

(12)

V̇ =
(

1− S∗H
SH

)[

(µh + θh)S
∗
H

(

1− SH

S∗H

)

+ θhI
∗
H

(

1− IH

I∗H

)

+m1βhS
∗
HI

∗
V

(

1− SHIV

S∗HI
∗
V

)]

+ A

(

1− I∗H
IH

)[

m1βhS
∗
HI

∗
V

(

SHIV

S∗HI
∗
V

− IH

I∗H

)]

+ B

(

1− I∗V
IV

)[

m2βvI
∗
F

(

IF

I∗F
− IV

I∗V

)

+ m2βvI
∗
F IV

(

1− IF

I∗F

)

+ ηvβvU
∗
(

U

U∗ − IV

I∗V

)

+ ηvβvU
∗IV

(

1− U

U∗

)]

+ C

(

1− I∗F
IF

)[

ηf βf U
∗
(

U

U∗ − IF

I∗F

)

+ ηf βf U
∗IF

(

1− U

U∗

)

+ m3βf I
∗
V

(

IV

I∗V
− IF

I∗F

)

+m3βf I
∗
V IF

(

1− IV

I∗V

)]

+ D

(

1− U∗

U

)[

m4σf IF
∗
(

IF

I∗F
− U

U∗

)

+m5σvIV
∗
(

IV

I∗V
− U

U∗

)]

.

(13)v = SH

S∗H
,w = IH

I∗H
, x = IV

I∗V
, y = IF

I∗F
and z = U

U∗ .

(14)V̇ =− (µh + θh)S
∗
H

(1− v)2

v
+H(v,w, x, y, z),

(15)

H = θhI
∗
H

(

1− w − 1

v
+ w

v

)

+m1βhS
∗
HI

∗
V

(

1− 1

v
+ x − xv

)

+ Am1βhS
∗
HI

∗
V

(

1+ xv − w − vx

w

)

+ Bm2βvI
∗
F

(

1+ y− x − x

y

)

+ Bm2βvI
∗
F I

∗
V

(

x + y− xy− 1
)

+ BηvβvU
∗
(

1+ z − x − z

x

)

+ BηvβvU
∗I∗V (x + z − xz − 1)+ Cm3βf IV

∗
(

1+ x − y− x

y

)

+ Cm3βf IV
∗IF

∗(y+ x − xy− 1
)

+ Cηf βf U
∗
(

1+ z − y− z

y

)

+ Cηf βf U
∗IF

∗(y+ z − yz − 1
)

+ Dm4σf IF
∗
(

1+ y− z − y

z

)

+ Dm5σvIV
∗
(

1+ x − z − x

z

)

.

so as to make the coefficients ofx, y and z equal to zero. 
We have

The coefficients C and D can similarly be evaluated from 
the coefficients of y and z. Note that expressions such as

A = 1,B = m1βhS
∗
HI

∗
V

m2βvI
∗
V (1− I∗F )+ ηβvU∗(1− I∗V )

.

m1βhS
∗
HI

∗
V

(

2− 1

v
− xv

w

)

emanating from the substitution of the coefficients into 
H, are less than or equal to zero by the arithmetic mean-
geometric mean inequality. This implies that H ≤ 0 with 
equality only if SH

SH
∗ = IH

IH
∗ = IV

IV
∗ = IF

IF
∗ = U

U∗ = 1.

Therefore, V̇ ≤ 0 and by the LaSalle’s Extension [17], it 
implies that the omega limit set of each solution lies in 
an invariant set contained in �. The only invariant set 
contained in � is the singleton E1. This shows that each 
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solution which intersects R5
+ limits to the endemic equi-

librium. This completes the proof.  �

Results
Parameter estimation
The biggest challenge in epidemic modeling is the esti-
mation of parameters in the model validation process. In 
this section we endeavour to estimate some of the param-
eter values of system (2). The demographic parameters 
can be easily estimated from census population data. We 
begin by estimating the mortality rate µh. We note that 
the average life expectancy of the human population in 
Ghana is 60 years [21]. This translates into µh = 0.017 
per year or equivalently 4.6× 10−5 per day. Buruli ulcer 
is currently regarded as a vector borne disease. Recovery 
rates modelled by γh, of vector borne diseases range from 
1.6× 10−5 to 0.5 per day [23]. This translates to an aver-
age of between 0.00584 and 183 per year. The rate of loss 
of immunity θh for vector borne diseases range between 
0 and 1.1× 10−2 per day[23]. The mortality rate of the 
water bugs is assumed to be 0.15 per day [3]. The rates 
per day can easily be transferred to yearly rates.

In this model we shall assume that we have more water 
bugs than humans so that m1 < 1. Since the water bugs 
prey on the fish, a reasonable food chain structure leads 
to the assumption that we have more fish than water 
bugs hence m2 > 1 and consequently 0 < m3 < 1. If the 
water bug is assumed to interact more with the environ-
ment than fish then ηv > 1 and 0 < ηf < 1. The natural 
mortality of small fish in rivers is not well documented 
and data on the mortality of river fish in Ghana is not 
available. For the purpose of our simulations, we shall 
assume that 3× 10−3 < µf < 7× 10−3 per day. Given 
that K ≥ NF ,NV  we have 0 ≤ m4,m5 ≤ 1. We shall also 
assume that 0 ≤ σf , σv ≤ 1. We summarise the param-
eters in the following Table 2.

Sensitivity analysis
Many of the parameters used in this paper are not deter-
mined experimentally. Therefore their accuracy is always 
in doubt. This can be overcome by observing responses 
of such parameters and their influence on the model 
variables through sensitivity and uncertainty analysis. 
In this subsection we present the sensitivity analysis of 
the model parameters to ascertain the degree to which 
the parameters affect the outputs of the model. We use 
the Partial Correlation Coefficients (PRCCs) analysis 
to determine the sensitivity of our model to each of the 
parameters used in the model. Through correlations, the 
association of the parameters and state variables can be 
established. In our case, we determine the correlation of 
our parameters and the state variable U. Alongside the 
PRCCs are the statistical significance test p-values for 

each of the parameters. If the magnitude of the PRCC 
value of a parameter is greater than 0.5 or less than −0.5 
and the p-value less than 0.05, then the model is sensitive 
to the parameter. On the other hand, PRCC values close 
to +1 or −1 indicate that the parameter strongly influ-
ences the state variable output. The sign of a PRCC value 
indicates the qualitative relationship between the param-
eter and the output variable. A negative sign indicates 
that the parameter is inversely proportional to the out-
come measure [10]. The parameters with negative PRCCs 
reduce the severity of Burili ulcer disease while those 
with positive PRCCs aggravate it. Using Latin Hyper-
cube Sampling (LHS) scheme with 1000 simulations for 
each run, with U as the outcome variable. Our results 
show that the variable U is sensitive to the changes in the 
parameters m3, ηf , µe, µf  and βf . The results are shown 
in Fig. 2.

The results from the PRCC analysis are summarized in 
Table  3. The significant parameters together with their 
PRCC values and p-values have been encircled.

In Fig. 3 the residuals for the ranked Latin Hypercube 
Sampling parameter values are plotted against the residu-
als for the ranked density of Mycobacterium ulcerans.
The PRCC plots for parameters βf , µf , µe and ηf  show a 
strong linear correlation. The growth of Mycobacterium 
ulcerans increases as the number of infected fish that 
eventually shed bacteria into the environment increases. 
An increase in the parameters µf  and µe leads a decrease 
in amount of bacteria in the environment.

Data and the fitting process
One of the most important steps in the model building 
chronology is model validation. We now focus on the data 
provided by the Ashanti Regional Disease Control Office for 
Buruli ulcer cases in Ghana per 10,0000 people. The data are 
given in the Table 4  below for the years 2003–2012.

Table 2 Parameter values used for  the simulations 
and sensitivity analysis

Parameter Value/range Source

µh 4.5× 10
−5 [21]

γh 1.6× 10
−5 − 0.5 [23]

θh 0− 1.1× 10
−2 [23]

m1,m2 m1 < 1,m2 > 1 Estimated

m3,m4,m5 (0,1) Estimated

βh ,βf ,βv (0,1) Estimated

ηv (1,5) Estimated

ηf (0, 1) Estimated

σf , σv (0,1) Estimated

µf 3× 10
−3 − 7× 10

−3 Estimated

µe (0,1) Estimated
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We fit the model system (2) to the data of Buruli ulcer 
cases expressed as fractions. We use the least squares 
curve fit routine (lsqcurvefit) in Matlab with optimisation 
to estimate the parameter values. Many parameters are 
known to lie within limits. A few parameters such as the 
demographic parameters are known [13] and it is thus 
important to estimate the others. The process of esti-
mating the parameters aims at finding the best concord-
ance between computed and observed data. One tedious 
way to do it is by trial and error or by the use of software 
programs designed to find parameters that give the best 
fit. Here, the fitting process involves the use of the least 

squares-curve fitting method. Matlab code is used where 
unknown parameter values are given a lower and upper 
bound from which the set of parameter values that pro-
duce the best fit are obtained.

Figure 4 shows how system (2) fits to the available data 
on the incidence of the BU. The incidence solution curve 
shows a very reasonable fit to the data.

In planning for a long term response to the Buruli ulcer 
epidemic, it is important to have some reasonable pro-
jections to the epidemic. The fitting process allows us to 
envisage the Buruli ulcer epidemic in future. it is impor-
tant to note that the projections are reasonably good over 

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

µ
h

θ
h

m
1

β
h

γ
h

m
2

β
v

η
v

µ
v

β
f

µ
f

µ
e

m
3

η
f

Fig. 2 PRCC plots: The variable U largely depends on m3, ηf , µe , µf  and βf . The bars pointing to the left indicate that U has an inverse dependence 
on the respective parameters. We observe that the parameters m3, ηf  and βf  aggravate the disease when they are increased while µf  and µe reduce 
its severity when increased

Table 3 Outputs from PRCC analysis
Parameter PRCC p-value Parameter PRCC p-value

µh −0.0278955496902069 0.15143 ηv -0.0115013733722167 0.6938

θh 0.00442843658688886 0.9812 µv -0.0180489104210923 0.46911

m1 0.0515998428094382 0.80091 βf 0.778665515455008 1.8606e− 207

βh -0.0157345069415098 0.86872 µf -0.700364635558767 1.3865e− 159

γh -0.0107900263078278 0.44864 µe -0.730147310381517 3.8349e− 165

m2 0.0234088416548564 0.87524 ηf 0.671003774168464 3.5184e− 145

βv 0.0241407300242573 0.10143 m3 0.521170177172971 4.476e− 067
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Fig. 3 PRCC plots shows the PRCC plots for the parameters βf , µf , µe, ηf  and m3
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a short period of time since the current is evolving gradu-
ally based on the available data. We chose to project the 
epidemic beyond 5 years to 2017. Figure 5 show the pro-
jected Buruli ulcer epidemic.

Figures 6 and 7 show the changes in the prevalence of 
infected humans respectively when σf , the shedding rate 
of Mycobacterium ulcerans in the environment and µe 
the removal rate of MU from the environment, are var-
ied. Based on the sensitivity analysis, our model is very 
sensitive to the shedding rate of Mycobacterium ulcerans 
into the environment. Figure  6 shows that an increase 
in the shedding rate will lead increased human infec-
tions. We can actually quantify the related increases. 
For instance, if σf  is increased from 0.51 to 0.52 on year 
15, the percentage increase in the prevalence of human 
infections is 6 %. Minimising Mycobacterium ulceransin 
the environment is an important control measure that is, 
albeit impractical at the moment. We observe through 
our results that their decrease in the environment can 
lead to quantifiable changes in the prevalence of infected 

humans. Increasing µe leads to a decrease in the preva-
lence of infected humans.

Discussion
In this paper, a deterministic model on the dynamics of 
the Buruli ulcer in the presence of a preventive interven-
tion strategy is presented. The model’s steady states are 
determined and their stabilities investigated in terms of 
the classic threshold R0. In disease transmission mod-
elling, it is well known that a classical necessary condi-
tion for disease eradication is that the basic reproductive 
number R0, must be less than unity. The model has mul-
tiple endemic equilibria (in fact it exhibits a backward 
bifurcation). When a backward bifurcation occurs, 
endemic equilibria coexist with the disease free equi-
librium for R0 < 1. This means that getting the classic 
threshold R0 less than 1, might not be sufficient to elimi-
nate the disease. Thus the existence of backward bifur-
cation has important public health implications. This 
might explain why the disease has persisted in the human 

Table 4  Data on Buruli ulcer cases in Ghana

Source [13]

Year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Buruli ulcer cases 739 1159 1201 1096 1136 1300 1158 1428 1324 1292
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Fig. 4 Model fit to data. Model system (2) fitted to data of Burili ulcer cases in Ghana. The circles indicate the actual data and the solid line indicates the  
model fit to the data. The parameter values used for the fitting; µh = 0.000045, θ = 0.1, m1 = 5, βh = 0.1, γ = 0.056, m2 = 10, βv = 0.000065,

ηv = 1.5, ηf = 0.6, µV = 0.15, βf = 0.00005, µf = 0.05, σf = 0.05, σv = 0.006, µe = 0.4
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Fig. 5 Projected model fit. Projection to fit in Fig. 4
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Fig. 6 Prevalence of Buruli ulcer infection in humans. Shows prevalence humans when σf  is varied
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population over time. The endemic equilibrium is found 
to be globally stable if R0 > 1.

The sensitivity analysis of model parameters showed 
some interesting results. These results suggest that efforts 
to remove Mycobacterium ulcerans and infected fish 
from the environment will greatly reduce the epidemic 
although the latter will be impracticable. This is because 
of the costs involved and the fact that many governments 
in affected areas operate on lean budgets.

The model is then fitted to data on the Buruli ulcer 
in Ghana. The model reasonably fits the data. The chal-
lenge in the fitting process was that the data appears 
to indicate that Buruli ulcer has reached a steady 
state. This then produced some parameter values that 
appeared unreasonable. Despite these challenges, the 
fit produced reasonable projections on the future of the 
ulcer. The model shows that in the near future, the num-
ber of cases will not change if everything remains the 
same. An important consideration that can be added to 
the model is the inclusion of probable policy shifts and 
the investigation of different scenarios on the progres-
sion of the epidemic as the policies change. Because not 
much of the disease is understood, parameter estima-
tion was a daunting task. So we had to reasonably esti-
mate some of the parameter using the hypothesis that 
Buruli ulcer is a vector borne disease. Due to the esti-
mation of essential parameters sensitivity analysis was 

necessary and very important to determine how these 
parameters influence the model. The implications of 
varying some of the important epidemiological param-
eters such as the shedding rates were investigated. 
Important results were drawn through Figs.  6 and 7. 
The main result of this paper is that the management of 
Buruli ulcer depends mostly on the management of the 
environment.

Conclusions
This model can be improved by considering social inter-
ventions in the human population, modeled as functions 
and the inclusion of the different forms of treatment 
available as some individuals opt for traditional methods 
while others depend on the government health care sys-
tem [1]. Social interventions include education, aware-
ness, poverty reduction and provision of social services. 
While the mathematical representations of these inter-
ventions are insurmountable, they are vital to the dynam-
ics of the disease and public health policy designs. Finally 
this model can be used to suggest the type of data that 
should be collected as research on the Buruli ulcer inten-
sifies. The global burden of the disease and its epidemiol-
ogy are not well understood, [28]. Clearly, gaps do exist in 
the nature and type of data available. Reports on the dis-
ease are often based on passive presentations of patients 
at health care facilities. As a result of the difficulties of 
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Fig. 7 Prevalence of Buruli ulcer in infected humans for different values of µe. Shows prevalence the infected humans when µe is varied
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accessing health care in affected areas, data on the dis-
ease is scanty.
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